
ONLINE APPENDIX A
T h e M i n i m a l 8 0 x 8 6 I n s t r u c t i o n S e t

by Randal l Hyde

San Francisco

®

fr o m

WRITE GREAT CODE
V ol um e 2 : T hi nk in g L ow - L ev el , W r i t in g H i gh - L ev el

wgc2_OA_title.fm Page i Thursday, April 20, 2006 12:25 PM

WRITE GREAT CODE, Volume 2. Copyright © 2006 by Randall Hyde. ISBN 1-59327-065-8.

All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The information in this online appendix is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this material, neither the author nor No Starch Press, Inc. shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data (Volume 1)

Hyde, Randall.
Write great code : understanding the machine / Randall Hyde.

p. cm.
ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture. I. Title.
QA76.6.H94 2004
005.1--dc22

2003017502

If you haven’t purchased a copy of Write Great Code, Volume 2: Thinking Low-Level, Writing High-Level and would like to
do so, please go to www.nostarch.com.

wgc2_OA_title.fm Page ii Thursday, April 20, 2006 12:25 PM

A
T H E M I N I M A L 8 0 X 8 6

I N S T R U C T I O N S E T

Although the 80x86 CPU family supports
hundreds of instructions, few compilers

actually use more than a few dozen of these
instructions. Many of the instructions have

become obsolete over time because newer instructions
have reduced the need for older instructions. Some
instructions, such as the Pentium’s MMX and SSE instructions, simply do
not correspond to functions you’d normally perform in an HLL. Therefore,
compilers rarely generate these types of machine instructions (such instruc-
tions generally appear only in handwritten assembly language programs).
Therefore, you don’t need to learn the entire 80x86 instruction set in order
to study compiler output. Instead, you only need to learn the handful of
instructions that the compiler actually emits on the 80x86. That’s the
purpose of this appendix, to describe those few instructions compilers
actually use.

wgc2_OA_02.fm Page 1 Thursday, April 20, 2006 12:23 PM

2 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

A.1 add

The add instruction requires two operands: a source operand and a destina-
tion operand. It computes the sum of the values of these two operands and
stores the sum back into the destination operand. It also sets several flags in
the EFLAGS register, based on the result of the addition operation.

Table A-1: HLA Syntax for add

Instruction Description

add(constant, destreg); destreg := destreg + constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

add(constant, destmem); destmem := destmem + constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

add(srcreg, destreg); destreg := destreg + srcreg
destreg and srcreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

add(srcmem, destreg); destreg := destreg + srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. srcmem can be any like-sized memory location.

add(srcreg, destmem); destmem := destmem + srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-2: Gas Syntax for add

Instruction Description

addb constant, destreg8
addw constant, destreg16
addl constant, destreg32

destregn := destregn + constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

addb constant, destmem8
addw constant, destmem16
addl constant, destmem32

destmemn := destmemn + constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

addb srcreg8, destreg8
addw srcreg16, destreg16
addl srcreg32, destreg32

destregn := destregn + srcregn
destregn and srcregn must be an 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

addb srcmem8, destreg8
addw srcmem16, destreg16
addl srcmem32, destreg32

destregn := destregn + srcmemn
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, according to the suffix. srcmemn can be any like-sized
memory location.

addb srcreg8, destmem8
addw srcreg16, destmem16
addl srcreg32, destmem32

destmemn := destmemn + srcregn
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as specified by the suffix. destmemn can be any like-sized
memory location.

wgc2_OA_02.fm Page 2 Thursday, April 20, 2006 12:23 PM

Onli ne Append ix A: The Min imal 80x86 Ins t ruct ion Se t 3

A.2 and

The and instruction requires two operands: a source operand and a destina-
tion operand. It computes the bitwise logical AND of the values of these two
operands and stores the result back into the destination operand. It also sets
several flags in the EFLAGS register, based on the result of the bitwise AND
operation.

Table A-3: MASM/TASM Syntax for add

Instruction Description

add destreg, constant destreg := destreg + constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

add destmem, constant destmem := destmem + constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

add destreg, srcreg destreg := destreg + srcreg
destreg and srcreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

add destreg, srcmem destreg := destreg + srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register;
srcmem can be any like-sized memory location.

add destmem, srcreg destmem := destmem + srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-4: EFLAGS Settings for add

Flag Setting

Carry Set if the sum of the two values produces an unsigned overflow.

Overflow Set if the sum of the two values produces a signed overflow.

Sign Set if the sum of the two values has a one in its HO bit position.

Zero Set if the sum of the two values is zero.

