
Mission Python is a hands-on guide to build-
ing a computer game in Python—a beginner-
friendly programming language used by
millions of professionals as well as hobbyists
who just want to have fun.

In Mission Python, you’ll code a puzzle-
based adventure game, complete with graphics,
sound, and animations. Your mission: to
escape the station before your air runs out.
To make it to safety, you must explore the
map, collect items, and solve puzzles while
avoiding killer drones and toxic spills. When
you’ve finished building your game, you can
share it with your friends!

As you code, you’ll learn fundamentals of
Python, like how to:

 Store data in variables, lists, and
 dictionaries

 Add keyboard controls to your game

 Create functions to organize your
 instructions

 Make loops to repeat blocks of code

 Add graphics, sound, and animations
 to your game

The book uses Pygame Zero, a free
resource that makes coding games easier.
Plus, all graphics, sound, and code used in
the game are available for you to download
for free!

ABOUT THE AUTHOR

Sean McManus is a computer book author
with extensive experience in writing coding
books for children. Visit his website at
www.sean.co.uk.

SHELVE IN
: PROGRAM

M
ING

LANGUAGES/PYTHON

Ages 11+

M
c

M
a

n
u

s

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™
.$29 95 .)($39 95 CDN

Code your own Space
Station adventure game!

Code your own Space
Station adventure game!

Requires Python 3.x on Windows
or Raspberry Pi (it’s free!)

M
is

s
io

n
 P

y
t

h
o

n
M

is
s

io
n

 P
y

t
h

o
n

Mission
Python
Mission
Python

Code a Space Adventure Game!

S e a n M c M a n u s

Build this game!

Mission
Python

Code a Space Adventure Game!

by Sean McManus

San Francisco

Mission Python. Copyright © 2018 by Sean McManus.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-857-8
ISBN-13: 978-1-59327-857-1

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Josh Ellingson
Game Illustrations: Rafael Pimenta
Developmental Editor: Liz Chadwick
Technical Reviewer: Daniel Aldred
Copyeditor: Anne Marie Walker
Compositor: Riley Hoffman
Proofreader: Emelie Burnette

The following images are reproduced with permission:
Figure 1-1 courtesy of Johnson Space Center, NASA
Figure 1-6 courtesy of NASA/JPL-Caltech/UCLA
Figure 1-7 image of Mars courtesy of NASA

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2018950581

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

To my wife, Karen, with thanks for all
her support throughout this mission;
and to Leo, our wonderful son, who is

taking us on the most amazing journey.

About the Author
Sean McManus is an expert technology and business writer. His other
books include Cool Scratch Projects in Easy Steps, Scratch Programming in
Easy Steps, Coder Academy, and Raspberry Pi For Dummies (co-authored
with Mike Cook). As a freelance copywriter, he writes for many of the
world’s largest technology companies. His novel for adults, Earworm,
goes undercover in the music industry, exposing a conspiracy to
replace bands with computer-generated music. He has been a Code
Club volunteer, helping children at a local school to learn computer
programming. Visit his website at www.sean.co.uk for sample chapters
and bonus content from his books.

About the Technical Reviewer
Daniel Aldred is a passionate and experienced teacher of computer
science. He leads the computing department at a CAS hub school
that supports and develops other schools and organizations in the
local area. He frequently writes for Linux User & Developer and has
created resources and projects for Raspberry Pi, Pimoroni, micro:bit,
and Cambridge International Assessment. In his spare time he curates
two websites, www.canyoucompute.co.uk for the UK Computing exami-
nation course and www.tecoed.co.uk for his own personal hacks. Daniel
also led and managed a team of eight students to win the first Astro Pi
competition, where the astronaut Major Tim Peake ran their program
aboard the ISS.

Brief Contents

Acknowledgments . xv

Introduction . 1

Chapter 1: Your First Spacewalk . . 13

Chapter 2: Lists Can Save Your Life . . 33

Chapter 3: Repeat After Me . 47

Chapter 4: Creating the Space Station . 59

Chapter 5: Preparing the Space Station Equipment . 79

Chapter 6: Installing the Space Station Equipment . . 97

Chapter 7: Moving into the Space Station . 111

Chapter 8: Repairing the Space Station . 127

Chapter 9: Unpacking Your Personal Items . . 151

Chapter 10: Make Yourself Useful . . 171

Chapter 11: Activating Safety Doors . 183

Chapter 12: Danger! Danger! Adding Hazards . 197

Appendix A: Escape: The Complete Game Listing . . 217

Appendix B: Table of Variables, Lists, and Dictionaries . 245

Appendix C: Debugging Your Listings . 249

Index . . 253

Contents in Detail

Acknowledgments	 xv

Introduction	 1
How to Use This Book . 1
What’s in This Book? . . 2
Installing the Software . 3

Installing the Software on Raspberry Pi . 4
Installing Python on Windows . 4
Installing Pygame Zero on Windows . 5
Installing the Software on Other Machines . 6

Downloading the Game Files . 7
Downloading and Unzipping the Files on a Raspberry Pi 7
Unzipping the File on a Windows PC . 8
What’s in the ZIP File . 8

Running the Game . 9
Running Pygame Zero Programs on the Raspberry Pi . 9
Running Pygame Zero Programs in Windows . 10

Playing the Game . 11

1
Your First Spacewalk	 13
Starting the Python Editor . 14

Starting IDLE in Windows 10 . . 14
Starting IDLE in Windows 8 . . 15
Starting IDLE on the Raspberry Pi . 15

Introducing the Python Shell . 15
Displaying Text . 16
Training Mission #1 . 17
Outputting and Using Numbers . 17

Introducing Script Mode . . 18
Creating the Starfield . . 18

Understanding the Program So Far . . 21
Stopping Your Pygame Zero Program . 23
Adding the Planet and Spaceship . 23

Changing Perspective: Flying Behind the Planet . 24
Training Mission #2 . 25
Spacewalking! . 26

x Contents in Detail

Training Mission #3 . 27
Understanding the Spacewalk Listing . 27
Training Mission #4 . 29

Are You Fit to Fly? . . 29
Mission Debrief . 31

2
Lists Can Save Your Life	 33
Making Your First List: The Take-Off Checklist . 34

Seeing Your List . 35
Adding and Removing Items . 35

Using Index Numbers . 36
Inserting an Item . 36
Accessing an Individual Item . 36
Replacing an Item . 37
Deleting an Item . . 37
Training Mission #1 . 37

Creating the Spacewalk Checklist . 38
Training Mission #2 . 38

A List of Lists: The Flight Manual . 38
Making a List of Lists . . 38
Training Mission #3 . 39
Finding an Item in the Flight Manual . . 39

Combining Lists . . 40
Making Maps from Lists: The Emergency Room . . 41

Making the Map . 42
Finding an Emergency Item . 43
Training Mission #4 . 44
Swapping Items in the Room . 44
Training Mission #5 . 45

Are You Fit to Fly? . . 45
Mission Debrief . 46

3
Repeat After Me	 47
Displaying Maps with Loops . . 48

Making the Room Map . 48
Displaying the Map with a Loop . 49
Training Mission #1 . 50

Loop the Loop . . 50
Nesting Loops to Get Room Coordinates . . 50
Cleaning Up the Map . 52
Training Mission #2 . 53

Displaying a 3D Room Image . 53
Understanding How the Room Is Drawn . . 55
Working Out Where to Draw Each Item . 56

Training Mission #3 . 57
Are You Fit to Fly? . . 57

Mission Debrief . 58

Contents in Detail xi

4
Creating the Space Station 	 59
Automating the Map Making Process . 59
How the Automatic Map Maker Works . . 60
Creating the Map Data . 60
Writing the GAME_MAP Code . 62
Testing and Debugging the Code . 65
Generating Rooms from the Data . 66

How the Room Generating Code Works . 68
Creating the Basic Room Shape . 69
Adding Exits . 71
Testing the Program . 72
Training Mission #1 . 72

Exploring the Space Station in 3D . . 72
Training Mission #2 . 75

Making Your Own Maps . 76
Are You Fit to Fly? . . 76

Mission Debrief . 77

5
Preparing the Space Station Equipment	 79
Creating a Simple Planets Dictionary . 80

Understanding the Difference Between a List and a Dictionary 80
Making an Astronomy Cheat Sheet Dictionary . 80
Error-Proofing the Dictionary . 82
Training Mission #1 . 82
Putting Lists Inside Dictionaries . 83
Extracting Information from a List Inside a Dictionary 84
Training Mission #2 . 85

Making the Space Station Objects Dictionary . 85
Adding the First Objects in Escape . 87
Viewing Objects with the Space Station Explorer . 89
Designing a Room . 89
Training Mission #3 . 91
Adding the Rest of the Objects . . 91
Training Mission #4 . 95

Are You Fit to Fly? . . 95
Mission Debrief . 96

6
Installing the Space Station Equipment	 97
Understanding the Dictionary for the Scenery Data . 97
Adding the Scenery Data . 99
Adding the Perimeter Fence for the Planet Surface . . 102
Loading the Scenery into Each Room . 104
Updating the Explorer to Tour the Space Station . 107

Training Mission #1 . 109
Are You Fit to Fly? . . 109

Mission Debrief . 110

xii Contents in Detail

7
Moving into the Space Station	 111
Arriving on the Space Station . 112

Disabling the Room Navigation Controls in the EXPLORER Section 112
Adding New Variables . 112
Teleporting onto the Space Station . 115

Adding the Movement Code . . 116
Understanding the Movement Code . 119

Training Mission #1 . 122
Moving Between Rooms . . 122
Are You Fit to Fly? . . 126

Mission Debrief . 126

8
Repairing the Space Station	 127
Sending Information to a Function . 128

Creating a Function that Receives Information . 128
How It Works . 129
Training Mission #1 . 129

Adding Variables for Shadows, Wall Transparency, and Colors 130
Deleting the EXPLORER Section . 132
Adding the DISPLAY Section . . 133

Adding the Functions for Drawing Objects . 134
Drawing the Room . 136
Understanding the New draw() Function . 138

Positioning the Room on Your Screen . . 141
Making the Front Wall Fade In and Out . . 142
Displaying Hints, Tips, and Warnings . 145
Showing the Room Name When You Enter the Room . 146
Are You Fit to Fly? . . 148

Mission Debrief . 149

9
Unpacking Your Personal Items	 151
Adding the Props Information . 151
Adding Props to the Room Map . 154
Finding an Object Number from the Room Map . 157
Picking Up Objects . 159

Picking Up Props . 159
Adding the Keyboard Controls . 160

Adding the Inventory Functionality . . 161
Displaying the Inventory . 162
Adding the Tab Keyboard Control . 164
Testing the Inventory . 165

Dropping Objects . 166
Training Mission #1 . 167

Examining Objects . 168
Training Mission #2 . 169

Are You Fit to Fly? . . 169
Mission Debrief . 170

Contents in Detail xiii

10
Make Yourself Useful	 171
Adding the Keyboard Control for Using Objects . 172
Adding Standard Messages for Using Objects . 172
Adding the Game Progress Variables . 174
Adding the Actions for Specific Objects . 174
Combining Objects . 177

