
ONLINE APPENDIX B
T h e M i n i m a l P o w e r P C I n st r u c t i o n S e t

by Randal l Hyde

San Francisco

®

fr o m

WRITE GREAT CODE
V ol um e 2 : T hi nk in g L ow - L ev el , W r i t in g H i gh - L ev el

wgc2_OB_title.fm Page i Thursday, April 20, 2006 12:27 PM

WRITE GREAT CODE, Volume 2. Copyright © 2006 by Randall Hyde. ISBN 1-59327-065-8.

All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The information in this online appendix is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this material, neither the author nor No Starch Press, Inc. shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data (Volume 1)

Hyde, Randall.
Write great code : understanding the machine / Randall Hyde.

p. cm.
ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture. I. Title.
QA76.6.H94 2004
005.1--dc22

2003017502

If you haven’t purchased a copy of Write Great Code, Volume 2: Thinking Low-Level, Writing High-Level and would like to
do so, please go to www.nostarch.com.

wgc2_OB_title.fm Page ii Thursday, April 20, 2006 12:27 PM

B
T H E M I N I M A L P O W E R P C

I N S T R U C T I O N S E T

Although the PowerPC CPU family
supports hundreds of instructions, few

compilers actually use all of these instruc-
tions. If you’re wondering why compilers don’t

use more of the available instructions, the answer is
because many of them have become obsolete over time
as newer instructions have reduced the need for older instructions. Some
instructions, such as the PowerPC’s AltaVec instructions, simply do not
correspond to operations you’d normally perform in an HLL. Therefore,
compilers rarely generate these types of machine instructions (such instruc-
tions generally appear only in handwritten assembly language programs).
Therefore, you don’t need to learn the entire PowerPC instruction set to
study compiler output. Instead, you need only learn the handful of instruc-
tions that compilers actually emit on the PowerPC. That’s the purpose of this
appendix, to describe those few instructions that compilers actually use.

Many PowerPC instructions take multiple forms depending on whether
they modify the condition-code and XER registers. An unadorned instruc-
tion mnemonic does not modify either register. A dot suffix (.) on certain

wgc2_OB_02.fm Page 1 Thursday, April 20, 2006 12:25 PM

2 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

instructions tells the CPU to update the condition-code CR0 bits based on
the result of the operation. An o suffix tells the CPU to update the overflow
and summary overflow bits in the XER register. Finally, an o. suffix tells the
CPU to update the bits in CR0 and the XER register. The following
descriptions group instructions together that differ only by these suffixes.

B.1 add, add., addo, addo.

The add instruction requires three register operands—a destination register
and two source registers. This instruction computes the sum of the values in
the two source registers and stores the sum into the destination register.

Table B-1: Gas Syntax for add

Instruction Description

add Rd, Rs1, Rs2 Rd := Rs1 + Rs2
d, s1, and s2 are register numbers in the range 0..31.

add. Rd, Rs1, Rs2 Rd := Rs1 + Rs2
CR0 reflects the result of the sum.
d, s1, and s2 are register numbers in the range 0..31.

addo Rd, Rs1, Rs2 Rd := Rs1 + Rs2
The overflow and summary overflow bits in XER are set if a signed
overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

addo. Rd, Rs1, Rs2 Rd := Rs1 + Rs2
CR0 reflects the result of the sum.
The overflow and summary overflow bits in XER are set if a signed
overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-2: CR0 Settings for add. and addo.

Flag Setting

LT Set if the sum (signed) is less than zero.

GT Set if the sum (signed) is greater than zero.

Zero Set if the sum is zero.

SO The summary overflow bit from the XER is copied to this field after computing the sum.

Table B-3: XER Settings for addo and addo.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.

SO Set if the SO bit was previously set, or if a signed overflow occurred during the
execution of the instruction.

CA Unaffected

wgc2_OB_02.fm Page 2 Thursday, April 20, 2006 12:25 PM

Onl ine Appendi x B: The Min imal PowerPC Ins t ruct ion Se t 3

B.2 addi

The addi instruction (add immediate) adds a constant to the contents of a
source register and stores the sum into a destination register. The constant is
limited to a signed 16-bit value (which the instruction sign extends to 32 bits
prior to use). This instruction does not affect any flags or the overflow bit.

The addi instruction treats R0 differently than the other registers. If you
specify R0 as the source register, the addi instruction uses the value zero
rather than the value held in the R0 register. In this case, the addi instruction
acts as a “load immediate with sign extension” instruction (because adding
an immediate constant with zero simply produces that constant). Though
the PowerPC doesn’t have an actual “load immediate” instruction, most
assemblers assemble the li instruction into the addi opcode.

You will also discover that there is no “subtract immediate” instruction,
even though assemblers like Gas support that mnemonic. Gas (and other
PowerPC assemblers) compile a subi instruction into an addi instruction after
negating the immediate operand.

B.3 addis

The addis instruction (add immediate, shifted) shifts a 16-bit constant to the
left 16 bits, adds this to the value from a source register, and then stores the
sum into a destination register. This instruction does not affect any flags or
the overflow bit.

The addis instruction treats R0 differently than the other registers. If you
specify R0 as the source register, the addi instruction uses the value zero
rather than the value held in the R0 register.

B.4 and, and.

The and instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
AND of the two source values and places the result in the destination
register.

Table B-4: Gas Syntax for addi

Instruction Description

addi Rd, Rs1, constant Rd := Rs1 + constant
d and s1 are register numbers in the range 0..31.

Table B-5: Gas Syntax for addis

Instruction Description

addis Rd, Rs1, constant Rd := Rs1 + (constant << 16)
d and s1 are register numbers in the range 0..31.

wgc2_OB_02.fm Page 3 Thursday, April 20, 2006 12:25 PM

4 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

B.5 andc, andc.

The andc instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
AND of the first source value with the inverted value of the second source
operand and places the result in the destination register.

Table B-6: Gas Syntax for and

Instruction Description

and Rd, Rs1, Rs2 Rd := Rs1 AND Rs2
d, s1, and s2 are register numbers in the range 0..31.

and. Rd, Rs1, Rs2 Rd := Rs1 AND Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-7: CR0 Settings for and.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

Table B-8: Gas Syntax for andc

Instruction Description

andc Rd, Rs1, Rs2 Rd := Rs1 AND (NOT Rs2)
d, s1, and s2 are register numbers in the range 0..31.

andc. Rd, Rs1, Rs2 Rd := Rs1 AND (NOT Rs2)
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-9: CR0 Settings for andc.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

wgc2_OB_02.fm Page 4 Thursday, April 20, 2006 12:25 PM

Onl ine Appendi x B: The Min imal PowerPC Ins t ruct ion Se t 5

B.6 andi

The andi (and immediate) instruction requires two register operands and a
16-bit constant. This instruction computes the logical (bitwise) AND of the
value in the second (source) register and the constant value and places the
result in the first (destination) register. Note that this instruction always
clears the HO bits of the destination register.

B.7 andis

The andis (and immediate, shifted) instruction requires two register
operands and a 16-bit constant. This instruction shifts the constant to the
left 16 bits, logically ANDs this with the value held in the source register, and
then places the result in the destination register. Note that this instruction
always clears the LO bits of the destination register.

B.8 Branches

Standard PowerPC assembly language exposes the numeric encoding of
the opcode in the standard branch mnemonics. If you’re reading arbitrary
PowerPC assembly code, you might have to memorize “magic numbers”
that appear in the operand field of various branch instructions. Fortunately,
IBM has defined a set of “mnemonic synonyms” that use English names
for various numeric encodings. Compilers like GCC typically use the syno-
nyms rather than the numeric forms. In this appendix, I’ll discuss these
“simplified branch mnemonics.” If you encounter weird forms of the
branch instructions, you may want to consult the PowerPC programmer’s
reference guide (i.e., PowerPC Microprocessor Family: The Programmer’s
Reference Guide) for their exact interpretation.