Table A-5: HLA Syntax for and

Instruction Description

and(constant, destreg); destreg := destreg AND constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

and(constant, destmem); destmem := destmem AND constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

and(srcreg, destreg); destreg := destreg AND srcreg
destreg and srcreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

wgc2_OA_02.fm Page 3 Thursday, April 20, 2006 12:23 PM

4 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

and(srcmem, destreg); destreg := destreg AND srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. srcmem can be any like-sized memory location.

and(srcreg, destmem); destmem := destmem AND srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-6: Gas Syntax for and

Instruction Description

andb constant, destreg8
andw constant, destreg16
andl constant, destreg32

destregn := destregn AND constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

andb constant, destmem8
andw constant, destmem16
andl constant, destmem32

destmemn := destmemn AND constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

andb srcreg8, destreg8
andw srcreg16, destreg16
andl srcreg32, destreg32

destregn := destregn AND srcregn
destregn and srcregn must be an 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

andb srcmem8, destreg8
andw srcmem16, destreg16
andl srcmem32, destreg32

destregn := destregn AND srcmemn
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, according to the suffix. srcmemn can be any like-sized
memory location.

andb srcreg8, destmem8
andw srcreg16, destmem16
andl srcreg32, destmem32

destmemn := destmemn AND srcregn
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as specified by the suffix. destmemn can be any like-sized
memory location.

Table A-7: MASM/TASM Syntax for and

Instruction Description

and destreg, constant destreg := destreg AND constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

and destmem, constant destmem := destmem AND constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

and destreg, srcreg destreg := destreg AND srcreg
destreg and srcreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

and destreg, srcmem destreg := destreg AND srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

and destmem, srcreg destmem := destmem AND srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-5: HLA Syntax for and (continued)

Instruction Description

wgc2_OA_02.fm Page 4 Thursday, April 20, 2006 12:23 PM

Onli ne Append ix A: The Min imal 80x86 Ins t ruct ion Se t 5

A.3 call

The call instruction requires a single operand. This instruction pushes the
address of the instruction immediately following the call onto the 80x86
stack (see the discussion of the push instruction for a description of this
operation). Next it transfers control to the address specified by the single
operand and continues execution there. This instruction does not affect
any flags.

Table A-8: EFLAGS Settings for and

Flag Setting

Carry Always clear.

Overflow Always clear.

Sign Set if the result has a one in its HO bit position.

Zero Set if the result is zero.

Table A-9: HLA Syntax for call

Instruction Description

call label;
call(label);

Calls the subroutine that has the specified name (label) in the program.

call(reg32): Calls the subroutine at the address specified in the 32-bit register supplied as
the single operand.

call(mem32); Calls the subroutine at the address held in the double-word memory location
specified by the mem32 operand.

Table A-10: Gas Syntax for call

Instruction Description

call label Calls the subroutine that has the specified name (label) in the program.

call *reg32 Calls the subroutine at the address specified in the 32-bit register supplied as
the single operand.

call *mem32 Calls the subroutine at the address held in the double-word memory location
specified by the mem32 operand.

Table A-11: MASM/TASM Syntax for call

Instruction Description

call label Calls the subroutine that has the specified name (label) in the program.

call reg32 Calls the subroutine at the address specified in the 32-bit register supplied as the
single operand.

call mem32 Calls the subroutine at the address held in the double-word memory location
specified by the mem32 operand.

wgc2_OA_02.fm Page 5 Thursday, April 20, 2006 12:23 PM

6 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

A.4 clc, cmc, stc

The clc instruction clears the carry flag setting in the EFLAGS register. The
cmc instruction complements (inverts) the carry flag. The stc instruction sets
the carry flag. These instructions do not have any operands.

A.5 cmp

The cmp instruction requires two operands: a left operand and a right operand.
It compares the left operand to the right operand and sets the EFLAGS
register based on the comparison. This instruction typically precedes a
conditional jump instruction or some other instruction that tests the bits
in the EFLAGS register.

Table A-12: HLA Syntax for clc, cmc, and stc

Instruction Description

clc(); Clears the carry flag.

cmc(); Complements (inverts) the carry flag.

stc(); Set the carry flag.

Table A-13: Gas Syntax for clc, cmc, and stc

Instruction Description

clc Clears the carry flag.

cmc Complements (inverts) the carry flag.

stc Set the carry flag.

Table A-14: MASM/TASM Syntax for clc, cmc, and stc

Instruction Description

clc Clears the carry flag.

cmc Complements (inverts) the carry flag.

stc Set the carry flag.