Training Mission #1 . 179
Adding the Game Completion Sequence . 180
Exploring the Objects . 180
Are You Fit to Fly? . . 181

11
Activating Safety Doors	 183
Planning Where to Put Safety Doors . 184
Positioning the Doors . 185
Adding Access Controls . . 185
Making the Doors Open and Close . 187
Adding the Door Animation . 189

Training Mission #1 . 190
Shutting the Timed Door . . 190
Adding a Teleporter . 192

Training Mission #2 . 193
Activating the Airlock Security Door . 193
Removing Exits for Your Own Game Designs . 195
Mission Accomplished? . 196
Are You Fit to Fly? . . 196

12
Danger! Danger! Adding Hazards	 197
Adding the Air Countdown . 198

Displaying the Air and Energy Bars . 198
Adding the Air Countdown Functions . 199
Starting the Air Countdown and Sounding the Alarm 202
Training Mission #1 . 202

Adding the Moving Hazards . 203
Adding the Hazard Data . 204
Sapping the Player’s Energy . 205
Starting and Stopping Hazards . 205
Setting Up the Hazard Map . 208
Making the Hazards Move . 208
Displaying Hazards in the Room . 210
Training Mission #2 . 211
Stopping the Player from Walking Through Hazards 212

Adding the Toxic Spills . 212
Making the Finishing Touches . 213

Disabling the Teleporter . 213
Cleaning Up the Data . . 213
Your Adventure Begins . 214

xiv Contents in Detail

Your Next Mission: Customizing the Game . 215
Are You Fit to Fly? . . 216

Mission Debrief . 216

A
Escape: The Complete Game Listing	 217

B
Table of Variables, Lists, and Dictionaries	 245

C
Debugging Your Listings	 249
Indentation . 250
Case Sensitivity . . 251
Parentheses and Brackets . 251
Colons . . 251
Commas . 252
Images and Sounds . 252
Spelling . 252

Index	 253

Acknowledgments

Many thanks to everyone at No Starch Press who worked hard to bring you
this book, including developmental editor Liz Chadwick, production edi-
tor Riley Hoffman, copyeditor Anne Marie Walker, proofreaders Emelie
Burnette and Meg Sneeringer, and production manager Serena Yang.
Thank you to Tyler Ortman, who commissioned the book, and Bill Pollock,
for his support on this project. Josh Ellingson created the stunning cover
artwork. Thank you to Amanda Hariri, Anna Morrow, and Rachel Barry for
their support with marketing.

Rafael Pimenta designed the awesome graphics for the game. Daniel
Aldred was the technical editor, testing the code and providing feedback
on the text. Thanks to them both.

We wouldn’t have been able to create this book without the dedicated
work of the open source community. Daniel Pope created Pygame Zero and
helped with research queries. You can learn about some more cool features
of Pygame Zero that weren’t required for our mission at http://pygame-zero
.readthedocs.io/en/latest/. Pygame Zero extends Pygame, so thanks also to the
Pygame development team and to the wider Python community who con-
tribute to its success.

NASA allows us to use many of its images to tell our story, for which we
are grateful. Its work is hugely inspiring.

http://pygame-zero.readthedocs.io/en/latest/
http://pygame-zero.readthedocs.io/en/latest/

xvi Acknowledgments

Thank you to Russell Barnes, Sam Alder, Eben Upton, and Carrie Anne
Philbin at the Raspberry Pi Foundation who helped to get this project off
the ground.

Finally, thank you for reading the book! If you enjoy it, please consider
sharing a review, tweet, or blog post to help others to discover it. In any
event, I hope you enjoy it.

Introduction

Air is running out. There’s a leak in the
space station, so you’ve got to act fast. Can

you find your way to safety? You’ll need to
navigate your way around the space station, find

access cards to unlock doors, and fix your damaged
space suit. The adventure has begun!

And it starts here: on Earth, at mission command, also known as your
computer. This book shows you how to use Python to build a space station
on Mars, explore the station, and escape danger in an adventure game com-
plete with graphics. Can you think like an astronaut to make it to safety?

How to Use This Book
By following the instructions in this book, you can build a game called Escape
with a map to explore and puzzles to solve. It’s written in Python, a popular
programming language that is easy to read. It also uses Pygame Zero, which
adds some instructions for managing images and sounds, among other
things. Bit by bit, I’ll show you how to make the game and how the main

2 Introduction

parts of the code work, so you can customize it or build your own games
based on my game code. You can also download all the code you need.
If you get stuck or just want to jump straight into playing the game and
seeing it work, you can do so. All the software you need is free, and I’ve
provided instructions for Windows PCs and the Raspberry Pi. I recommend
you use the Raspberry Pi 3 or Raspberry Pi 2. The game may run too slowly
to enjoy on the Pi Zero, original Model B+, and older models.

There are several different ways you can use the book and the game:

•	 Download the game, play it first, and then use the book to understand
how it works. This way, you eliminate the risk of seeing any spoilers in
the book before you play the game! Although I’ve kept them to a mini-
mum, you might notice a few clues in the code as you read the book. If
you get really stuck on a problem in the game, you can try reading the
code to work out the solution. In any case, I recommend you run the
game at least once to see what you’ll be building and learn how to run
your programs.

•	 Build the game, and then play it. This book guides you through creat-
ing the game from start to finish. As you work your way through the
chapters, you’ll add new sections to the game and see how they work. If
you can’t get the code working at any point, you can just use my version
of the code listing and continue building from there. If you choose this
route, avoid making any custom changes to the game until you’ve built
it, played it, and finished it. Otherwise, you might accidentally make the
game impossible to complete. (It’s okay to make any changes I suggest
in the exercises.)

•	 Customize the game. When you understand how the program works,
you can change it by using your own maps, graphics, objects, and
puzzles. The Escape game is set on a space station, but yours could
be in the jungle, under the sea, or almost anywhere. You could use
the book to build your own version of Escape first, or use my version
of the final game and customize that. I’d love to see what you make
using the program as a starting point! You can find me on Twitter at
@musicandwords or visit my website at www.sean.co.uk.

What’s in This Book?
Here’s a briefing on what’s in store for you as you embark on your mission.

•	 Chapter 1 shows you how to go on a spacewalk. You’ll learn how to use
graphics in your Python programs using Pygame Zero and discover
some of the basics of making Python programs.

•	 Chapter 2 introduces lists, which store much of the information in the
Escape game. You’ll see how to use lists to make a map.

•	 Chapter 3 shows you how to get parts of a program to repeat and how
to use that knowledge to display a map. You’ll also design a room layout
for the space station, using wall pillars and floor tiles.

Introduction 3

•	 In Chapter 4, you’ll start to build the Escape game, laying down the
blueprints for the station. You’ll see how the program understands the
station layout and uses it to create the fabric for the rooms, putting the
walls and floor in place.

•	 In Chapter 5, you’ll learn how to use dictionaries in Python, which are
another important way of storing information. You’ll add informa-
tion for all the objects the game uses, and you’ll see how to create a
preview of your own room design. When you extend the program in
Chapter 6, you’ll see all the scenery in place and will be able to look
at all the rooms.

•	 After building the space station, you can move in. In Chapter 7, you’ll
add your astronaut character and discover how to move around the
rooms and animate movements.

•	 Chapter 8 shows you how to polish the game’s graphics with shadows,
fading walls, and a new function to draw the rooms that fixes the
remaining graphical glitches.

•	 When the space station is operational, you can unpack your personal
effects. In Chapter 9, you’ll position items the player can examine, pick
up, and drop. In Chapter 10, you’ll see how to use and combine items,
so you can solve puzzles in the game.

•	 The space station is nearly complete. Chapter 11 adds safety doors that
restrict access to certain zones. Just as you’re putting your feet up and
celebrating a job well done, there’s danger around the corner, as you’ll
add moving hazards in Chapter 12.

As you work through the book, you’ll complete training missions that
give you an opportunity to test your programs and your coding skills. The
answers, if you need them, are at the end of each chapter.

The appendixes at the back of the book will help you, too. Appendix A
contains the listing for the whole game. If you’re not sure where to add a
new chunk of code, you can check here. Appendix B contains a table of
the most important variables, lists, and dictionaries if you can’t remember
what’s stored where, and Appendix C has some debugging tips if a program
doesn’t work for you.

For more information and supporting resources for the book, visit the
book’s website at www.sean.co.uk/books/mission-python/. You can also find
information and resources at https://nostarch.com/missionpython/.

Installing the Software
The game uses the Python programming language and Pygame Zero,
which is software that makes it easier to handle graphics and sound. You
need to install both of these before you begin.

N o t e 	 For updated installation instructions, visit the book’s web page at https://nostarch
.com/missionpython/.

https://nostarch.com/missionpython/
https://nostarch.com/missionpython/

4 Introduction

Installing the Software on Raspberry Pi
If you’re using a Raspberry Pi, Python and Pygame Zero are already installed.
You can skip ahead to “Downloading the Game Files” on page 7.

Installing Python on Windows
To install the software on a Windows PC, follow these steps:

1.	 Open your web browser and visit https://www.python.org/downloads/.

2.	 At the time of this writing, 3.7 is the latest version of Python, but
Pygame isn’t available for easy installation on it yet. I recommend you
use the latest version of Python 3.6 instead (3.6.6 at the time of writ-
ing). You can find old versions of Python farther down the screen
on the downloads page (see Figure 1). Save the file on your desktop
or somewhere else you can easily find it. (Pygame Zero works only
with Python 3, so if you usually use Python 2, you’ll need to switch to
Python 3 for this book.)

Figure 1: The Python downloads page

3.	 When the file has downloaded, double-click it to run it.

4.	 In the window that opens, select the checkbox to Add Python 3.6 to
PATH (see Figure 2).

5.	 Click Install Now.

Introduction 5

Figure 2: The Python installer

6.	 If you’re asked whether you want to allow this application to make
changes to your device, click Yes.

7.	 Python will take a few minutes to install. When it finishes, click Close
to complete the installation.

Installing Pygame Zero on Windows
Now that you have Python installed on your computer, you can install
Pygame Zero. Follow these steps:

1.	 Hold down the Windows Start key and press R. The Run window
should open (see Figure 3).

2.	 Enter cmd (see Figure 3). Press enter or click OK.

Figure 3: The Windows Run dialog box

3.	 The command line window should open, as shown in Figure 4. Here
you can enter instructions for managing files or starting programs.
Enter pip install pgzero and press enter at the end of the line.

6 Introduction

Figure 4: The command line window

4.	 Pygame Zero should start to install. It will take a few moments, and
you’ll know it’s finished when your > prompt appears again.

5.	 If you get an error message saying that pip is not recognized, try install-
ing Python again. You can uninstall Python first by running the instal-
lation program again or using the Windows Control panel. Make sure
you select the box for the PATH when installing Python (see Figure 2).
After you have reinstalled Python, try installing Pygame Zero again.