The PowerPC branch instructions provide four basic addressing modes:
relative, absolute, indirect through LINK, and indirect through COUNT.
GCC doesn’t seem to use the absolute addressing mode (it’s useful mainly in
embedded systems where you have good control over the memory map), so
I’ll not consider that form here.

Table B-10: Gas Syntax for andi

Instruction Description

andi Rd, Rs, constant Rd := Rs AND constant
d and s are register numbers in the range 0..31.

Table B-11: Gas Syntax for andis

Instruction Description

andis Rd, Rs, constant Rd := Rs AND (constant << 16)
d and s are register numbers in the range 0..31.

wgc2_OB_02.fm Page 5 Thursday, April 20, 2006 12:25 PM

6 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

B.8.1 Unconditional Branch (b), Relative

The branch relative instruction encodes a 24-bit relative displacement field
as part of the opcode. The CPU shifts this 24-bit value to the left two posi-
tions (producing a 26-bit value), sign extends the result to 32 bits, and then
adds this displacement to the CPU’s program counter register (CIA, or
current instruction address, on the PowerPC).

B.8.2 Unconditional Branch and Link (bl), Relative

The bl (branch and link) instruction operates almost identically to the
unconditional branch instruction. The only difference is that in addition to
transferring control, it also copies the address of the next instruction (after
the branch) into the LINK register. Programs generally use the bl instruction
to call local subroutines.

B.8.3 Indirect Branch Instructions (blr and bctr)

The PowerPC provides two instructions that transfer control to an address
held in either the LINK or COUNT register. The blr (branch to link register)
instruction is typically used to return control from some subroutine. The
bctr instruction is a general-purpose indirect branch that a compiler can
use to implement control statements like C’s switch statement.

Table B-12: Gas Syntax for b

Instruction Description

b target_address NIA := CIA + displacement
NIA is the next instruction address.
CIA is the current instruction address.
displacement is the distance from the current instruction to the
target_address.

Table B-13: Gas Syntax for bl

Instruction Description

bl target_address LINK := CIA + 4
NIA := CIA + displacement
NIA is the next instruction address.
CIA is the current instruction address.
displacement is the distance from the current instruction to the
target_address.

Table B-14: Gas Syntax for blr and bctr

Instruction Description

blr NIA := LINK
NIA is the next instruction address.

bctr NIA := COUNT
NIA is the next instruction address.

wgc2_OB_02.fm Page 6 Thursday, April 20, 2006 12:25 PM

Onl ine Appendi x B: The Min imal PowerPC Ins t ruct ion Se t 7

B.8.4 Conditional Branch Instructions

The PowerPC provides a wide range of conditional branch instructions that
support the same addressing modes as the unconditional branches (relative,
absolute, indirect through LINK, and indirect through COUNT). There are
also forms that will save the address of the next instruction in the LINK
register. The raw form of these conditional branch instructions allow you to
test the condition bits found in any of the eight PowerPC condition-code
registers (CR0..CR7). However, most assemblers (like Gas) provide “simplified
mnemonics” that let you test a specific condition in CR0. As these are the
branch instructions you’ll see used most often, we’ll discuss those forms
here. For details on the other forms, see the PowerPC Microprocessor
Family: The Programmer’s Reference Guide.

The conditional branches only support a 16-bit displacement (14 bits
extended to 16 bits, actually). Therefore, the range of the conditional
branches is substantially less than the conditional branches (plus or minus
32,768 bytes). This generally isn’t much of a problem because conditional
branches typically do not transfer control over great distances in typical
programs.

Table B-15: Gas Syntax for Conditional Branches

Instruction Description

blt target Branch if less than.
If the LT bit in CR0 is set, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

ble target Branch if less than or equal.
If the LT or EQ bit in CR0 is set, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

beq target Branch if equal.
If the EQ bit in CR0 is set, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

bgt target Branch if greater than.
If the GT bit in CR0 is set, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

bge target Branch if greater than or equal.
If the GT or EQ bit in CR0 is set, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

bnl target Branch if not less than.
Synonym for bge.

bne target Branch if not equal.
If the EQ bit in CR0 is clear, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

wgc2_OB_02.fm Page 7 Thursday, April 20, 2006 12:25 PM

8 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

B.8.5 Indirect Conditional Branches

In addition to the relative conditional branches, the PowerPC also supports
indirect versions that transfer control to the address held in the LINK or
COUNT register. These instructions do not have any operands (as the
LINK or COUNT register specifies the target address) and use the syntax
shown here.

B.8.6 Other Branch Forms

The PowerPC provides a bewildering array of options on the branch instruc-
tions. Not many of those other forms are used in this book, so there is no
need to consider them here. Please consult the PowerPC Microprocessor
Family: The Programmer’s Reference Guide for more details on the available
forms of the branch instructions.

bng target Branch if not greater than.
Synonym for ble.

bso target Branch if summary overflow.
If the SO bit in CR0 is set, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

bns target Branch if not summary overflow.
If the SO bit in CR0 is clear, then add the 16-bit displacement to the current
instruction address (CIA) to obtain the next instruction address (NIA). Otherwise,
set the NIA to CIA+4.

Table B-16: Indirect Conditional Branches

Indirect Branch

DescriptionLINK COUNT

bltlr bltctr Branch if less than, indirect.

blelr blectr Branch if less than or equal, indirect.

beqlr beqctr Branch if equal, indirect.

bgtlr bgtctr Branch if greater than, indirect.

bgelr bgectr Branch if greater than or equal.

bnllr bnlctr Branch if not less than. Synonym for bge.

bnelr bnectr Branch if not equal.

bnglr bngctr Branch if not greater than.

bsolr bsoctr Branch if summary overflow.

bnslr bnsctr Branch if not summary overflow.

Table B-15: Gas Syntax for Conditional Branches (continued)

Instruction Description

wgc2_OB_02.fm Page 8 Thursday, April 20, 2006 12:25 PM

Onl ine Appendi x B: The Min imal PowerPC Ins t ruct ion Se t 9

B.9 cmp

The cmp instruction compares the signed values in two registers and updates
the bits in one of the condition-code registers to reflect the comparison’s
results. By default, the cmp instruction assumes that you want to use CR0 to
hold the result, though it is possible to specify a different condition-code
register as the target for the comparison operation.

The cmp instruction sets the LT bit in the condition-code register if the
first operand is less than the second operation (using a signed comparison).
It sets the GT bit if the first operand is greater than the second. It sets the EQ
bit if the two register operands hold the same value. This instruction also
copies the summary overflow bit from the XER register into the SO bit of the
condition-code register.

B.10 cmpi

The cmpi (compare immediate) instruction compares the signed value in a
register against a constant and updates the bits in one of the condition-code
registers. By default, the cmpi instruction assumes that you want to use CR0
to hold the result, though it is possible to specify a different condition-code
register as the target for the comparison operation.

Table B-17: Gas Syntax for cmp

Instruction Description

cmp Rs1, Rs2 CR0 := Rs1 CMP Rs2
s1 and s2 are register numbers in the range 0..31.

Table B-18: CR0 Settings for cmp

Flag Setting

LT Set if the value in Rs1 (signed) is less than Rs2.

GT Set if the value in Rs1 (signed) is greater than Rs2.

Zero Set values in Rs1 and Rs2 are equal.