Table A-15: HLA Syntax for cmp

Instruction Description

cmp(reg, constant); Compares reg against a constant.
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

cmp(mem, constant); Compares mem against a constant.
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

cmp(leftreg, rightreg); Compares leftreg against rightreg.
leftreg and rightreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

wgc2_OA_02.fm Page 6 Thursday, April 20, 2006 12:23 PM

Onli ne Append ix A: The Min imal 80x86 Ins t ruct ion Se t 7

cmp(reg, mem); Compares a register with the value of a memory location.
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
mem can be any like-sized memory location.

cmp(mem, reg); Compares the value of a memory location against the value of a
register.
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
mem can be any like-sized memory location.

Table A-16: Gas Syntax for cmp

Instruction Description

cmpb constant, reg8
cmpw constant, reg16
cmpl constant, reg32

Compares regn against a constant.
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register,
as appropriate for the suffix.

cmpb constant, mem8
cmpw constant, mem16
cmpl constant, mem32

Compares memn against a constant.
memn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

cmpb leftreg8, rightreg8
cmpw leftreg16, rightreg16
cmpl leftreg32, rightreg32

Compares rightregn to leftregn
rightregn and leftregn must be an 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

cmpb mem8, reg8
cmpw mem16, reg16
cmpl mem32, reg32

Compares regn to memn
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register,
according to the suffix. memn can be any like-sized memory
location.

cmpb reg8, mem8
cmpw reg16, mem16
cmpl reg32, mem32

Compares memn to regn
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register,
as specified by the suffix. memn can be any like-sized memory
location.

Table A-17: MASM/TASM Syntax for cmp

Instruction Description

cmp reg, constant Compares reg against a constant.
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

cmp mem, constant Compares mem against a constant.
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

cmp leftreg, rightreg Compares leftreg against rightreg.
leftreg and rightreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

cmp reg, mem Compares a register with the value of a memory location.
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register. mem
can be any like-sized memory location.

cmp mem, reg Compares the value of a memory location against the value of a
register.
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register. mem
can be any like-sized memory location.

Table A-15: HLA Syntax for cmp (continued)

Instruction Description

wgc2_OA_02.fm Page 7 Thursday, April 20, 2006 12:23 PM

8 Write G rea t Code , Vo lume 2: Thi nk ing Low -Level , Wr i t ing High -Level

A.6 dec

The dec (decrement) instruction requires a single operand. The CPU sub-
tracts one from this operand. This instruction also sets several flags in the
EFLAGS register, based on the result, but you should note that the flags are
not set identically to the sub instruction.

Table A-18: EFLAGS Settings for cmp

Flag Setting

Carry Set if the left (right for Gas) operand is less than the right (left for Gas) operand
when performing an unsigned comparison.

Overflow If the exclusive-OR of the overflow and sign flags is one after a comparison, then
the first operand is less than the second operand when doing an unsigned
comparison (for MASM/TASM and HLA, reverse the operands for Gas).

Sign

Zero Set if the two values are equal.

Table A-19: HLA Syntax for dec

Instruction Description

dec(reg); reg := reg - 1
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

dec(mem); mem := mem - 1
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-20: Gas Syntax for dec

Instruction Description

decb reg8
decw reg16
decl reg32

regn := regn - 1
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register, as appropriate
for the suffix.

decb mem8
decw mem16
decl mem32

memn := memn - 1
memn must be an 8-bit, 16-bit, or 32-bit memory variable, as appropriate for the
suffix.

Table A-21: MASM/TASM Syntax for dec

Instruction Description

dec reg reg := reg - 1
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

dec mem mem := mem - 1
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-22: EFLAGS Settings for dec

Flag Setting

Carry Unaffected by the dec instruction.

Overflow Set if subtracting one produces a signed underflow.

wgc2_OA_02.fm Page 8 Thursday, April 20, 2006 12:23 PM

Onli ne Append ix A: The Min imal 80x86 Ins t ruct ion Se t 9

A.7 div

The div instruction takes a single operand. For an 8-bit operand (register or
memory), the div instruction divides the 16-bit value in AX by that operand,
producing the unsigned quotient in AL and the unsigned remainder in AH.
For a 16-bit operand, the div instruction divides the 32-bit value in DX:AX
(DX contains the HO word; AX contains the LO word), leaving the unsigned
quotient in AX and the unsigned remainder in DX. For a 32-bit operand, the
div instruction divides the 64-bit quantity in EDX:EAX (EDX contains the
HO double word and EAX contains the LO double word) by the operand,
leaving the unsigned quotient in EAX and the unsigned remainder in EDX.
This instruction scrambles the flags in the EFLAGS register; you cannot rely
on their values after executing a div instruction. This instruction raises an
integer divide exception if you attempt a division by zero or if the quotient
will not fit in AL, AX, or EAX (as appropriate).