6.	 When Pygame Zero has finished downloading and you can type again,
enter the following:

echo print("Hello!") > test.py

7.	 This line creates a new file called test.py that contains the instruction
print("Hello!"). I’ll explain the print() instruction in Chapter 1, but
for now, this is just a quick way to make a test file. Be careful when you
enter the parentheses (curved brackets) and quotation marks: if you
miss one, the file won’t work properly.

8.	 Open the test file by entering the following:

pgzrun test.py

9.	 After a short delay, a blank window should open with the title Pygame
Zero Game. Click the command line window again to bring it to the
front: you should see the text Hello! Press ctrl-C in the command line
window to stop the program.

10.	 If you want to delete your test program, enter del test.py.

Installing the Software on Other
Machines
Python and Pygame Zero are available for other computer systems. Pygame
Zero has been designed in part to enable games to work across different
computers, so the Escape code should run wherever Pygame Zero runs. This
book only provides guidance for users of Windows and Raspberry Pi com-
puters. But if you have a different computer, you can download Python at
https://www.python.org/downloads/ and can find advice on installing Pygame
Zero at http://pygame-zero.readthedocs.io/en/latest/installation.html.

Introduction 7

Downloading the Game Files
I’ve provided all the program files, sounds, and images you need for the
Escape game. You can also download all the listings in the book, so if you
can’t get one to work, you can use mine instead. All the book’s content
downloads as a single ZIP file called escape.zip.

Downloading and Unzipping the Files on a
Raspberry Pi
To download the game files on a Raspberry Pi, follow these steps, and refer
to Figure 5. The numbers in Figure 5 show you where to do each step.

u	Open your web browser and visit https://nostarch.com/missionpython/.
Click the link to download the files.

v	From your desktop, click the File Manager icon on the taskbar at the
top of the screen.

w	Double-click your Downloads folder to open it

x	Double-click the escape.zip file.

y	Click the Extract Files button to open the Extract Files dialog box.

z	Change the folder that you’ll extract to so it reads /home/pi/escape.

{	Ensure that the option is selected to Extract files with full path.

|	Click Extract.

�

� �

�

�

�

�

�

Figure 5: The steps you should take to unzip your files

8 Introduction

Unzipping the File on a Windows PC
To unzip the files on a Windows PC, follow these steps.

1.	 Open your web browser and visit https://nostarch.com/missionpython/.
Click the link to download the files. Save the ZIP file on your desktop,
in your Documents folder, or somewhere else you can easily find it.

2.	 Depending on the browser you’re using, the ZIP file might open auto-
matically, or there might be an option to open it at the bottom of the
screen. If not, hold down the Windows Start key and press E. The
Windows Explorer window should open. Go to the folder where you
saved the ZIP file. Double-click the ZIP file.

3.	 Click Extract All at the top of the window.

4.	 I recommend that you create a folder called escape in your Documents
folder and extract the files there. My documents folder is C:\Users\Sean\
Documents, so I just typed \escape at the end of the folder name to create
a new folder in that folder (see Figure 6). You can use the Browse
button to get to your Documents folder first if necessary.

5.	 Click Extract.

Figure 6: Setting the folder to unzip the game files into

What’s in the ZIP File
The ZIP file you’ve just downloaded contains three folders and a Python
program, escape.py (see Figure 7). The Python program is the final version
of the Escape game, so you can start playing it right away. The images folder
contains all the images you’ll need for the game and other projects in this
book. The sounds folder contains the sound effects.

Introduction 9

In the listings folder, you’ll find all the numbered listings in this book. If
you can’t get a program to work, try my version from this folder. You’ll need
to copy it from the listings folder first, and then paste it in the escape folder
where the escape.py program is now. The reason you do this is because the
program needs be alongside the images and sounds folders to work correctly.

Figure 7: The contents of the ZIP file as they might
appear in Windows

Running the Game
When you downloaded Python, another program called IDLE will have
been downloaded with it. IDLE is an integrated development environ-
ment (IDE), which is software you can use to write programs in Python.
You can run some of the listings in this book from the IDLE Python editor
using the instructions provided. Most of the programs, though, use Pygame
Zero, and you have to run those programs from the command line. Follow
the instructions here to run the Escape game and any other Pygame Zero
programs.

Running Pygame Zero Programs on the
Raspberry Pi
If you’re using a Raspberry Pi, follow these steps to run the Escape game:

1.	 Using the File Manager, go to your escape folder in your pi folder.

2.	 Click Tools on the menu and select Open Current Folder in Terminal,
or you can press F4. The command line window (also known as the
shell) should open, as shown in Figure 8. You can enter instructions
here for managing files or starting programs.

Figure 8: The command line window on the Raspberry Pi

3.	 Type in the following command and press enter. The game begins!

pgzrun escape.py

10 Introduction

This is how you run a Pygame Zero program on the Pi. To run the same
program again, repeat the last step. To run a different program that’s saved
in the same folder, repeat the last step but change the name of the filename
after pgzrun. To run a Pygame Zero program in a different folder, follow the
steps starting from step 1, but open the command line from the folder with
the program you want to run.

Running Pygame Zero Programs in Windows
If you’re using Windows, follow these steps to run the program:

1.	 Go to your escape folder. (Hold down the Windows Start key and press E
to open the Windows Explorer again.)

2.	 Click the long bar above your files, as shown in Figure 9. Type cmd into
this bar and press enter.

Figure 9: Finding the path to your Pygame files

3.	 The command line window will open. Your folder named escape will
appear just before the > on the last line, as shown in Figure 10.

Figure 10: The command line window in Windows

4.	 Type pgzrun escape.py in the command line window. Press enter, and
the Escape game begins.

This is how you run a Pygame Zero program on a Windows computer.
You can run the program again by repeating the last step. To run a differ-
ent program that’s saved in the same folder, repeat the last step but change
the name of the filename after pgzrun. To run a Pygame Zero program in
a different folder, follow the steps starting from step 1, but open the com-
mand line from the folder with the program you want to run.

Introduction 11

Playing the Game
You’re working alone on the space station on Mars, many millions of kilome-
ters from home. The rest of the crew is on a long-distance mission, exploring
a canyon for signs of life, and won’t be back for days. The murmuring hum of
the life support systems surrounds you.

You’re startled when the alarm sounds! There’s a breach in the space
station wall, and your air is slowly venting into the Martian atmosphere. You
climb quickly but carefully into your space suit, but the computer tells you
the suit is damaged. Your life is at risk.

Your first priority is to repair your suit and ensure a reliable air supply.
Your second priority is to radio for help, but the space station’s radio sys-
tems are malfunctioning. Last night the Poodle lander, sent from Earth,
crash-landed in the Martian dust. If you can find it, perhaps you can use its
radio to issue a distress signal.

Use the arrow keys to move around the space station. To examine an
object, stand on it and press the spacebar. Alternatively, if the object is
something you can’t walk on, press the spacebar while walking into it.

To pick up an object, walk onto it and press the G key (for get).
To select an object in your inventory, shown at the top of the screen

(see Figure 11), press the tab key to move through the items. To drop the
selected object, press D.

Figure 11: Your adventure begins!

12 Introduction

To use an object, either select it in your inventory or walk onto or into
it and press U. You can combine objects or use them together when you
press U while you carry one object and stand on the other or while you
carry one and walk into the other.

You’ll need to work out how to use your limited resources creatively to
overcome obstacles and get to safety. Good luck!

1
Your First Spacewalk

Welcome to the space corps. Your mission
is to build the first human outpost on Mars.

For years, the world’s greatest scientists have
been sending robots to study it up close. Soon

you too will set foot on its dusty surface.
Travel to Mars takes between six and eight months, depending on how

Earth and Mars are aligned. During the journey, the spaceship risks hitting
meteoroids and other space debris. If any damage occurs, you’ll need to put
on your spacesuit, go to the airlock, and then step into the void of space to
make repairs, similar to the astronaut in Figure 1-1.

In this chapter, you’ll go on a spacewalk by using Python to move a
character around the screen. You’ll launch your first Python program and
learn some of the essential Python instructions you’ll need to build the
space station later in the book. You’ll also learn how to create a sense of
depth by overlapping images, which will prove essential when we create
the Escape game in 3D later (starting with our first room mock-up in
Chapter 3).

14 Chapter 1

Figure 1-1: NASA astronaut Rick Mastracchio on a 26-minute spacewalk in 2010, as
photographed by astronaut Clayton Anderson. The spacewalk outside the International
Space Station was one of a series to replace coolant tanks.

If you haven’t already installed Python and Pygame Zero (Windows
users), see “Installing the Software” on page 3. You’ll also need the Escape
game files in this chapter. “Downloading the Game Files” on page 7 tells
you how to download and unzip those files.

Starting the Python Editor
As I mentioned in the Introduction, in this book we’ll use the Python pro-
gramming language. A programming language provides a way to write
instructions for a computer. Our instructions will tell the computer how
to do things like react to a keypress or display an image. We’ll also be
using Pygame Zero, which gives Python some additional instructions for
handling sound and images.

Python comes with the IDLE editor, and we’ll use the editor to create
our Python programs. Because you’ve already installed Python, IDLE
should now be on your computer as well. The following sections explain
how to start IDLE, depending on the type of computer you’re using.

Starting IDLE in Windows 10
To start IDLE in Windows 10, follow these steps:

1.	 Click the Cortana search box at the bottom of the screen, and enter
Python in the box.

2.	 Click IDLE to open it.

Your First Spacewalk 15

3.	 With IDLE running, right-click its icon in the taskbar at the bottom
of the screen and pin it. Then you can run it from there in the future
using a single click.

Starting IDLE in Windows 8
To start IDLE in Windows 8, follow these steps:

1.	 Move your mouse to the top right of the screen to show the Charms bar.

2.	 Click the Search icon, and enter Python in the box.

3.	 Click IDLE to open it.

4.	 With IDLE running, right-click its icon in the taskbar at the bottom
of the screen and pin it. Then you can run it from there in the future
using a single click.

Starting IDLE on the Raspberry Pi
To start IDLE on the Raspberry Pi, follow these steps:

1.	 Click the Programs menu at the top left of the screen.

2.	 Find the Programming category.

3.	 Click the Python 3 (IDLE) icon. The Raspberry Pi has both Python 2
and Python 3 installed, but most of the programs in this book will work
only in Python 3.

Introducing the Python Shell
When you start IDLE, you should see the Python shell, as shown in
Figure 1-2. This window is where you can give Python instructions and
immediately see the computer respond. The three arrows (>>>) are called a
prompt. They tell you that Python is ready for you to enter an instruction.

Figure 1-2: The Python shell

So let’s give Python something to do!

16 Chapter 1

Displaying Text
For our first instruction, let’s tell Python to display text on the screen. Type
the following line and press enter:

>>> print("Prepare for launch!")