SO Copied from the SO bit in the XER register.

Table B-19: Gas Syntax for cmpi

Instruction Description

cmpi Rs, constant CR0 := Rs CMP constant
s is a register number in the range 0..31.
constant is a 16-bit signed constant.

wgc2_OB_02.fm Page 9 Thursday, April 20, 2006 12:25 PM

10 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.11 cmpl

The cmpl (compare logical) instruction is similar to cmp except that it does
an unsigned comparison rather than a signed comparison. The syntax and
usage is the same (except, of course, that you use the cmpl mnemonic). See
cmp for more details.

B.12 cmpli

The cmpli (compare logical immediate) instruction is similar to cmpi except
it does an unsigned comparison. The syntax and usage is similar to cmpi
except that you use the cmpli mnemonic and the 16-bit constant must be
an unsigned value in the range 0..65,535. See the description of the cmpi
instruction for more details.

B.13 divw, divw., divwo, divwo.

The divw (divide word, signed) instruction divides the value in one register
by the value in a second register and stores the signed quotient into a third
register. The version with the period suffix updates CR0 after the division
operation by comparing the quotient against zero. The version with the o
suffix updates the overflow flag if the division operation is illegal (e.g., a
division by zero).

Table B-20: CR0 Settings for cmpi

Flag Setting

LT Set if the value in Rs1 (signed) is less than constant.

GT Set Rs’s value (signed) is greater than constant.

Zero Set value in Rs1 is equal to constant.

SO Copied from the SO bit in the XER register.

Table B-21: Gas Syntax for divw

Instruction Description

divw Rd, Rs1, Rs2 Rd := Rs1 / Rs2
d, s1, and s2 are register numbers in the range 0..31.

divw. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
d, s1, and s2 are register numbers in the range 0..31.

wgc2_OB_02.fm Page 10 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 11

B.14 divwu, divwu., divwuo, divwuo.

The divwu (divide word, unsigned) instruction divides the value in one
register by the value in a second register and stores the unsigned quotient in
a third register. The version with the period suffix updates CR0 after the
division operation by comparing the quotient against zero. The version with
the o suffix updates the overflow flag if the division operation is illegal (e.g.,
a division by zero).

divwo Rd, Rs1, Rs2 Rd := Rs1 / Rs2
The overflow and summary overflow bits in XER are set if an error
occurs.
d, s1, and s2 are register numbers in the range 0..31.

divwo. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
The overflow and summary overflow bits in XER are set if an error
occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-22: CR0 Settings for divw. and divwo.

Flag Setting

LT Set if the quotient (signed) is less than zero.

GT Set if the quotient (signed) is greater than zero.

Zero Set if the quotient is zero.

SO The summary overflow bit from the XER is copied to this field after computing the sum.

Table B-23: XER Settings for divwo and divwo.

Flag Setting

OV Set if an error (division by zero or overflow) occurred during the execution of the
instruction.

SO Set if the SO bit was previously set, or if a division error occurred during the execution
of the instruction.

CA Unaffected.

Table B-21: Gas Syntax for divw (continued)

Instruction Description

Table B-24: Gas Syntax for divwu

Instruction Description

divwu Rd, Rs1, Rs2 Rd := Rs1 / Rs2
d, s1, and s2 are register numbers in the range 0..31.

divwu. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
d, s1, and s2 are register numbers in the range 0..31.

wgc2_OB_02.fm Page 11 Thursday, April 20, 2006 12:25 PM

12 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.15 equ, equ.

The equ instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical XNOR of the
two source values and places the result in the destination register. XNOR is
also known as the “equals” function, hence the mnemonic. The equ instruc-
tion performs a bit-by-bit comparison of two 32-bit values. It stores a one in
the corresponding destination bit position of the two source bit values are
equal, it stores a zero in the destination bit position of the two source bits are
not equal.

divwuo Rd, Rs1, Rs2 Rd := Rs1 / Rs2
The overflow and summary overflow bits in XER are set if an error
occurs.
d, s1, and s2 are register numbers in the range 0..31.

divwuo. Rd, Rs1, Rs2 Rd := Rs1 / Rs2
CR0 reflects the result of the quotient.
The overflow and summary overflow bits in XER are set if an error
occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-25: CR0 Settings for divwu. and divwuo.

Flag Setting

LT Set if the quotient is less than zero.

GT Set if the quotient is greater than zero.

Zero Set if the quotient is zero.

SO The summary overflow bit from the XER is copied to this field after computing the sum.

Table B-26: XER Settings for divwuo and divwuo.

Flag Setting

OV Set if an error (division by zero or overflow) occurred during the execution of the
instruction.

SO Set if the SO bit was previously set, or if a division error occurred during the execution
of the instruction.

CA Unaffected.

Table B-24: Gas Syntax for divwu (continued)

Instruction Description

wgc2_OB_02.fm Page 12 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 13

B.16 extsb, extsb.

The extsb instruction sign extends an 8-bit value to 32 bits. This instruction
requires two register operands—a source register and a destination register.
It extracts the byte from the LO 8 bits of the first register, sign extends the
value to 32 bits, and then stores the result into the destination register.

B.17 extsh, extsh.

The extsh instruction sign extends a 16-bit (halfword) value to 32 bits. This
instruction requires two register operands—a source register and a destina-
tion register. It extracts the halfword from the LO 16 bits of the first register,
sign extends the value to 32 bits, and then stores the result into the destina-
tion register.

Table B-27: Gas Syntax for equ

Instruction Description

equ Rd, Rs1, Rs2 Rd := Rs1 == Rs2
d, s1, and s2 are register numbers in the range 0..31.

equ. Rd, Rs1, Rs2 Rd := Rs1 == Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-28: CR0 Settings for equ.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

Table B-29: Gas Syntax for extsb

Instruction Description

extsb Rd, Rs Rd := signExtend(Rs[0..7])
d and s are register numbers in the range 0..31.

extsb. Rd, Rs Rd := signExtend(Rs[0..7])
d and s are register numbers in the range 0..31.

Table B-30: CR0 Settings for extsb.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

wgc2_OB_02.fm Page 13 Thursday, April 20, 2006 12:25 PM

14 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.18 la

The la (load address) instruction is a synonym for the addi instruction. This
instruction computes the effective address of a register plus displacement
addressing mode and places the address in a destination register.

B.19 lbz, lbzu, lbzux, lbzx

The lbz (load byte and zero) instruction fetches a byte from memory at an
address specified by the register plus displacement addressing mode. The lbz
instruction zero extends this 8-bit value to 32 bits and stores the result in the
destination register.

The lbzu (load byte and zero, with update) works in a similar manner
except that it also updates the base address register with the effective address
of the byte in memory.

The lbzx (load byte and zero, indexed) also zero extends an 8-bit value
in memory to 32 bits and loads this result into a destination register. This
form of the instruction, however, uses both a base and index register (with
no displacement).

The lbzux (load byte and zero, indexed, with update) is just like lbzx
except it also updates the base register with the effective address after
moving the byte into the destination register.

Table B-31: Gas Syntax for extsh

Instruction Description

extsh Rd, Rs Rd := signExtend(Rs[0..15])
d and s are register numbers in the range 0..31.

extsh. Rd, Rs Rd := signExtend(Rs[0..15])
d and s are register numbers in the range 0..31.

Table B-32: CR0 Settings for extsh.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

Table B-33: Gas Syntax for la

Instruction Description

la Rd, disp(Rs) Rd := constant + Rs
d and s are register numbers in the range 0..31.
This instruction is equivalent to:
addi Rd, Rs, constant

wgc2_OB_02.fm Page 14 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 15

B.20 lha, lhau, lhax, lhaux

The lha (load halfword, algebraic) instruction fetches a 16-bit word from
memory at an address specified by the register plus displacement addressing
mode. The lha instruction sign extends this 16-bit value to 32 bits and stores
the result in the destination register.