Sign Set if subtracting one produces a one in the HO bit position.

Zero Set if subtracting one produces zero.

Table A-22: EFLAGS Settings for dec (continued)

Flag Setting

Table A-23: HLA Syntax for div

Instruction Description

div(reg8); al := ax div reg8
ah := ax mod reg8
reg8 must be an 8-bit general-purpose register.

div(reg16); ax := dx:ax div reg16
dx := dx:ax mod reg16
reg16 must be a 16-bit general-purpose register.

div(reg32); eax := edx:eax div reg32
edx := edx:eax mod reg32
reg32 must be a 32-bit general-purpose register.

div(mem8); al := ax div mem8
ah := ax mod mem8
mem8 must be an 8-bit memory location.

div(mem16); ax := dx:ax div mem16
dx := dx:ax mod mem16
mem16 must be a 16-bit memory location.

div(mem32); eax := edx:eax div mem32
edx := edx:eax mod mem32
mem32 must be a 32-bit memory location.

wgc2_OA_02.fm Page 9 Thursday, April 20, 2006 12:23 PM

10 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

Table A-24: Gas Syntax for div

Instruction Description

divb reg8 al := ax div reg8
ah := ax mod reg8

reg8 must be an 8-bit general-purpose register.

divw reg16 ax := dx:ax div reg16

dx := dx:ax mod reg16
reg16 must be a 16-bit general-purpose register.

divl reg32 eax := edx:eax div reg32
edx := edx:eax mod reg32
reg32 must be a 32-bit general-purpose register.

divb mem8 al := ax div mem8
ah := ax mod mem8
mem8 must be an 8-bit memory location.

divw mem16 ax := dx:ax div mem16
dx := dx:ax mod mem16
mem16 must be a 16-bit memory location.

divl mem32 eax := edx:eax div mem32
edx := edx:eax mod mem32
mem32 must be a 32-bit memory location.

Table A-25: MASM/TASM Syntax for div

Instruction Description

div reg8 al := ax div reg8
ah := ax mod reg8
reg8 must be an 8-bit general-purpose register.

div reg16 ax := dx:ax div reg16
dx := dx:ax mod reg16
reg16 must be a 16-bit general-purpose register.

div reg32 eax := edx:eax div reg32
edx := edx:eax mod reg32
reg32 must be a 32-bit general-purpose register.

div mem8 al := ax div mem8
ah := ax mod mem8
mem8 must be an 8-bit memory location.

div mem16 ax := dx:ax div mem16
dx := dx:ax mod mem16
mem16 must be a 16-bit memory location.

div mem32 eax := edx:eax div mem32
edx := edx:eax mod mem32
mem32 must be a 32-bit memory location.

Table A-26: EFLAGS Settings for div

Flag Setting

Carry Scrambled by the div instruction.

Overflow Scrambled by the div instruction.

Sign Scrambled by the div instruction.

Zero Scrambled by the div instruction.

wgc2_OA_02.fm Page 10 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 11

A.8 enter

The enter instruction completes construction of an activation record (see
Chapter 16 in Write Great Code, Volume 2) upon entry into a procedure. This
instruction does the following:

1. It pushes the value of EBP onto the stack (see the discussion of the push
instruction, later in this appendix).

2. It subtracts the value of its locals argument from the ESP register to allo-
cate storage for local variables.

3. If the lexlevel argument is nonzero, the enter instruction builds a display.
We will not discuss displays because you won’t encounter them very
often. For more details, see The Art of Assembly Language (No Starch Press,
2003). Most compilers, when they even use the enter instruction, specify
zero as the lexlevel operand.

Table A-27: HLA Syntax for enter

Instruction Description

enter(locals16, lexlevel8); push(ebp);
sub(locals16, ESP);
Build display if lexlevel8 is nonzero (see The Art of Assembly
Language for details).
Note: locals16 is a 16-bit constant, and lexlevel8 is an 8-bit
constant.

Table A-28: Gas Syntax for enter

Instruction Description

enter lexlevel8, locals16 push(ebp);
sub(locals16, ESP);
Build display if lexlevel8 is nonzero (see The Art of Assembly
Language for details).
Note: locals16 is a 16-bit constant; lexlevel8 is an 8-bit constant.