As you type, the color of your text will change. It starts off black, but as
soon as Python recognizes a command, like print, the text changes color.

Figure 1-3 shows the names of the different parts of the instruction you
just entered. The purple word print is the name of a built-in function, which
is one of many instructions that are always available in Python. The print()
function displays onscreen the information you place between the parentheses
(curved brackets). The information between a function’s parentheses is the
function’s argument.

print("Prepare for launch!")

function name argument

parentheses

Figure 1-3: The different parts of your first instruction

In our first instruction, the print() function’s argument is a string, which
is what programmers call a piece of text. (A string can include numbers,
but they’re treated as letters, so you can’t do calculations with numbers in
a string.) The double quotation marks (" ") show the start and end of the
string. Anything you type between double quotation marks will be green,
and so will the quotation marks.

The colors do more than brighten up the screen: they highlight the
different parts of the instruction to help you find mistakes. For example, if
your final parenthesis is green, it means you forgot the closing double quote
on the string.

If you entered the instruction correctly, your computer will display
this text:

Prepare for launch!

The string that was shown in green is now displayed onscreen in blue.
All output (information the computer gives to you) appears in blue. If your
command didn’t work, check that you did the following:

1.	 Spelled print correctly. If you did, it will be purple (see Figure 1-3).

2.	 Used two parentheses. Other bracket shapes won’t work.

Your First Spacewalk 17

3.	 Used two double quotes. Don’t use two apostrophes ('') instead of a
double quote ("). Although the double quote includes two marks, it’s
just one symbol on the keyboard. On a US keyboard, the double quote
is in the middle row of letters, on the right, and must be used with the
shift key. On a UK keyboard, the double quote is on the 2 key.

If you make a mistake typing the text between the double quotes, the
instruction will still work, but the computer will display exactly what you
typed. For example, try this:

>>> print("Prepare for lunch!")

It doesn’t matter if you mistype the string now, but be careful when you
type a string or an instruction later in the book. Mistakes often prevent a
program from working correctly, and it can be hard to track down a mis-
take in a longer program, even with the color coding.

Training Mission #1

Can you enter a new instruction to output your name? (You’ll find the answers to
the Training Missions in the “Mission Debrief” section at the end of each chapter.)

Outputting and Using Numbers
So far you’ve used the print() function to output a string, but it can also do
calculations and output a number. Enter the following line:

>>> print(4 + 1)

The computer should output the number 5, the solution to 4 + 1.
Unlike with a string, you don’t use quotes around numbers and calcula-
tions. But you still use the parentheses to mark the start and end of the
information you want to give the print() function.

What happens if you do put quotes around 4 + 1? Try it! The result is
that the computer outputs "4 + 1" because it doesn’t treat 4 and 1 as num-
bers. Instead, it treats the argument as a string. You ask it to output "4 + 1",
and it does exactly that!

>>> print(4 + 1)
5
>>> print("4 + 1")
4 + 1

Python does the calculation only when you don’t include the quotes.
You’ll use the print() function a lot in your programs.

18 Chapter 1

Introducing Script Mode
The shell is great for quick calculations and for short instructions. But for
longer sets of instructions, like games, it’s much easier to create programs
instead. Programs are repeatable sets of instructions that we save so we can
run them whenever we want and change them whenever we need to without
retyping them. We’ll build programs using IDLE’s script mode. When you
enter instructions in script mode, they don’t run immediately as they do in
the shell.

Using the menu at the top of the shell window, select File and then
select New File to open a blank new window, as shown in Figure 1-4. The
title bar at the top of the window displays Untitled until you save your file
and name it. Once you’ve saved your file, the title bar will display the file’s
name. From now on, we’ll use script mode nearly all the time when we’re
creating Python code.

Figure 1-4: Python script mode

When you enter instructions in script mode, you can change, add, and
delete instructions using the mouse or the arrow keys, so it’s much easier to
fix mistakes and build your programs. Starting from Chapter 4, we’ll build
the Escape game by adding to it piece-by-piece in script mode and testing
each new section as we go.

Tip

If you’re not sure whether you’re in the shell or the script mode window, look at the
title bar at the top. The shell displays Python Shell. The script mode window dis-
plays either Untitled or the name of your program.

Creating the Starfield
The first program we’ll write will display the starfield image that we’ll use
as the space background for our Spacewalk program. This image is in the
images folder within the escape folder. Start by entering Listing 1-1 into the
new blank window in IDLE.

Your First Spacewalk 19

N o t e 	 In this book, I’ll use numbers in circles (like this: ) to refer to different bits of code in
the explanations so it’s easier for you to follow along. Don’t type these numbers in
your program. When you see a number in a circle in the text, refer back to the pro-
gram listing to see which part of the program I’m talking about.

Listing 1-1 is a short program, but there are a couple of details that
you should pay attention to while you’re typing: the def statement  needs
a colon at the end of its line, and the next line  needs to start with four
spaces. When you add the colon to the end of the def line and press enter,
IDLE automatically adds the four spaces at the beginning of the next line
for you.

 # Spacewalk
by Sean McManus
www.sean.co.uk / www.nostarch.com

 WIDTH = 800
HEIGHT = 600

 player_x = 600
player_y = 350

 def draw():
 screen.blit(images.backdrop, (0, 0))

Listing 1-1: See the starfield in Pygame Zero.

Select the File menu at the top of the screen and then select Save
(from now on, we’ll use a shorthand for menu selections that looks like this:
File4Save). In the Save dialog, name your program listing1-1.py. You need
to save your file in the escape folder you set up in the Introduction. This way,
it’s in the same folder as the book’s images folder, and Pygame Zero can find
the images when you run the program. After you save the file, your escape
folder should now contain your listing1-1.py file and the images folder, as
shown in Figure 1-5 (along with the listings and sounds folders).

Figure 1-5: Your new Python program and the images folder should be stored in the same
place.

listing1-1.py

20 Chapter 1

I’ll explain how the listing1-1.py program works shortly, but first let’s
run the program so we can admire the starfield. The program needs
some instructions from Pygame Zero to manage the images, so to use those
instructions, we need to run the program using a pgzrun instruction. When-
ever we use any instructions from Pygame Zero in a Python program, we
need to run it using pgzrun.

We’ll type this on the computer’s command line, just like we did in the
Introduction to run the Escape game. First, look back at “Running the Game”
on page 9, and follow the directions there to open your computer’s com-
mand line terminal from your escape folder. Then run the following instruc-
tion from the command line:

pgzrun listing1-1.py

R e d A l e r t 	 Don’t type this instruction in IDLE: be sure to type it in your Windows or Raspberry
Pi command line. The Introduction shows you how.

If all went according to plan, you should be looking at the majesty of
space, as shown in Figure 1-6.

y = 0

y = 599

x = 0 x = 799

close
button

Figure 1-6: The starfield. The starfield image is courtesy of NASA/JPL-Caltech/
UCLA and shows star cluster NGC 2259.

Your First Spacewalk 21

Using My Example Listings

If you can’t get a program in this book to work, you can use my example program
instead. For instance, you can use my listing1-1.py example and modify it to make
your own listing1-2.py shortly so you can continue following along.

You’ll find my programs in the listings folder, which is in the escape folder.
Simply open the listings folder in Windows or the Raspberry Pi desktop, find the
listing you need, copy it, and then paste it into the escape folder. Then open the
copied listing in IDLE and follow along with the next step in the book. When you
look at the folder, you should be able to see your Python file and the images folder
are in the same place (see Figure 1-5).

Understanding the Program So Far
Most of the instructions you’ll see in this book will work in any Python pro-
gram. The print() function, for example, is always available. To make the
programs in this book, we’re also using Pygame Zero. This adds some new
functions and capabilities to Python for creating games, especially for the
screen display and sound. Listing 1-1 introduces our first instructions from
Pygame Zero, used to set up the game window and draw the starfield.

Let’s take a closer look at how the listing1-1.py program works.
The first few program lines are comments . When you use a # symbol,

Python ignores everything after it on the same line, and the line appears in
red. The comments help you and other people reading the program under-
stand what a program does and how it works.

Next, the program needs to store some information. Programs almost
always need to store information that the program uses or needs to refer
back to at a later time. For example, in many games, the computer needs
to keep track of the score and the player’s position on the screen. Because
these details can change (or vary) as the program runs, they’re stored in
something called a variable. A variable is a name you give to a piece of infor-
mation, either a number or some text.

To create a variable, you use an instruction like this:

variable_name = value

N o t e 	 Code terms shown in italics are placeholders that would be filled in. Instead of
variable_name, you would enter your own variable name.

For example, the following instruction puts the number 500 into the
variable score:

score = 500

You can name your variables almost anything you want. However,
to make your program easy to write and understand, you should choose

22 Chapter 1

variable names that describe the information inside each variable. Note
that you can’t use names for your variables that Python uses for its lan-
guage, such as print.

R e d A l e r t 	 Python is case-sensitive, which means it is strict about whether variables use upper-
case or lowercase letters. In fact, it treats score, SCORE, and Score as three completely
different variables. Make sure you copy my example programs exactly, or they might
not work properly.

Listing 1-1 begins by creating some variables. Pygame Zero uses the
WIDTH and HEIGHT variables  to set the size of the game window on the
screen. Our window is wider than it is tall because the WIDTH value (800) is
bigger than the HEIGHT value (600).

Notice that we’ve spelled these variables with capital letters. The capital
letters in variable names tell us that they’re constants. A constant is a particu-
lar kind of variable with values that aren’t supposed to change after they’ve
been set up. The capital letters help other programmers who are looking
at the program understand that they shouldn’t let anything else in the pro-
gram change these variables.

The player_x and player_y variables  will store your position on the
screen as you carry out your spacewalk. Later in the chapter, we’ll use these
variables to draw you on the screen.

We then define a function using the def() statement . A function is a
group of instructions you can run whenever you need them in your pro-
gram. You’ve already seen one built-in function called print(). We’ll make
our own function in this program called draw(). Pygame Zero will use it to
draw the screen display whenever the screen changes.

We define a function using the keyword def , followed by the function
name we choose, empty parentheses, and a colon. Sometimes you’ll use a
function’s parentheses to contain information for that function, as you’ll
see later in this book.

We then need to give the function instructions for what it should do.
To tell Python which instructions belong to the function, we indent them
by four spaces. The screen.blit() instruction  from Pygame Zero draws an
image on the screen. In the parentheses, we tell it which image to draw and
where to draw it, like this:

screen.blit(images.image_name, (x, y))

From the images folder, we’ll use the backdrop.jpg file, which is the
starfield. In our listing1-1.py program, we refer to it as images.backdrop. We
don’t have to use the file’s .jpg extension, because we’re using Pygame Zero
to handle the images, and Pygame Zero doesn’t require the extension.
Also, the program knows where the image is because all the images must
be in the images folder so Pygame Zero can find them.