The lhau (load halfword, algebraic, with update) works in a similar
manner except that it also updates the base register with the effective address
of the halfword in memory.

The lhax (load halfword, algebraic, indexed) also sign extends a 16-bit
value in memory to 32 bits and loads this result into a destination register.
This form of the instruction, however, uses both a base and index register
(with no displacement).

The lhaux (load halfword, algebraic, indexed, with update) is just like
lhax except it also updates the base register with the effective address after
moving the halfword into the destination register.

Table B-34: Gas Syntax for lbz

Instruction Description

lbz Rd, disp(Rs) Rd := zeroExtend(mem8[disp + Rs])
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem8[--] is the byte at the memory address specified by disp + Rs.
If Rs is R0, then this instruction substitutes the value zero for R0.

lbzu Rd, disp(Rs) Rd := zeroExtend(mem8[disp + Rs])
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

lbzx Rd, Rs, Rx Rd := zeroExtend(mem8[Rs + Rx])
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses zero as the value for Rs.

lbzux Rd, Rs, Rx Rd := zeroExtend(mem8[Rs + Rx])
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

wgc2_OB_02.fm Page 15 Thursday, April 20, 2006 12:25 PM

16 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.21 lhz, lhzu, lhzx, lhzux

The lhz (load halfword and zero) instruction fetches a 16-bit word from
memory at an address specified by the register plus displacement addressing
mode. The lhz instruction zero extends this 16-bit value to 32 bits and stores
the result in the destination register.

The lhzu (load halfword and zero, with update) works in a similar
manner except that it also updates the base register with the effective address
of the halfword in memory.

The lhzx (load halfword and zero, indexed) also zero extends a 16-bit
value in memory to 32 bits and loads this result into a destination register.
This form of the instruction, however, uses both a base and index register
(with no displacement).

The lhzux (load halfword and zero, indexed, with update) is just like lhzx
except it also updates the base register with the effective address after
moving the halfword into the destination register.

Table B-35: Gas Syntax for lha

Instruction Description

lha Rd, disp(Rs) Rd := signExtend(mem16[disp + Rs])
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[--] is the 16-bit halfword at the memory address specified by
disp + Rs.
If Rs is R0, then this instruction substitutes the value zero for R0.

lhau Rd, disp(Rs) Rd := signExtend(mem16[disp + Rs])
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

lhax Rd, Rs, Rx Rd := signExtend(mem16[Rs + Rx])
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses zero as the value for Rs.

lhaux Rd, Rs, Rx Rd := signExtend(mem16[Rs + Rx])
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

wgc2_OB_02.fm Page 16 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 17

B.22 li

The li (load immediate) instruction is a synonym for the addi instruction
with R0 specified as the source register. This instruction loads a sign-
extended 16-bit value into the specified destination register.

B.23 lis

The lis instruction (load immediate, shifted) shifts a 16-bit constant to the
left 16 bits and then stores the value into a destination register. This instruc-
tion does not affect any flags or the overflow bit.

Table B-36: Gas Syntax for lhz

Instruction Description

lhz Rd, disp(Rs) Rd := zeroExtend(mem16[disp + Rs])
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[--] is the 16-bit halfword at the memory address specified by
disp + Rs.
If Rs is R0, then this instruction substitutes the value zero for R0.

lhzu Rd, disp(Rs) Rd := zeroExtend(mem16[disp + Rs])
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

lhzx Rd, Rs, Rx Rd := zeroExtend(mem16[Rs + Rx])
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses zero as the value for Rs.

lhzux Rd, Rs, Rx Rd := zeroExtend(mem16[Rs + Rx])
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

Table B-37: Gas Syntax for li

Instruction Description

li Rd, constant Rd := constant
d is a register number in the range 0..31.
This instruction is equivalent to:
addi Rd, 0, constant

Table B-38: Gas Syntax for lis

Instruction Description

lis Rd, constant Rd := (constant << 16)
d is a register number in the range 0..31.
This instruction is a synonym for:
addis Rd, 0, constant

wgc2_OB_02.fm Page 17 Thursday, April 20, 2006 12:25 PM

18 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.24 lmw

The lmw (load multiple word) loads a group of registers from a contiguous
block of memory. This instruction has two operands: a starting destination
register and a register plus displacement effective memory address. This
instruction loads all the registers from the destination register through R31
starting at the specified memory location. This instruction is quite useful for
saving a batch of scratch-pad registers or for quickly moving blocks of mem-
ory around. Note that the base register used in the memory addressing mode
must not be present in the range of registers loaded by this instruction.

B.25 lwz, lwzu, lwzx, lwzux

The lwz (load word and zero) instruction fetches a 32-bit word from memory
at an address specified by the register plus displacement addressing mode.
(The z suffix exists for 64-bit members of the PowerPC family, in which case
this instruction zero extends the memory value to 64 bits).

The lwzu (load word and zero, with update) works in a similar manner
except that it also updates the source register with the effective address of
the word in memory.

The lwzx (load word and zero, indexed) also loads a 32-bit value from
memory into a destination register. This form of the instruction, however,
uses both a base and index register (with no displacement).

The lszux (load word and zero, indexed, with update) is just like lszx
except it also updates the base register with the effective address after
moving the 32-bit word into the destination register.

Table B-39: Gas Syntax for lmw

Instruction Description

lmw Rd, disp(Rs) Rd..R31 := mem32[disp + Rs]...
d and s are register numbers in the range 0..31 and s must be less
than d.
disp is a 16-bit signed constant.
mem32[--]... represents n consecutive 32-bit words in memory, where
n = 31 - d + 1

wgc2_OB_02.fm Page 18 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 19

B.26 mcrf

The mcrf (move condition register field) instruction moves the data from one
condition-code register field to another condition-code register field.

B.27 mcrxr

The mcrxr (move condition register field from XER) instruction copies bits
0..3 of the XER register (the SO, OV, and CA flags, along with a zero bit) into
the specified condition-code register. This instruction also clears bits 0..3 of
the XER register.

Table B-40: Gas Syntax for lwz

Instruction Description

lwz Rd, disp(Rs) Rd := mem32[disp + Rs]
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem32[--] is the 32-bit word at the memory address specified by
disp + Rs.
If Rs is R0, then this instruction substitutes the value zero for R0.

lwzu Rd, disp(Rs) Rd := mem32[disp + Rs]
Rs := disp + Rs
d and s are register numbers in the range 0..31.
disp is a 16-bit signed constant.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

lszx Rd, Rs, Rx Rd := mem32[Rs + Rx]
d, s, and x are register numbers in the range 0..31.
If Rs is R0, then this instruction uses zero as the value for Rs.

lwzux Rd, Rs, Rx Rd := mem32[Rs + Rx]
Rs := Rs + Rx
d, s, and x are register numbers in the range 0..31.
If Rs is R0, or Rs and Rd are the same, this is an invalid instruction.

Table B-41: Gas Syntax for mcrf

Instruction Description

mcrf CRd, CRs CRd := CRs
d and s are condition-code register numbers in the range 0..7.

Table B-42: Gas Syntax for mcrxr

Instruction Description

mcrxr CRd CRd := XER[0..3]
d is a condition-code register number in the range 0..7.

wgc2_OB_02.fm Page 19 Thursday, April 20, 2006 12:25 PM

20 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.28 mfcr

The mfcr (move from condition register) instruction copies the entire 32-bit
condition-code register into a general-purpose register.

B.29 mfctr

The mfctr (move from COUNT register) instruction copies the contents of
the COUNT register into a general-purpose register.

B.30 mflr

The mflr (move from LINK register) instruction copies the contents of the
LINK register into a general-purpose register.

Table B-43: CRd Settings for mcrxr

Flag Setting

LT SO field from XER

GT OV field from XER

Zero CA field from XER

SO 0

Table B-44: XER Settings for mcrxr

Flag Setting

SO 0

OV 0

CA 0

Table B-45: Gas Syntax for mfcr

Instruction Description

mfcr Rd Rd := CR[0..7]
d is a general-purpose register number in the range 0..31.

Table B-46: Gas Syntax for mfctr

Instruction Description

mfctr Rd Rd := COUNT
d is a general-purpose register number in the range 0..31.

wgc2_OB_02.fm Page 20 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 21

B.31 mr

The mr instruction (move register) requires two register operands—a
destination register and a source register. This instruction copies the value
held in the source register to the destination register. Note that this is a
special form of the or instruction that supplies the source register as both
operands for the or instruction. See the or instruction for more details.

B.32 mtcrf

The mtcrf (move to condition register fields) instruction copies zero or more
blocks of 4 bits into one of the condition-code fields in the condition-code
register. This instruction has two operands: an 8-bit bitmap that specifies
which condition-code fields to update and a general-purpose 32-bit register.
For each set bit in the bitmap, this instruction copies the corresponding 4
bits in the general-purpose register to the corresponding positions in the
condition-code register. If a bit in the bitmap contains zero, then the
corresponding bits in the condition-code field are unaffected by this
instruction.

B.33 mtctr

The mtctr (move to COUNT) instruction copies the value from a general-
purpose integer register to the COUNT register.

Table B-47: Gas Syntax for mflr

Instruction Description

mflr Rd Rd := LINK
d is a general-purpose register number in the range 0..31.

Table B-48: Gas Syntax for mr

Instruction Description

mr Rd, Rs Rd := Rs
d and s are register numbers in the range 0..31.

Table B-49: Gas Syntax for mtcrf

Instruction Description

mtcrf bitmap, Rd CRn := Rd[n*4..n*4+3], but only if bitmap[n] == 1
d is a general-purpose register number in the range 0..31.
bitmap is an 8-bit constant.

wgc2_OB_02.fm Page 21 Thursday, April 20, 2006 12:25 PM

22 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.34 mtlr

The mtlr (move to LINK) instruction copies the value from a general-
purpose integer register to the LINK register.

B.35 mtxer

The mtxer (move to XER) instruction copies the value from a general-
purpose integer register to the XER register.

B.36 mulhw, mulhw.

The mulhw (multiply high word) instruction produces the HO 32 bits of a
32×32 multiply of two registers. It stores the HO 32 bits of the product in a
third register. This instruction performs a signed integer multiplication.

Table B-50: Gas Syntax for mtctr

Instruction Description

mtctr Rd COUNT := Rd
d is a general-purpose register number in the range 0..31.

Table B-51: Gas Syntax for mtlr

Instruction Description

mtlr Rd LINK := Rd
d is a general-purpose register number in the range 0..31.

Table B-52: Gas Syntax for mtxer

Instruction Description

mtxer Rd XER := Rd
d is a general-purpose register number in the range 0..31.

Table B-53: Gas Syntax for mulhw

Instruction Description

mulhw Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (signed)
d, s1, and s2 are register numbers in the range 0..31.

mulhw. Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (signed)
d, s1, and s2 are register numbers in the range 0..31.
This form updates CR0 (see Table B-54).

wgc2_OB_02.fm Page 22 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 23

B.37 mulhwu, mulhwu.

The mulhwu (multiply high word, unsigned) instruction produces the HO 32
bits of an unsigned 32×32 multiply of two registers. It stores the HO 32 bits of
the product in a third register.

B.38 mulli

The mulli (multiply low word, immediate) instruction produces the LO 32
bits of a 32×32 multiply of two registers. It stores the LO 32 bits of the
product in a third register. Note that this instruction is suitable for both
signed and unsigned operands as the LO 32 bits of the product is the same
for both operand types.

Table B-54: CR0 Settings for mulhw.

Flag Setting

LT Set if the signed result is less than zero.

GT Set if the signed result is greater than zero.

Zero Set if the result is equal to zero.

SO Copied from the SO bit in the XER register.

Table B-55: Gas Syntax for mulhwu

Instruction Description

mulhwu Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (unsigned)
d, s1, and s2 are register numbers in the range 0..31.

mulhwu. Rd, Rs1, Rs2 Rd := HO32(Rs1 × Rs2) (unsigned)
d, s1, and s2 are register numbers in the range 0..31.
This form updates CR0 (see Table B-56).

Table B-56: CR0 Settings for mulhwu.

Flag Setting

LT Set if the signed result is less than zero.

GT Set if the signed result is greater than zero.

Zero Set if the result is equal to zero.

SO Copied from the SO bit in the XER register.

Table B-57: Gas Syntax for mulli

Instruction Description

mulli Rd, Rs, constant Rd := Rs × constant
d and s are register numbers in the range 0..31.
constant is a 16-bit signed integer, which this instruction sign extends
to 32 bits before the multiplication occurs.

wgc2_OB_02.fm Page 23 Thursday, April 20, 2006 12:25 PM

24 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.39 mullw, mullw., mullwo, mullwo.

The mullw (multiply low word) instruction produces the LO 32 bits of a 32×32
multiplication of two registers. It stores the LO 32 bits of the product in a
third register. The LO 32 bits of a 32×32 multiplication is the same for both
signed and unsigned multiplications, so you’d use this instruction to com-
pute the result for either type of data.

B.40 nand, nand.

The nand instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
NAND (NOT AND) of the two source values and places the result in the
destination register.

Table B-58: Gas Syntax for mullw

Instruction Description

mullw Rd, Rs1, Rs2 Rd := Rs1 × Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.

mullwo Rd, Rs1, Rs2 Rd := Rs1 × Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.
This form updates XER.

mullw. Rd, Rs1, Rs2 Rd := Rs1 × Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.
This form updates CR0.

mullwo. Rd, Rs1, Rs2 Rd := Rs1 × Rs2 (LO 32 bits)
d, s1, and s2 are register numbers in the range 0..31.
This form updates XER and CR0.

Table B-59: CR0 Settings for mullw., mullwo.

Flag Setting

LT Set if the signed result is less than zero.

GT Set if the signed result is greater than zero.

Zero Set if the result is equal to zero.

SO Copied from the SO bit in the XER register.

Table B-60: XER Settings for mullwo, mullwo.

Flag Setting

SO Set if SO was previously set, or the signed result does not fit into 32 bits.

OV Set if the signed result does not fit into 32 bits.

CA Unaffected.

wgc2_OB_02.fm Page 24 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 25

B.41 neg, neg., nego, nego.

The neg instruction requires two register operands—a destination register
and a source register. This instruction computes the two’s complement of
the value in the source register (that is, it negates the value) and places the
result into the destination register.

Table B-61: Gas Syntax for nand

Instruction Description

nand Rd, Rs1, Rs2 Rd := Rs1 NAND Rs2
d, s1, and s2 are register numbers in the range 0..31.

nand. Rd, Rs1, Rs2 Rd := Rs1 NAND Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-62: CR0 Settings for nand.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected.