We put the image on the screen at position (0, 0) , which is the top-
left corner of the screen. The first number, known as the x position, tells the
screen.blit() instruction how far from the left edge we want our image to

Your First Spacewalk 23

be; the second number, known as the y position, describes how far down we
want it to be. The x positions go from 0 on the left edge of the window to
799 on the right edge because our window is 800 pixels wide. Similarly, the
y positions run from 0 at the top of the window to 599 at the bottom (see
Figure 1-6).

For positions onscreen, we use a tuple, which is just a group of numbers
or strings in parentheses, such as (0, 0). In a tuple, the numbers are sepa-
rated with a comma, plus an optional space for readability.

The most important thing you need to know about tuples is that you
have to take care with the punctuation. Because the tuple uses parentheses,
and we put this tuple inside the parentheses for screen.blit(), there are two
sets of parentheses here. So you need parentheses around the tuple values,
but you also need to close the parentheses for screen.blit() after the tuple.

Stopping Your Pygame Zero Program
Similar to space, your Pygame Zero program will go on forever. To stop
it, click the game window’s close button at the top right (see Figure 1-6).
You can also close the program from the command line window where
you entered the pgzrun instruction by pressing ctrl-C.

R e d A l e r t 	 Don’t close the command line window itself. Otherwise, you’ll have to open it again
to run another Pygame Zero program. If you do close it by mistake, refer back to
“Running the Game” on page 9 to open it again.

Adding the Planet and Spaceship
Let’s bring Mars and the spaceship into view. In IDLE, add the last two lines
in Listing 1-2 to your existing listing 1-1.py program.

N o t e 	 I’ll use --snip-- in code listings to show you where I’ve left out some code, usually
because the code is repeated from before. I’ll also show any repeated code in gray so
you can see the new code you need to add more clearly. Don’t add in the repeated
code again!

In the following code, I’ve excluded the comments and variable setup
to save space and make it easier for you to see the new code. But make sure
you keep those instructions in your program. Just add the two new lines at
the end.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))
 screen.blit(images.mars, (50, 50))
 screen.blit(images.ship, (130, 150))

Listing 1-2: Adding Mars and the ship

listing1-2.py

24 Chapter 1

Save your updated program as listing1-2.py by selecting File4Save As.
Run your program by switching back to the command line window and
entering the command pgzrun listing1-2.py. Figure 1-7 shows how the
screen should now look, with the red planet and the spaceship above it.

Figure 1-7: Mars and the spaceship. The Mars image was taken by the Hubble
Space Telescope in 1991.

N o t e 	 If your program doesn’t work as expected, check that all your screen.blit() instruc-
tions have exactly four spaces before them and are lined up with each other.

The first of the new instructions places the image mars.jpg at the posi-
tion (50, 50), which is near the top-left corner of the screen. The second
new instruction positions the ship at (130, 150). In each case, the coordi-
nates used are for the top-left corner of the image.

Changing Perspective:
Flying Behind the Planet
Now let’s look at how we can make the ship fly behind the planet. Swap the
order of the last two instructions in IDLE, as shown in Listing 1-3. To do
this, highlight one of the lines, press ctrl-X to cut it, click on a new line,
and press ctrl-V to paste it in place. You can also use the cut and paste
options in the Edit menu at the top of the screen.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))

listing1-3.py

Your First Spacewalk 25

 screen.blit(images.ship, (130, 150))
 screen.blit(images.mars, (50, 50))

Listing 1-3: Swapping the order of the planet and ship instructions

If the previous version of your program is still running, close it now.
Save your new program as listing1-3.py and run it from the command line
by entering pgzrun listing1-3.py. You should see that the spaceship is now
behind the planet, as shown in Figure 1-8. If not, make sure you ran the
right file (listing1-3.py), and then check that the instructions in the program
are correct.

The ship goes behind the planet because the images are added to the
screen in the order they are drawn in the program. In our updated pro-
gram, we draw the starfield, draw the ship, and then draw Mars. Each new
image appears on top of the previous one. If two images overlap, the image
that was drawn last appears in front of the one drawn earlier.

Figure 1-8: The spaceship is now behind the planet.

Training Mission #2

Can you move just one drawing instruction in your program to make the planet
and the spaceship disappear? If you’re not sure what to do, experiment by moving
the drawing instructions to see what effect it has when you save the program and
run it again.

Make sure you keep the drawing instructions aligned and indented with four
spaces inside the draw() function. When you’re done experimenting, match the
instructions in Listing 1-3 again to bring the ship and Mars back into view.

26 Chapter 1

Spacewalking!
It’s time to climb out of the underside of the spaceship and begin your
spacewalk. Edit your program so it matches Listing 1-4. But be sure to
keep the variable instructions that aren’t shown here the same as they
were before. Save the updated program as listing1-4.py.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))
 screen.blit(images.mars, (50, 50))

 screen.blit(images.astronaut, (player_x, player_y))
 screen.blit(images.ship, (550, 300))

 def game_loop():
 global player_x, player_y
y if keyboard.right:
 player_x += 5
 elif keyboard.left:

 player_x -= 5
 elif keyboard.up:

 player_y -= 5
 elif keyboard.down:
 player_y += 5

 clock.schedule_interval(game_loop, 0.03)

Listing 1-4: Adding the spacewalk instructions

In this listing, we add a new instruction  to draw the astronaut image
at the position in the player_x and player_y variables, which were set up at
the start of the program in Listing 1-1. As you can see, we can use these
variable names in place of numbers for the astronaut’s position. The pro-
gram will use the current numbers stored in these variables to figure out
where to put the astronaut every time it is drawn.

Note that the order of drawing the images has changed in the program
and is now backdrop, Mars, astronaut, and ship. Make sure you change the
order of your screen.blit() instructions to match this listing.

The astronaut starts off overlapping the ship. Because the astronaut
is drawn before the ship, the astronaut will appear to emerge from under-
neath (behind) the spaceship. We also changed the position of the ship 
to the bottom-right area of the screen. This gives the astronaut space to fly
toward the planet.

Run the program by entering pgzrun listing1-4.py. You should now be
able to use the arrow keys to move freely through space, protected by your
spacesuit, as shown in Figure 1-9. You’ll see that you fly behind the space-
ship but in front of Mars and the starfield. The order in which we draw
the images creates a simple illusion of depth. When we draw the space
station beginning in Chapter 3, we’ll use this drawing technique to create
a 3D perspective of each room. We’ll draw the rooms from back to front to
create a sense of depth.

listing1-4.py

Your First Spacewalk 27

Figure 1-9: You emerge from the ship for your spacewalk.

Training Mission #3

Can you edit the code to move the spaceship and the astronaut to the top-right
corner of the screen? You’ll need to change the starting values for player_x and
player_y, as well as where the spaceship is drawn. Make sure the player is “inside”
(actually underneath) the ship at the start of the program. Experiment with other
positions, too. This is a great way to get familiar with screen positions. Refer back
to Figure 1-6 if you need to.

Understanding the Spacewalk Listing
The spacewalk listing, Listing 1-4, is interesting because it lets you control
part of the program from the keyboard, which will be crucial in the Escape
game. Let’s look at how our final spacewalk program works.

We build on our earlier listings and add a new function called game
_loop() . This function’s job is to change the values of the player_x and
player_y variables when you press the arrow keys. Changing the variables
enables you to move the astronaut character because those variables posi-
tion the astronaut when it’s drawn.

Before we go on, we need to look at two different types of variables.
Variables that are changed inside a function usually belong to that func-
tion and can’t be used by other functions. They’re called local variables,
and they make it harder for bits of the program to interfere with other
bits accidentally and cause errors.

28 Chapter 1

But in the spacewalk listing, we need both the draw() and game_loop()
functions to use the same player_x and player_y variables, so they need to
be global variables, which any part of the program can use. We set up global
variables at the start of the program, outside of any functions.

To tell Python that the game_loop() function needs to use and change
the global variables we set up outside of this function, we use the global
command . We put it at the beginning of the function and list the vari-
ables we want to use as global variables. Doing this is like overriding the
safety feature that stops you from changing variables that weren’t created
inside the function. We don’t need to use global in the draw() function,
because the draw() function doesn’t need to change those variables. It only
needs to look at what those variables contain.

We tell the program to use keyboard controls using the if command.
With this instruction, we tell Python to do something only if certain condi-
tions are met. We use four spaces to indent the instructions that belong
to the if command. That means these instructions are indented by eight
spaces in total in Listing 1-4 because they are also inside the game_loop()
function. These instructions run only if the statement after the if com-
mand is true. If not, the instructions that belong to the if command are
skipped over.

It might seem odd to use spaces like this to show which instructions
belong together, especially if you’ve used other programming languages,
but it makes the programs easy to read. Other languages often need brackets
around sets of instructions like this. Python keeps it simple.

We use the if command to check whether the right arrow key is
pressed . If it is, we change the value of player_x by adding 5 , moving
the astronaut image to the right. The symbols += mean increase by, so the
following line increases the number in the player_x variable by 5:

player_x += 5

Similarly, -= means decrease by, so the following instruction reduces the
number in player_x by 5:

player_x -= 5

If the right arrow key is not pressed, we check whether the left key is
pressed. If it is, the program subtracts 5 from the player_x value, moving
the astronaut’s position left. To do that, we use an elif command , which
is short for “else if.” You can think of else as meaning otherwise here. In plain
English, this part of our program means, “If the right arrow key is pressed,
add 5 to the x position. Otherwise, if the left key is pressed, subtract 5 from
the x position.” We then use elif to check for up and down keypresses in the
same way, and change the y position to move the astronaut up or down. The
draw() function uses the player_x and player_y variables for the astronaut’s
position, so changing the numbers in these variables makes the astronaut
move on the screen.

Your First Spacewalk 29

Tip

If you change the elif command at  to an if command, the program allows
you to move up or down at the same time as moving left or right, letting you walk
diagonally. That’s fun in the spacewalk program, but we’ll use code similar to this
to move around the space station later, and it doesn’t look natural there.

The final instruction  sets the game_loop() function to run every
0.03 seconds using the clock in Pygame Zero, so the program keeps check-
ing for your keypresses and changing your position variables frequently.
Note that you don’t put any parentheses after game_loop here. This instruc-
tion isn’t indented, because it doesn’t belong to any function. When the
program starts, it runs the instructions that aren’t in any function in the
order they are in the listing, from top to bottom. Therefore, the last line of
the program is one of the first to run after the variables are set up. This last
line starts the game_loop() function running.

The draw() function runs automatically whenever the screen needs
updating. This is a feature of Pygame Zero.

Training Mission #4

Let’s fit some new thrusters to the spacesuit. Can you work out how to make the
astronaut move faster in the up and down directions than it does in the left and
right directions? Each keypress in the up or down direction should make the space
suit move more than a keypress in the left or right direction.

Enjoy the breathtaking views as you take your spacewalk and conduct
any essential repairs to your ship. We’ll reconvene in Chapter 2, where
you’ll learn some procedures that will help you stay safe in space.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons
in this chapter. If you’re not sure about something, flip back through the
chapter and give the topic another look.