Table B-63: Gas Syntax for neg

Instruction Description

neg Rd, Rs Rd := -Rs
d and s are register numbers in the range 0..31.

neg. Rd, Rs Rd := -Rs
CR0 reflects the result of the negation.
d and s are register numbers in the range 0..31.

nego Rd, Rs Rd := -Rs
The overflow and summary overflow bits in XER are set if a signed overflow
occurs (this occurs if you attempt to negate the most negative value).
d and s are register numbers in the range 0..31.

nego. Rd, Rs Rd := Rs
CR0 reflects the result of the sum.
The overflow and summary overflow bits in XER are set if a signed overflow
occurs.
d and s are register numbers in the range 0..31.

Table B-64: CR0 Settings for neg. and nego.

Flag Setting

LT Set if the result is less than zero.

GT Set if the result is greater than zero.

wgc2_OB_02.fm Page 25 Thursday, April 20, 2006 12:25 PM

26 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.42 nor, nor.

The nor instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise)
NOR (NOT OR) of the two source values and places the result in the
destination register. If both source operands are the same register, this
instruction computes the logical NOT operation of that register.

Zero Set if the result is zero.

SO The summary overflow bit from the XER is copied to this field after computing the sum.

Table B-65: XER Settings for nego and nego.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction. This occurs if
you attempt to negate the most negative value in the two’s complement system
($8000_0000 for 32-bit values).

SO Set if the SO bit was previously set, or if a signed overflow occurred during the
execution of the instruction.

CA Unaffected.

Table B-64: CR0 Settings for neg. and nego. (continued)

Flag Setting

Table B-66: Gas Syntax for nor

Instruction Description

nor Rd, Rs1, Rs2 Rd := Rs1 NOR Rs2
d, s1, and s2 are register numbers in the range 0..31.

nor. Rd, Rs1, Rs2 Rd := Rs1 NOR Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-67: CR0 Settings for nor.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected.

wgc2_OB_02.fm Page 26 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 27

B.43 or, or.

The or instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise) OR
of the two source values and places the result in the destination register. If
both source operands are the same register, this instruction is a synonym for
the mr (move register) instruction (see mr for more details).

B.44 orc, orc.

The orc instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise) OR
of the first source value with the inverted value of the second source operand
and places the result in the destination register.

Table B-68: Gas Syntax for or

Instruction Description

or Rd, Rs1, Rs2 Rd := Rs1 OR Rs2
d, s1, and s2 are register numbers in the range 0..31.

or. Rd, Rs1, Rs2 Rd := Rs1 OR Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-69: CR0 Settings for or.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected.

Table B-70: Gas Syntax for orc

Instruction Description

orc Rd, Rs1, Rs2 Rd := Rs1 OR (NOT Rs2)
d, s1, and s2 are register numbers in the range 0..31.

orc. Rd, Rs1, Rs2 Rd := Rs1 OR (NOT Rs2)
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-71: CR0 Settings for orc.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

wgc2_OB_02.fm Page 27 Thursday, April 20, 2006 12:25 PM

28 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.45 ori

The ori (or immediate) instruction requires two register operands and a 16-
bit constant. This instruction logically ORs the constant with the value held
in the source register, and then places the result in the destination register.

B.46 oris

The oris (or immediate, shifted) instruction requires two register operands
and a 16-bit constant. This instruction shifts the constant to the left 16 bits,
logically ORs this with the value held in the source register, and then places
the result in the destination register.

B.47 rlwimi, rlwimi.

The rlwimi instruction (rotate left word immediate, then mask insert)
requires five operands—a destination register, a source register, and three
immediate operands. This instruction rotates the source operand to the left
by the number of bits specified by its first immediate operand (the third
operand), and then extracts bits mb..me (the second and third immediate
operands) from this result and inserts those bits into the destination register
(without affecting the bits outside the range mb..me in the destination
register).

Zero Set if the sum is zero.

SO Unaffected

Table B-71: CR0 Settings for orc. (continued)

Flag Setting

Table B-72: Gas Syntax for ori

Instruction Description

oris Rd, Rs, constant Rd := Rs OR constant
d and s are register numbers in the range 0..31.

Table B-73: Gas Syntax for oris

Instruction Description

oris Rd, Rs, constant Rd := Rs OR (constant << 16)
d and s are register numbers in the range 0..31.

wgc2_OB_02.fm Page 28 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 29

B.48 rlwinm, rlwinm.

The rlwinm instruction (rotate left word immediate, then AND with mask)
requires five operands—a destination register, a source register, and three
immediate operands. This instruction rotates the source operand to the left
by the number of bits specified by its first immediate operand (the third
operand), and then extracts bits mb..me (the second and third immediate
operands) from this result stores the result into the destination register
(with zeros in bit positions outside the mask range).

Table B-74: Gas Syntax for rlwimi

Instruction Description

rlwimi Rd,Rs,n,mb,me Rd := (Rd AND mask0(mb..me)) OR
((Rd ROL n) AND mask1(mb..me))
n is a constant specifying the number of bits to rotate in the source
register.
mb and me specify the beginning and ending bit positions for the mask.
mask0(a..b) is a set of zero bits in positions a..b and ones
everywhere else.
mask1(a..b) is a set of one bits in positions a..b and zeros
everywhere else.
d and s are register numbers in the range 0..31.

rlwimi. Rd,Rs,n,mb,me Rd := (Rd AND mask0(mb..me)) OR
((Rd ROL n) AND mask1(mb..me))
CR0 reflects the result of the operation.
n is a constant specifying the number of bits to rotate in the source
register.
mb and me specify the beginning and ending bit positions for the mask.
mask0(a..b) is a set of zero bits in positions a..b and ones
everywhere else.
mask1(a..b) is a set of one bits in positions a..b and zeros
everywhere else.
d and s are register numbers in the range 0..31.

Table B-75: CR0 Settings for rlwimi.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

wgc2_OB_02.fm Page 29 Thursday, April 20, 2006 12:25 PM

30 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.49 rlwnm, rlwnm.

The rlwnm instruction (rotate left word then AND with mask) requires five
operands—a destination register, a source register, a register holding a
count value, and two immediate operands. This instruction rotates the
source operand to the left by the number of bits specified by count register
operand (the third operand), and then extracts bits mb..me (the second and
third immediate operands) from this result stores the result into the
destination register (with zeros in bit positions outside the mask range).

Table B-76: Gas Syntax for rlwinm

Instruction Description

rlwinm Rd,Rs,n,mb,me Rd := (Rd ROL n) AND mask(mb..me)
n is a constant specifying the number of bits to rotate in the source
register.
mb and me specify the beginning and ending bit positions for the mask.
mask(a..b) is a set of one bits in positions a..b and zeros everywhere
else.
d and s are register numbers in the range 0..31.

rlwinm. Rd,Rs,n,mb,me Rd := (Rd ROL n) AND mask(mb..me)
CR0 reflects the result of the operation.
n is a constant specifying the number of bits to rotate in the source
register.
mb and me specify the beginning and ending bit positions for the mask.
mask(a..b) is a set of one bits in positions a..b and zeros everywhere
else.
d and s are register numbers in the range 0..31.

Table B-77: CR0 Settings for rlwinm.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

wgc2_OB_02.fm Page 30 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 31

B.50 slw, slw.

The slw instruction (shift left word) requires three register operands—a
destination register, a source register, a register holding a count value. This
instruction shifts the value of the source operand to the left by the number
of bits specified by the count register operand and stores the result into
the destination register. This is an unsigned, or logical, shift left operation.
Zeros are shifted into unoccupied LO bit positions. Bits shifted out of the
HO bit are lost.