�� You use IDLE’s script mode to create a program that you can save, edit,
and run again. Enter script mode by selecting File4New File or edit an
existing file by selecting File4Open.

�� Strings are pieces of text in code. Double quotes mark the start and end
of a string. A string can include numbers, but they’re treated as letters.

�� Variables store information, either numbers or strings.

�� The print() function outputs information on the screen. You can use it
for strings, numbers, calculations, or the values of variables.

30 Chapter 1

�� The # symbol in a program marks a comment. Python ignores anything
on the same line after a #, and comments can be a handy reminder for
you and anyone you share your code with.

�� Use the WIDTH and HEIGHT variables to set the size of your game window.

�� To run a Pygame Zero program, open the command line from the
folder your Python program is in, and then enter pgzrun filename.py
in the command line to run it.

�� A function is a group of instructions you can run whenever you want
your program to use the instructions. Pygame Zero uses the draw()
function to draw or update the game screen.

�� Use screen.blit(images.image_name, (x, y)) to draw an image at position
(x, y) on the screen. The x- and y-axes are numbered starting at 0 in the
top-left corner.

�� A tuple is a group of numbers or strings in parentheses, separated by a
comma. The contents of a tuple can’t be changed by the program after
they’ve been set up.

�� To end your Pygame Zero program, click the window’s close button or
press ctrl-C in the command line window.

�� If images overlap, the image you drew last in the program appears at
the front.

�� The elif command is short for “else if.” Use it to combine if conditions
so that only one set of instructions can run. In our program, we use it
to stop the player from moving in two directions at the same time.

�� If we want to change a variable inside a function and use it in a differ-
ent function, we need to use a global variable. We set it up outside of the
functions and use the global keyword inside a function when we plan to
change the variable there.

�� We can set a function to run at regular intervals using the clock feature
in Pygame Zero.

Your First Spacewalk 31

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

This answer will vary, depending on your name, but it should look something like this:

>>> print("Neil Armstrong")

Training Mission # 2

If you draw the starfield last, it will hide the planet and the spaceship. Cunning!
Place the images in this order:

--snip--
def draw():
 screen.blit(images.mars, (50, 50))
 screen.blit(images.ship, (130, 150))
 screen.blit(images.backdrop, (0, 0))

Training Mission # 3

Change the value of player_y at the start of the program from 350 to a lower
number, such as 150. Change the second number in the tuple for the screen.blit()
instruction for the ship image to a lower number, such as 50. Other numbers will
also work as long as the ship is in the top right and the astronaut starts behind
the ship.

Training Mission # 4

To make the player move faster up and down than left and right, change how much
the player_y variable changes by each time the key is pressed. If you change the
fives to a higher number, the player will move a greater distance up or down the
screen for each up or down keypress. As a result, the astronaut will appear to move
faster. But if you make the value too high, the illusion of animation will be lost, and
the suit will seem to just teleport through space. Experiment with a few values to
see what works.

--snip--
 elif keyboard.up:
 player_y -= 15
 elif keyboard.down:
 player_y += 15
--snip--

Symbols and Numbers
' (apostrophe), 17
\ (backslash), 94, 177
#\ in Escape, 212
: (colon), 19, 251
, (comma), 84, 252
(for comments), 21, 63–64

case sensitivity, of comments, 251
commenting to turn code off,

101, 107, 112, 212, 213
uncommenting to turn code on,

147, 207, 212
{} (curly brackets), 80, 251
" (double quotation mark), 17,

29, 251
// (floor division operator), 163, 170
% (modulo operator), 71, 163,

170, 206
* (multiplication), 56, 70
!= (not-equal-to operator), 71, 103
-= operator, 28
+ operator

for adding numbers, 17
for combining lists, 40
for combining strings, 65

+= operator
for adding numbers, 28
for combining or extending

lists, 41, 64, 103
() (parentheses), 16, 22, 23, 37, 65,

135, 251
; (semicolon), 251
[] (square brackets), 34, 36, 37,

65, 251
-1 (as index number), 104, 190
3D effect, 25–26, 30
3D room display, 53, 72
255, in room_map, 106–107, 108, 109,

156, 157, 169

A
access cards, 86, 184, 185–187,

190, 196
ACCESS_DICTIONARY, 187, 196
add(), 128–129
adding numbers, 17, 128–129
add_object(), 159–160
adjust_wall_transparency(), 143–145
air, 174, 198–202
air_countdown(), 199–200
air_fixed, 174, 235, 236, 237
airlock_door_frame, 194
AIR section, 198–200
alarm(), 199, 201, 202
Anderson, Clayton, 14
animation

airlock door, 194
astronaut, 113–114, 116, 119–122
doors, 184–196
front wall, 142–145
game completion, 180

apostrophe ('), 17
append(), 35, 45, 65, 160, 208
arguments, 16, 128, 129, 148, 156
arrow keys

in Escape, 116, 119–120
in Explorer, 74, 91, 108
in Spacewalk, 26, 27, 28

assert, 65, 101, 109, 110, 154, 246
astronaut names, changing, 64, 215

B
backslash (\), 94, 177
black space, under objects, 91, 109,

127, 139
Boolean values, 61, 71
bottom_edge, 70
bottom edge type, 69

Index

254 Index

box Rect, 138
brackets, differences between,

65, 251
bugs. See errors
built-in functions, 16

C
cabinets, 156, 169
calculations, 17
calling a function, 157
case sensitivity, 22, 82, 251
centering the room display, 141
checksum, 101, 109–110

turning off for props, 154
clearing

game arena, 138
text area, 146

clipping area, 138–139, 141
clock, 29, 30, 74, 119, 163
clock.schedule_interval(), 119, 163
clock.schedule_unique(), 163
close button, 23
close_door(), 188
clues, 2, 86, 173, 181
cmd, 5, 10
collision detection, 120, 212
colon (:), 19, 251
color coding, 16, 21, 88, 252
colors, in Pygame Zero, 131–132,

138, 149
combining lists, 40–41
combining objects, 177–179
command line window, 23, 75

on Raspberry Pi, 9
on Windows, 5–6, 10

comma (,), 84, 252
comments. See # (for comments)
constants, 22
continuing code on next line,

94, 177
controls. See keyboard controls
converting

decimal numbers to integers, 71
numbers to strings, 74, 94

coordinates, 43, 45, 52, 56
corridors, 75, 77

cupboards, 169
curly brackets, {}, 80, 251
current_room, 72, 74, 109, 213
current_room_hazards_list, 206
curved brackets (parentheses), 16,

22, 23, 37, 65, 135, 251
customizing the game, 2, 215–216

difficulty, 187, 202, 210
doors, 184, 187, 195
game map, 76, 104, 139
images, 215
props, 154, 169
room designs, 89, 96, 101,

107, 109
sharing your customizations, 216

D
debugging, 65, 88, 249
decimal numbers, 71, 107
def statement, 19, 22, 250, 251
delays, 160, 163
deleting a list item, 37
del statement, 37
DEMO_OBJECTS, 55, 64
deplete_energy(), 205, 210, 216
diagonal movement, 29, 120
dice example, 156
dictionaries, 80, 95

as arguments, 129
checking keys, 82
compared to lists, 80
containing lists, 83–84, 95
creating, 80
errors, 82–83, 95, 251
keys, 80, 95
order of items, 82
using a variable as a key, 81
values, 80

difficulty of game, adjusting, 187,
202, 210

displaying numbers, 17
displaying text. See print()
display_inventory(), 160, 161, 162,

165, 167
DISPLAY section, 133, 136, 143, 145,

148, 210

Index 255

division
// operator, 163, 170
calculating remainder, 71, 163,

170, 206
do_door_animation(), 188, 189
door_in_room_26(), 194, 195
door_object_number, 188
doors, 86, 98, 180, 184–196.

See also exits
airlock (room 26), 193, 194
animation, 188, 189, 193, 196
closing, 187, 193
in customized map, 76
data, 185
opening, 185–190, 193–194
positioning, 184, 185
removing from game, 195–196
setting up in props

dictionary, 153
testing, 190, 193
timed, 185, 186, 190, 193, 196

DOORS section, 187, 189, 191, 193
double quotation mark ("), 17,

29, 251
downloading game files, 7, 21
draw()

3D room, 55
final code for Escape game, 132,

136–139, 142
hazards, 210
in Spacewalk, 22, 25

draw_energy_air(), 199, 200
draw_image(), 135
drawing

filled rectangles, 138, 149
images, 135
player, 135
room, 55, 136–139
scenery, 139
shadows, 135, 139, 140
text, 146, 201

draw_player(), 135
draw_shadow(), 135
drones. See hazards
drop_object(), 165, 166, 167
dropping objects, 11, 166
drop shadow (text effect), 201

E
edge type, 69
elif command, 28, 30, 120
else command, 250, 251
end_the_game(), 199, 200, 201
energy, 174

drawing indicator bar, 199
reducing, 205
restoring, 198
variable, 199

energy balls. See hazards
engineering bay, 185, 186, 190, 193
errors, 249. See also debugging

error message, 173
not defined, 251
without error message, 250

escape folder, 7, 8
Escape game, 1, 8

building, 2
compatibility, 6
complete code listing, 217
customizing. See customizing

the game
downloading files, 7, 21
playing, 2, 11
running, 9
sections in program listing, 63

escape.zip, 7, 8
examine_object(), 165, 168
examining objects in the game, 11,

156, 165, 168
example listings, 21
exits, 61, 62, 68, 71. See also

movement: between
rooms

adding to room_map, 71
in customized map, 76
in game map, 60
testing from both sides, 75

Explorer, 72–74, 76, 91, 97, 107–108
EXPLORER section, 72–74, 89, 115

deleting, 132
disabling keyboard controls, 112
drawbacks, 127
modifying to show room

design, 89

256 Index

F
False, 61, 83, 251
fanfare, adding to game, 214
fences, 102
File4Save, 19
find and replace, 147, 207
find_object_start_x(), 158
floating-point numbers, 71, 107
floor, 68, 70, 74
floor division operator (//), 163, 170
floor pad, 139
floor type, 69
floor_type, 70
for command, 49, 50, 58, 103,

250, 251
frames list, 194
FRIEND1_NAME, 64, 65
FRIEND2_NAME, 64, 65
from_player_x, 120
from_player_y, 120
functions, 16, 22, 30, 251. See also

arguments
built-in, 16
calling, 157
defining, 19
receiving information in, 128,

129, 148
returning information from,

156, 170
sending information to,

128–129, 148

G
game. See Escape game
game_completion_sequence(), 180
game design, 184
game_loop()

in Escape, 116, 119, 122, 126, 161,
164, 172, 207, 212

in Spacewalk, 26, 27
GAME LOOP section, 116, 119, 147, 161
GAME_MAP, 61, 62, 64, 66, 75, 76
game_over, 113, 119, 201
GAME OVER message, 199, 201
generate_map()

adding props, 154–156
centering the map, 141–142

generating rooms, 66, 68, 76
hazards, 208
scenery, 104–105, 109
starting, 132

get, 11, 159, 160
get_floor_type(), 69, 160
get_item_under_player(), 158, 159
get_width(), 107
global, 28, 30
global variables, 28, 30
GPS system, 177, 179
gray in code listings, 23