Table B-78: Gas Syntax for rlwnm

Instruction Description

rlwnm Rd,Rs,Rc,mb,me Rd := (Rd ROL Rc) AND mask(mb..me)
mb and me specify the beginning and ending bit positions for the mask.
mask(a..b) is a set of one bits in positions a..b and zeros everywhere
else.
d, s, and c are register numbers in the range 0..31.

rlwnm. Rd,Rs,Rc,mb,me Rd := (Rd ROL Rc) AND mask(mb..me)
CR0 reflects the result of the operation.
mb and me specify the beginning and ending bit positions for the mask.
mask(a..b) is a set of one bits in positions a..b and zeros everywhere
else.
d and s are register numbers in the range 0..31.

Table B-79: CR0 Settings for rlwnm.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected.

Table B-80: Gas Syntax for slw

Instruction Description

slw Rd,Rs,Rc Rd := (Rs SHL Rc)
d, s, and c are register numbers in the range 0..31.

slw. Rd,Rs,Rc Rd := (Rs SHL Rc)
CR0 reflects the result of the operation.
d, s, and c are register numbers in the range 0..31.

Table B-81: CR0 Settings for slw.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

wgc2_OB_02.fm Page 31 Thursday, April 20, 2006 12:25 PM

32 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.51 sraw, sraw.

The sraw instruction (shift right, arithmetic, word) requires three register
operands—a destination register, a source register, a register holding a
count value. This instruction shifts the value of the source operand to the
right by the number of bits specified by the count register operand and
stores the result into the destination register. This instruction replicates the
HO (sign) bit into the HO bit position after the shift. Bits shifted out of the
LO bit position are lost.

B.52 srawi, srawi.

The srawi instruction (shift right arithmetic word, immediate) requires two
register operands (destination and source) and an immediate count value.
This instruction shifts the value of the source operand to the right count bits
and stores the result into the destination register. This instruction replicates
the HO (sign) bit into the HO bit position after the shift. Bits shifted out
of the LO bit position are lost.

Zero Set if the sum is zero.

SO Unaffected.

Table B-81: CR0 Settings for slw. (continued)

Flag Setting

Table B-82: Gas Syntax for sraw

Instruction Description

sraw Rd,Rs,Rc Rd := (Rs SHR Rc) (signed)
d, s, and c are register numbers in the range 0..31.

sraw. Rd,Rs,Rc Rd := (Rs SHR Rc) (signed)
CR0 reflects the result of the operation.
d, s, and c are register numbers in the range 0..31.

Table B-83: CR0 Settings for sraw.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

wgc2_OB_02.fm Page 32 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 33

B.53 srw, srw.

The srw instruction (shift right word) requires three register operands—a
destination register, a source register, a register holding a count value. This
instruction shifts the value of the source operand to the right by the number
of bits specified by the count register and stores the result into the destina-
tion register. This is an unsigned, or logical, shift right operation. It shifts
zeros into the unoccupied HO bit positions. Bits shifted out of the LO bit
position are lost.

Table B-84: Gas Syntax for srawi

Instruction Description

srawi Rd,Rs,constant Rd := (Rs SHR constant) (signed)
constant is the number of bits to shift, in the range 0..31.
d and s are register numbers in the range 0..31.

srawi. Rd,Rs,constant Rd := (Rs SHR constant) (signed)
CR0 reflects the result of the operation.
constant is the number of bits to shift, in the range 0..31.
d and s are register numbers in the range 0..31.

Table B-85: CR0 Settings for srawi.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected.

Table B-86: Gas Syntax for srw

Instruction Description

srw Rd,Rs,Rc Rd := (Rs SHL Rc)
d, s, and c are register numbers in the range 0..31.

srw. Rd,Rs,Rc Rd := (Rs SHL Rc)
CR0 reflects the result of the operation.
d, s, and c are register numbers in the range 0..31.

Table B-87: CR0 Settings for srw.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected.

wgc2_OB_02.fm Page 33 Thursday, April 20, 2006 12:25 PM

34 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.54 stb, stbu, stbux, stbx

The stb (store byte) instruction stores the LO byte of a register into memory
at an address specified by the register plus displacement addressing mode.

The stbu (store byte with update) works in a similar manner except that
it also updates the base register with the effective address of the byte in
memory.

The stbx (store byte, indexed) stores the byte held in the LO byte of
a source register into the memory location specified by the register plus
register indexed addressing mode.

The stbux (store byte indexed, with update) is just like stbx except it also
updates the base register with the effective address after moving the byte to
memory.

B.55 sth, sthu, sthux, sthx

The sth (store halfword) instruction stores the LO 16 bits of a register
into memory at an address specified by the register plus displacement
addressing mode.

The sthu (store halfword with update) works in a similar manner except
that it also updates the source register with the effective address of the half-
word in memory.

The sthx (store halfword, indexed) stores the halfword held in the LO 16
bits of the source register into the memory location specified by the register
plus register indexed addressing mode.

Table B-88: Gas Syntax for stb

Instruction Description

stb Rs, disp(Rb) mem8[disp + Rb] := Rd
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem8[--] is the byte at the memory address specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value zero for R0.

stbu Rs, disp(Rb) mem8[disp + Rb] := Rd
Rs := disp + Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem8[--] is the byte at the memory address specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value zero for R0.

stbx Rs, Rb, Rx mem8[Rb + Rx] := Rd
s, b, and x are register numbers in the range 0..31.
If Rb is R0, then this instruction uses zero as the value for Rs.

stbux Rd, Rs, Rx mem8[Rb + Rx] := Rd
Rb := Rb + Rx
s, b, and x are register numbers in the range 0..31.
If Rb is R0, then this instruction uses zero as the value for Rs.

wgc2_OB_02.fm Page 34 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 35

The sthux (store halfword indexed, with update) is just like sthx except
it also updates the base register with the effective address after moving the
halfword to memory.

B.56 stmw

The stmw (store multiple words) writes the values in a group of registers to a
contiguous block of memory. This instruction has two operands: a starting
destination register and a register plus displacement effective memory
address. This instruction stores all the register values from the destination
register through R31 starting at the specified memory location. This instruc-
tion is quite useful for saving a batch of scratch-pad registers or for quickly
moving blocks of memory around.

Table B-89: Gas Syntax for sth

Instruction Description

sth Rs, disp(Rb) mem16[disp + Rb] := Rd
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[--] is the halfword at the memory address specified by
disp + Rb.
If Rb is R0, then this instruction substitutes the value zero for R0.

sthu Rs, disp(Rb) mem16[disp + Rb] := Rd
Rs := disp + Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem16[--] is the halfword at the memory address specified by
disp + Rb.
If Rb is R0, then this instruction substitutes the value zero for R0.

sthx Rs, Rb, Rx mem16[Rb + Rx] := Rd
s, b, and x are register numbers in the range 0..31.
mem16[--] is the halfword at the memory address specified by Rb + Rx.
If Rb is R0, then this instruction uses zero as the value for Rs.

sthux Rd, Rs, Rx mem16[Rb + Rx] := Rd
Rb := Rb + Rx
s, b, and x are register numbers in the range 0..31.
mem16[--] is the halfword at the memory address specified by Rb + Rx.
If Rb is R0, then this instruction uses zero as the value for Rs.

Table B-90: Gas Syntax for stmw

Instruction Description

stmw Rd, disp(Rs) mem32[disp + Rs]... := Rd..R31
d and s are register numbers in the range 0..31 and s must be less
than d.
disp is a 16-bit signed constant.
mem32[--]... represents n consecutive 32-bit words in memory, where
n = 32 - d.

wgc2_OB_02.fm Page 35 Thursday, April 20, 2006 12:25 PM

36 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.57 stw, stwu, stwux, stwx

The stw (store word) instruction stores a register’s value into memory at an
address specified by the register plus displacement addressing mode.