H
hazard_data, 204, 206
hazard_map, 206, 208, 210
hazard_move(), 206, 208, 210
hazards, 197, 203

choosing, for each room, 206
data for, 204
direction numbers, 203, 210, 216
drawing, 210
movement patterns, 203, 204,

210, 216
object numbers, 206
positioning, 184
room map for, 206, 208, 210
starting, 205, 206
stopping, 205, 207
stopping player from walking

through, 212
testing, 211
toxic spills, 212

HAZARDS section, 204, 205, 208
hazard_start(), 205, 206, 208
HEIGHT, 22, 30, 55, 142
hidden props, 156, 168, 169

I
IDE (integrated development

environment), 9
IDLE, 9, 14

color coding, 16, 21, 88, 252
cut and paste, 24
find and replace, 147, 207
opening a new window, 18

Index 257

Replace All, 147, 207
script mode, 18, 29, 76
searching within code, 87
starting, 14
title bar, 18

if command, 28, 30, 108, 250, 251
using a list instead of, 140

image_here, 107
images

as arguments, 129
customizing, 215
filenames in Pygame Zero, 22
getting width, 107

images folder, 8, 9, 18, 19, 22, 54,
55, 252

image_to_draw, 116
image_width, 107
image_width_in_tiles, 107
indentation, 22, 28, 49, 51, 66, 81,

108, 250
index numbers, 36, 40, 45, 68, 104

-1 (final item in list), 104, 190
equivalent for dictionary, 81

in keyword, 120, 140
in_my_pockets, 154, 163, 164, 165

adding items, 160
removing items, 167

input(), 192, 196
insert(), 36
int(), 71, 192, 196
integer, 71
integrated development

environment (IDE), 9
interactive mode. See shell
International Space Station, 14
inventory, 154, 159, 177

adding items, 160
displaying, 160, 161, 162, 165
keyboard control, 164
removing items, 166, 167
testing, 165

item_carrying, 154, 160, 164, 165, 167
False, 167

item_counter, 163
item_player_is_on, 160, 168
items_player_may_carry, 94, 95, 165
items_player_may_stand_on, 95,

120, 212

K
keyboard controls

drop, 165, 166
in Escape, 116–119
examine, 165, 168
get, 160
playing Escape, 11
sensitivity, 74
spacebar, 168
in Spacewalk, 26–28
tab, 164
use, 172

keys, in dictionaries, 80, 95

L
LANDER_SECTOR, 87
LANDER_X, 87, 153
LANDER_Y, 87, 153
launch, 180
left_tile_of_item, 168
legs of astronaut, disappearing,

118, 127, 140
line_number, 146
listings folder, 9, 21
lists, 34, 251, 252

-1 (as index number), 104, 190
accessing an item, 36, 39, 45
across multiple lines, 94
adding items to, 35, 45, 103
append(), 35, 45
as arguments, 129
checking whether an item is

in a list, 120, 140
combining two lists, 40–41
compared to dictionaries, 80
creating a list of 0s, 208
creating with list(), 94
deleting an item, 37
in keyword, 120
insert(), 36
inserting an item, 36
inside another list, 38, 39
inside dictionaries, 83, 84, 95
last item in, 104, 190
looping through items, 103
for maps, 42, 45
multiplying, 70

258 Index

lists, continued
nested, 38, 39
printing, 35
remove(), 35, 45
removing items from, 35, 45
replacing an item, 37, 45
slicing, 163

list_to_show, 163
local variables, 27, 129, 148, 157
loops, 47, 49–50. See also

for command;
while command

inside another loop, 50–52
looping through a list, 103

lowercase, 251

M
MAKE MAP section, 105, 208
map, 42, 45, 184. See also room_map

accessing an item, 43
coordinates, 43, 45
data format, 60, 61
designing your own, 60–61,

76–77, 139
doors, 184
extending, 75, 77
fixing errors, 65
moving between rooms,

122, 126
planet surface rooms, 64
printing an item number, 44
removing planet surface

scenery, 104
replacing an item, 44
for space station, 60
using printed numbers, 49

MAP_HEIGHT, 75
map maker, 60
Mars, 13
Mastracchio, Rick, 14
math, 17
maze, 60
messages, 145
methods, 82
modulo operator (%), 71, 163,

170, 206

movement
between rooms, 122, 126
of player, 116–122, 158

movement(), 74
MP3 player, 169, 176
multiline code, 94, 177
multiplication (*), 56, 70

N
NASA, 14, 20
nested lists, 38–39
nested loops, 50, 58
None, 86, 251
not, 120
not defined error, 251
not-equal-to operator (!=), 71, 103
numbers in circles, 19

O
object number, 98, 99
objects

adding your own, 215
combining, 177
destroying, 152
dictionary. See objects dictionary
display errors, 91
displaying in Explorer, 89
drawing, 135
dropping, 11, 166
examining, 11, 168
hidden, 156, 168, 169
image file, 86
long description, 86
not currently in the game, 152
picking up, 11, 159, 160
selecting, 11
shadow image, 86
short description, 86
standard use messages, 172
using, 12, 171–181

objects dictionary, 85, 88, 91–95,
106, 109, 151, 171, 177

changing images, 190, 194
doors, 194
doors animation, 190

offset numbers, in astronaut
animation, 121

Index 259

.ogg files, 201
old_hazard_x, 210
old_hazard_y, 210
old_player_x, 120
old_player_y, 120
open_door(), 186, 188
outdoor_rooms, 64, 70
output, 16

P
parentheses, (), 16, 22, 23, 37, 65,

135, 251
pgzrun, 9–10, 20
picking up objects, 11, 159, 160
pick_up_object(), 159–161, 166
PILLARS, 142
pixels, 56
planets, 80–85
planet surface rooms, 64, 70,

76, 102
player

drawing in room, 115, 135
movement, 116, 119, 158
movement between rooms,

122, 126
PLAYER dictionary, 114, 126
player_direction, 120
player_frame, 119, 120
player_image, 115, 131, 136
player_image_shadow, 131
PLAYER_NAME, 64
player_offset_x, 116, 119, 121,

126, 136
player_offset_y, 116, 119, 121,

126, 136
PLAYER_SHADOW dictionary, 131, 136
player_x

for Escape, 113, 136
for Spacewalk, 22, 26, 27

player_y

for Escape, 113, 136
for Spacewalk, 22, 26, 27

Pluto, 82, 84
Poodle lander, 11, 87, 94, 153
Portable Network Graphics

(PNG), 55

pressure pad, 139, 193, 194, 196
print(), 16–17, 29, 53, 128

item number from map, 44
lists, 35
numbers, 17

programming languages, 14
programs, 18, 29
prompt, 15
prop 71 (Poodle lander), 153
prop_info, 155
PROP INTERACTIONS section 158,

159, 166
prop_number, 155
prop_room, 155
props, 71, 98, 151–170

adding to room_map, 154
creating your own, 215
doors, 185
hidden, 156, 168, 169
interactions, 158
picking up, 11, 159, 160
positioning, 184
using, 12, 171–181
wide, 156

PROPS section, 152, 153, 160, 165,
167, 169, 178, 179

prop_x, 155
prop_y, 155
puzzles, 171, 177

creating your own, 215
design, 184

Pygame Zero, 1, 14, 20, 21, 22, 54
drawing images, 22, 25
installing, 3, 5–6
on other computers, 6
running programs, 8, 9, 30
saving files, 54
testing installation, 6

Python, 1, 14, 21
editor. See IDLE
installing, 3–5

Q
quotation mark ("), 17, 29, 251

260 Index

R
random, 156
random.choice(), 103
random.randint(), 87
range(), 49, 57, 64, 65, 94, 107, 140
Raspberry Pi

compatibility, 2, 6, 217
downloading game files, 7
running Pygame Zero

programs, 9
software installation, 4
speed, 187, 202
starting IDLE, 15

reason variable, 201
recipes, 177–179, 181
RECIPES, 178
Rect, 138, 149, 163
remove(), 35, 45
remove_object(), 166, 167
repeating

using clock, 119, 163
using loops. See loops

Replace All, 147, 207
replacing a list item, 37
rescue ship, 180
return, 69, 125, 157, 177
robots. See hazards
room

centering in the window, 141
designing your own, 89
drawing, 136, 139
drawing in 3D, 53, 55, 56
height, 69
maximum size, 61
name, 69
showing name on entry, 146
sizes, 77
width, 69

room 0 (for storing extra items),
64, 152, 179

room 26 (contains pressure pad),
139, 193, 215

room 27 (engineering bay), 185
room 32 (outside engineering

bay), 185
room_coordinate, 103
room_data, 68, 71
room_height, 55, 69

room map, 167, 206
room_map, 76

adding props, 154
adding scenery, 104–107
designing a room in the

Explorer, 89–91
displaying with loops, 48–53
drawing the room, 55
emergency room example,

42–45
generating, 59–60, 62, 66–72
in player movement, 120
printing, 72
wide objects, 157

room_name, 69, 147
room_number, 103
room_pixel_width, 142
rooms

drawing, 72
designing, 96, 101, 107, 109
moving between, 122, 126

room_width, 55, 69
Run Module, 65

S
saving, 18, 19, 54, 62
scenery, 97, 108

adding to room_map, 105
changing, 109
changing the data, 101
combining with props, 177–179
creating your own, 215
dictionary, 98–100, 109
drawing, 139
error in data, 101
on planet surface, 102
randomly chosen, 103
randomly positioned, 103
removing for planet surface

rooms, 104
shadows, 136
using, 12, 171–181

scenery dictionary, 151
scenery_number, 106
SCENERY section, 99, 102
scenery_x, 106
scenery_y, 106

Index 261

scheduling, 74
score, 21
screen.blit(), 22, 30, 55, 135, 163
screen.draw.filled_rect(), 138, 149
screen.draw.text(), 146
script mode, 18, 29, 76
searching in your code, 87
selected_item, 154, 160, 164
selected_marker, 163
selecting objects, 11, 164
semicolon (;), 251
sensitivity of keyboard controls, 74
shadows, 57, 128, 130, 135, 139

drawing, 140
scenery, 136
spilling out of the

game area, 138
standard, 140

shell
Python, 15, 18, 72, 76
Raspberry Pi, 9

short description, 177
show_text(), 146, 148
shut_engineering_door(), 190
side_edge, 70
slicing, lists, 163
slow programs, 2, 250
--snip--, 23
software installation, 3–6
soil, 70
sound effects

alarm, 199
doors open, 187
fanfare, 214
playing, 201, 216

sounds folder, 8, 9, 201, 252
space station

inhabitants, 64
map, 60
rooms, 76

Spacewalk, 14, 18–31
spelling errors, 251–252
spoilers, 2, 86, 171
square brackets, [], 34, 36, 37,