The stwu (store word with update) works in a similar manner except
that it also updates the base register with the effective address of the word
in memory.

The stwx (store word, indexed) stores the word held in the source regi-
ster into the memory location specified by the register plus register indexed
addressing mode.

The stwux (store word indexed, with update) is just like stwx except it also
updates the base register with the effective address after moving the halfword
to memory.

B.58 sub, sub., subo, subo.

The sub instruction (subtract) requires three register operands—a destination
register and two source registers. This instruction computes the difference of
the values in the two source registers and places the difference into the desti-
nation register. This instruction is actually a synonym for the subf instruction
(with the register positions swapped); see subf for details.

Table B-91: Gas Syntax for sth

Instruction Description

stw Rs, disp(Rb) mem32[disp + Rb] := Rd
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem32[--] is the word at the memory address specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value zero for R0.

stwu Rs, disp(Rb) mem32[disp + Rb] := Rd
Rs := disp + Rs
s and b are register numbers in the range 0..31.
disp is a 16-bit signed constant.
mem32[--] is the word at the memory address specified by disp + Rb.
If Rb is R0, then this instruction substitutes the value zero for R0.

stwx Rs, Rb, Rx mem32[Rb + Rx] := Rd
s, b, and x are register numbers in the range 0..31.
mem32[--] is the word at the memory address specified by Rb + Rx.
If Rb is R0, then this instruction uses zero as the value for Rs.

stwux Rd, Rs, Rx mem32[Rb + Rx] := Rd
Rb := Rb + Rx
s, b, and x are register numbers in the range 0..31.
mem23[--] is the word at the memory address specified by Rb + Rx.
If Rb is R0, then this instruction uses zero as the value for Rs.

wgc2_OB_02.fm Page 36 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 37

B.59 subf, subf., subfo, subfo.

The subf instruction (subtract from) requires three register operands—a
destination register and two source registers. This instruction computes the
difference of the values in the two source registers and places the difference
into the destination register. Note that this instruction subtracts the value
of the first source operand from the second source operand. Assemblers
create the sub instruction by reversing the two source operands in the actual
opcode.

Table B-92: Gas Syntax for sub

Instruction Description

sub Rd, Rs1, Rs2 Rd := Rs1 - Rs2
d, s1, and s2 are register numbers in the range 0..31.

sub. Rd, Rs1, Rs2 Rd := Rs1 - Rs2
CR0 reflects the result of the difference.
d, s1, and s2 are register numbers in the range 0..31.

subo Rd, Rs1, Rs2 Rd := Rs1 - Rs2
The overflow and summary overflow bits in XER are set if a signed
overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

subo. Rd, Rs1, Rs2 Rd := Rs1 - Rs2
CR0 reflects the result of the difference.
The overflow and summary overflow bits in XER are set if a signed
overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-93: CR0 Settings for sub. and subo.

Flag Setting

LT Set if the sum (signed) is less than zero.

GT Set if the sum (signed) is greater than zero.

Zero Set if the sum is zero.

SO The summary overflow bit from the XER is copied to this field after computing the sum.

Table B-94: XER Settings for subo and subo.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.

SO Set if the SO bit was previously set, or if a signed overflow occurred during the
execution of the instruction.

CA Unaffected.

wgc2_OB_02.fm Page 37 Thursday, April 20, 2006 12:25 PM

38 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.60 subi

The subi instruction (subtract immediate) subtracts a constant from the
contents of a source register and stores the difference into a destination
register. The constant is limited to a signed 16-bit value (which the instruc-
tion sign extends to 32 bits prior to use). This instruction does not affect
any flags or the overflow bit.

Table B-95: Gas Syntax for subf

Instruction Description

subf Rd, Rs1, Rs2 Rd := Rs2 - Rs1
d, s1, and s2 are register numbers in the range 0..31.

subf. Rd, Rs1, Rs2 Rd := Rs2 - Rs1
CR0 reflects the result of the difference.
d, s1, and s2 are register numbers in the range 0..31.

subfo Rd, Rs1, Rs2 Rd := Rs2 - Rs1
The overflow and summary overflow bits in XER are set if a signed
overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

subfo. Rd, Rs1, Rs2 Rd := Rs2 - Rs1
CR0 reflects the result of the difference.
The overflow and summary overflow bits in XER are set if a signed
overflow occurs.
d, s1, and s2 are register numbers in the range 0..31.

Table B-96: CR0 Settings for subf. and subfo.

Flag Setting

LT Set if the sum (signed) is less than zero.

GT Set if the sum (signed) is greater than zero.

Zero Set if the sum is zero.

SO The summary overflow bit from the XER is copied to this field after computing the sum.

Table B-97: XER Settings for subfo and subfo.

Flag Setting

OV Set if a signed overflow occurred during the execution of the instruction.

SO Set if the SO bit was previously set, or if a signed overflow occurred during the
execution of the instruction.

CA Unaffected

wgc2_OB_02.fm Page 38 Thursday, April 20, 2006 12:25 PM

Onl ine Appendix B: The Minima l PowerPC Ins tr uc ti on Set 39

B.61 subis

The subis instruction (subtract immediate, shifted) shifts a 16-bit constant
to the left 16 bits, subtracts this from the value in a source register, and then
stores the difference into a destination register.

B.62 xor, xor.

The xor instruction requires three register operands—a destination register
and two source registers. This instruction computes the logical (bitwise) XOR
of the two source values and places the result in the destination register.

Table B-98: Gas Syntax for subi

Instruction Description

subi Rd, Rs1, constant Rd := Rs1 - constant
d and s1 are register numbers in the range 0..31.
This instruction is a synonym for
addi Rd, Rs, -constant.

Table B-99: Gas Syntax for subis

Instruction Description

subis Rd, Rs, constant Rd := Rs - (constant << 16)
d and s are register numbers in the range 0..31.
This instruction is a synonym for
addis Rd, Rs, -constant.

Table B-100: Gas Syntax for xor

Instruction Description

xor Rd, Rs1, Rs2 Rd := Rs1 XOR Rs2
d, s1, and s2 are register numbers in the range 0..31.

xor. Rd, Rs1, Rs2 Rd := Rs1 XOR Rs2
CR0 reflects the result of the operation.
d, s1, and s2 are register numbers in the range 0..31.

Table B-101: CR0 Settings for xor.

Flag Setting

LT Set if the result (signed) is less than zero.

GT Set if the result (signed) is greater than zero.

Zero Set if the sum is zero.

SO Unaffected

wgc2_OB_02.fm Page 39 Thursday, April 20, 2006 12:25 PM

40 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

B.63 xori

The xori (exclusive-or immediate) instruction requires two register operands
and a 16-bit constant. This instruction logically exclusive-ORs the constant
with the value held in the source register, and then places the result in the
destination register.

B.64 xoris

The xoris (exclusive-or immediate, shifted) instruction requires two register
operands and a 16-bit constant. This instruction shifts the constant to the left
16 bits, logically exclusive-ORs this with the value held in the source register,
and then places the result in the destination register.

Table B-102: Gas Syntax for xori

Instruction Description

xoris Rd, Rs, constant Rd := Rs XOR constant
d and s are register numbers in the range 0..31.

Table B-103: Gas Syntax for xoris

Instruction Description

xoris Rd, Rs, constant Rd := Rs XOR (constant << 16)
d and s are register numbers in the range 0..31.

wgc2_OB_02.fm Page 40 Thursday, April 20, 2006 12:25 PM