65, 251
standard_responses, 173, 181
starfield, 18, 22
start_display, 163

start_room(), 125, 146, 206
START section, 118, 144, 162, 202
stopping programs, 23, 30
storytelling, 184
str(), 74, 94
strings, 16, 29, 65

combining, 65
converting to numbers, 192, 196
drawing, 145, 201, 216
typing into a program, 192

subtracting numbers, 149
suit_stitched, 174
switching off instructions, 101, 107,

112, 212, 213

T
tab key, 11, 161, 163, 164
teleporter

adding, 192
disabling, 213
using, 192, 195

testing, 65, 72, 197, 212
text. See strings
text_lines, 146
text_to_show, 146
this_scenery, 106
tiles, 56, 61, 113, 126
TILE_SIZE, 105
time limit, 202
time.sleep(), 160
top_left_x, 56, 64, 141
top_left_y, 56, 64, 141
toxic spills, 212
training missions, 3
True, 61, 71, 81, 83, 251
tuple, 23, 30, 131, 252
turning off instructions, 101, 107,

112, 212, 213

U
uncommenting, 147, 207, 212
unexpected indent, 250
uppercase, 251
use_message, 173
use_object(), 173, 174, 181, 185
USE OBJECTS section, 172, 180
using objects, 12, 171–173, 174–179

262 Index

V
values, in dictionaries, 80
variables, 21, 29, 76, 105

as dictionary keys, 81
game progress, 174
global, 28, 30
increasing and decreasing

values, 28
local, 129, 148, 157
names, 21, 22, 52
for player movement, 112

VARIABLES section, 105, 199, 213

W
walls, 68, 69, 70, 74, 99. See also exits

fading in and out, 142
front, 139
transparency, 130, 139, 142

wall_transparency_frame, 131, 143
.wav files, 201
weight sensor. See pressure pad
while command, 81, 250, 251
while True, 81

whiteboard, 215
whole number, 71
wide objects, 91, 106, 108, 157
wide props, 156
WIDTH, 22, 30, 55, 142
Windows 8, starting IDLE in, 15
Windows 10, starting IDLE in, 14
Windows Explorer, 8
window size, 22
Windows PC, 4, 6, 8, 10

X
x position, 22, 24, 98

Y
"You're out of air!", 200
y position, 23, 24, 98

Z
ZIP file, 7, 8

Mission Python is a hands-on guide to build-
ing a computer game in Python—a beginner-
friendly programming language used by
millions of professionals as well as hobbyists
who just want to have fun.

In Mission Python, you’ll code a puzzle-
based adventure game, complete with graphics,
sound, and animations. Your mission: to
escape the station before your air runs out.
To make it to safety, you must explore the
map, collect items, and solve puzzles while
avoiding killer drones and toxic spills. When
you’ve finished building your game, you can
share it with your friends!

As you code, you’ll learn fundamentals of
Python, like how to:

 Store data in variables, lists, and
 dictionaries

 Add keyboard controls to your game

 Create functions to organize your
 instructions

 Make loops to repeat blocks of code

 Add graphics, sound, and animations
 to your game

The book uses Pygame Zero, a free
resource that makes coding games easier.
Plus, all graphics, sound, and code used in
the game are available for you to download
for free!

ABOUT THE AUTHOR

Sean McManus is a computer book author
with extensive experience in writing coding
books for children. Visit his website at
www.sean.co.uk.

SHELVE IN
: PROGRAM

M
ING

LANGUAGES/PYTHON

Ages 11+

M
c

M
a

n
u

s

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™
.$29 95 .)($39 95 CDN

Code your own Space
Station adventure game!

Code your own Space
Station adventure game!

Requires Python 3.x on Windows
or Raspberry Pi (it’s free!)

M
is

s
io

n
 P

y
t

h
o

n
M

is
s

io
n

 P
y

t
h

o
n

Mission
Python
Mission
Python

Code a Space Adventure Game!

S e a n M c M a n u s

Build this game!

	Brief Contents

	Contents in Detail

	Acknowledgments
	Introduction
	How to Use This Book
	What’s in This Book?
	Installing the Software
	Installing the Software on Raspberry Pi
	Installing Python on Windows
	Installing Pygame Zero on Windows
	Installing the Software on Other Machines

	Downloading the Game Files
	Downloading and Unzipping the Files on a Raspberry Pi
	Unzipping the File on a Windows PC
	What’s in the ZIP File

	Running the Game
	Running Pygame Zero Programs on the Raspberry Pi
	Running Pygame Zero Programs in Windows

	Playing the Game

	Chapter 1: Your First Spacewalk

	Starting the Python Editor
	Starting IDLE in Windows 10
	Starting IDLE in Windows 8
	Starting IDLE on the Raspberry Pi

	Introducing the Python Shell
	Displaying Text
	Outputting and Using Numbers

	Introducing Script Mode
	Creating the Starfield
	Understanding the Program So Far

	Stopping Your Pygame Zero Program
	Adding the Planet and Spaceship
	Changing Perspective: Flying Behind the Planet

	Training Mission #2
	Spacewalking!
	Understanding the Spacewalk Listing

	Are You Fit to Fly?
	Mission Debrief

	Chapter 2: Lists Can Save Your Life

	Making Your First List:
The Take-Off Checklist
	Seeing Your List
	Adding and Removing Items

	Using Index Numbers
	Inserting an Item
	Accessing an Individual Item
	Replacing an Item
	Deleting an Item
	Training Mission #1

	Creating the Spacewalk Checklist
	A List of Lists: The Flight Manual
	Making a List of Lists
	Finding an Item in the Flight Manual

	Combining Lists
	Making Maps from Lists: The Emergency Room

	Making the Map
	Finding an Emergency Item
	Training Mission #4
	Swapping Items in the Room

	Are You Fit to Fly?
	Mission Debrief

	Chapter 3: Repeat After Me

	Displaying Maps with Loops
	Making the Room Map
	Displaying the Map with a Loop
	Training Mission #1

	Loop the Loop
	Nesting Loops to Get Room Coordinates
	Cleaning Up the Map

	Displaying a 3D Room Image
	Understanding How the Room Is Drawn
	Working Out Where to Draw Each Item
	Are You Fit to Fly?
	Mission Debrief

	Chapter 4: Creating the Space Station

	Automating the Map Making Process
	How the Automatic Map Maker Works
	Creating the Map Data
	Writing the GAME_MAP Code
	Testing and Debugging the Code
	Generating Rooms from the Data
	How the Room Generating Code Works
	Creating the Basic Room Shape
	Adding Exits
	Testing the Program

	Exploring the Space Station in 3D
	Training Mission #2

	Making Your Own Maps
	Are You Fit to Fly?
	Mission Debrief

	Chapter 5: Preparing the Space Station Equipment

	Creating a Simple Planets Dictionary
	Understanding the Difference Between a List and a Dictionary
	Making an Astronomy Cheat Sheet Dictionary
	Error-Proofing the Dictionary
	Putting Lists Inside Dictionaries
	Extracting Information from a List Inside a Dictionary

	Making the Space Station Objects Dictionary
	Adding the First Objects in Escape
	Viewing Objects with the Space Station Explorer
	Designing a Room
	Adding the Rest of the Objects

	Are You Fit to Fly?
	Mission Debrief

	Chapter 6: Installing the Space Station Equipment

	Understanding the Dictionary for the Scenery Data
	Adding the Scenery Data
	Adding the Perimeter Fence for the Planet Surface
	Loading the Scenery into Each Room
	Updating the Explorer to Tour the Space Station
	Are You Fit to Fly?
	Mission Debrief

	Chapter 7: Moving into
the Space Station

	Arriving on the Space Station
	Disabling the Room Navigation Controls in the EXPLORER Section
	Adding New Variables
	Teleporting onto the Space Station

	Adding the Movement Code
	Understanding the Movement Code
	Training Mission #1

	Moving Between Rooms
	Are You Fit to Fly?
	Mission Debrief

	Chapter 8: Repairing the Space Station

	Sending Information to a Function
	Creating a Function that Receives Information
	How It Works
	Training Mission #1

	Adding Variables for Shadows, Wall Transparency, and Colors
	Deleting the EXPLORER Section
	Adding the DISPLAY Section
	Adding the Functions for Drawing Objects
	Drawing the Room
	Understanding the New draw() Function

	Positioning the Room on Your Screen
	Making the Front Wall Fade In and Out
	Displaying Hints, Tips, and Warnings
	Showing the Room Name When You Enter the Room
	Are You Fit to Fly?
	Mission Debrief

	Chapter 9: Unpacking Your Personal Items

	Adding the Props Information
	Adding Props to the Room Map
	Finding an Object Number from the Room Map
	Picking Up Objects
	Picking Up Props
	Adding the Keyboard Controls

	Adding the Inventory Functionality
	Displaying the Inventory
	Adding the Tab Keyboard Control
	Testing the Inventory

	Dropping Objects
	Training Mission #1

	Examining Objects
	Are You Fit to Fly?
	Mission Debrief

	Chapter 10: Make Yourself Useful

	Adding the Keyboard Control for Using Objects
	Adding Standard Messages for Using Objects
	Adding the Game Progress Variables
	Adding the Actions for Specific Objects
	Combining Objects
	Training Mission #1

	Adding the Game Completion Sequence
	Exploring the Objects
	Are You Fit to Fly?

	Chapter 11: Activating Safety Doors

	Planning Where to Put Safety Doors
	Positioning the Doors
	Adding Access Controls
	Making the Doors Open and Close
	Adding the Door Animation
	Training Mission #1

	Shutting the Timed Door
	Adding a Teleporter
	Activating the Airlock Security Door
	Removing Exits for Your Own Game Designs
	Mission Accomplished?
	Are You Fit to Fly?

	Chapter 12: Danger! Danger! Adding Hazards

	Adding the Air Countdown
	Displaying the Air and Energy Bars
	Adding the Air Countdown Functions
	Starting the Air Countdown and Sounding the Alarm

	Adding the Moving Hazards
	Adding the Hazard Data
	Sapping the Player’s Energy
	Starting and Stopping Hazards
	Setting Up the Hazard Map
	Making the Hazards Move
	Displaying Hazards in the Room
	Training Mission #2
	Stopping the Player from Walking Through Hazards

	Adding the Toxic Spills
	Making the Finishing Touches
	Disabling the Teleporter
	Cleaning Up the Data
	Your Adventure Begins

	Your Next Mission:
Customizing the Game
	Are You Fit to Fly?
	Mission Debrief

	Appendix A: Escape:
The Complete Game Listing

	Appendix B: Table of Variables, Lists, and Dictionaries

	Appendix C: Debugging Your Listings

	Indentation
	Case Sensitivity
	Parentheses and Brackets
	Colons
	Commas
	Images and Sounds
	Spelling

	Index