Table A-29: MASM/TASM Syntax for enter

Instruction Description

enter locals16, lexlevel8 push(ebp);
sub(locals16, ESP);
Build display if lexlevel8 is nonzero (see The Art of Assembly
Language for details).
Note: locals16 is a 16-bit constant, and lexlevel8 is an 8-bit
constant.

Table A-30: EFLAGS Settings for enter

Flag Setting

Carry Unaffected by the enter instruction.

Overflow Unaffected by the enter instruction.

wgc2_OA_02.fm Page 11 Thursday, April 20, 2006 12:23 PM

12 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.9 idiv

The idiv instruction takes a single operand. If that operand is an 8-bit
operand (register or memory), then the idiv instruction divides the 16-bit
value in AX by that operand, producing the signed quotient in AL and the
signed remainder in AH. If that operand is a 16-bit operand, then the idiv
instruction divides the 32-bit value in DX:AX (DX contains the HO word; AX
contains the LO word) leaving the signed quotient in AX and the signed
remainder in DX. If the operand is a 32-bit operand, then the idiv instruc-
tion divides the 64-bit quantity in EDX:EAX (EDX contains the HO double
word, and EAX contains the LO double word) by the operand leaving the
signed quotient in EAX and the signed remainder in EDX. This instruction
scrambles the flags in the EFLAGS register; you cannot rely on their values
after executing an idiv instruction. This instruction raises an integer divide
exception if you attempt a division by zero or if the quotient will not fit in AL,
AX, or EAX (as appropriate).

Sign Unaffected by the enter instruction.

Zero Unaffected by the enter instruction.

Table A-30: EFLAGS Settings for enter (continued)

Flag Setting

Table A-31: HLA Syntax for idiv

Instruction Description

idiv(reg8); al := ax div reg8
ah := ax mod reg8
reg8 must be an 8-bit general-purpose register.

idiv(reg16); ax := dx:ax div reg16
dx := dx:ax mod reg16
reg16 must be a 16-bit general-purpose register.

idiv(reg32); eax := edx:eax div reg32
edx := edx:eax mod reg32
reg32 must be a 32-bit general-purpose register.

idiv(mem8); al := ax div mem8
ah := ax mod mem8
mem8 must be an 8-bit memory location.

idiv(mem16); ax := dx:ax div mem16
dx := dx:ax mod mem16
mem16 must be a 16-bit memory location.

idiv(mem32); eax := edx:eax div mem32
edx := edx:eax mod mem32
mem32 must be a 32-bit memory location.

wgc2_OA_02.fm Page 12 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 13

Table A-32: Gas Syntax for idiv

Instruction Description

idivb reg8 al := ax div reg8
ah := ax mod reg8
reg8 must be an 8-bit general-purpose register.

idivw reg16 ax := dx:ax div reg16
dx := dx:ax mod reg16
reg16 must be a 16-bit general-purpose register.

idivl reg32 eax := edx:eax div reg32
edx := edx:eax mod reg32
reg32 must be a 32-bit general-purpose register.

idivb mem8 al := ax div mem8
ah := ax mod mem8
mem8 must be an 8-bit memory location.

idivw mem16 ax := dx:ax div mem16
dx := dx:ax mod mem16
mem16 must be a 16-bit memory location.

idivl mem32 eax := edx:eax div mem32
edx := edx:eax mod mem32
mem32 must be a 32-bit memory location.

Table A-33: MASM/TASM Syntax for idiv

Instruction Description

idiv reg8 al := ax div reg8
ah := ax mod reg8
reg8 must be an 8-bit general-purpose register.

idiv reg16 ax := dx:ax div reg16
dx := dx:ax mod reg16
reg16 must be a 16-bit general-purpose register.

idiv reg32 eax := edx:eax div reg32
edx := edx:eax mod reg32
reg32 must be a 32-bit general-purpose register.

idiv mem8 al := ax div mem8
ah := ax mod mem8
mem8 must be an 8-bit memory location.

idiv mem16 ax := dx:ax div mem16
dx := dx:ax mod mem16
mem16 must be a 16-bit memory location.

idiv mem32 eax := edx:eax div mem32
edx := edx:eax mod mem32
mem32 must be a 32-bit memory location.

Table A-34: EFLAGS Settings for idiv

Flag Setting

Carry Scrambled by the idiv instruction.

Overflow Scrambled by the idiv instruction.

Sign Scrambled by the idiv instruction.

Zero Scrambled by the idiv instruction.

wgc2_OA_02.fm Page 13 Thursday, April 20, 2006 12:23 PM

14 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.10 imul, intmul

The imul instruction takes a couple of forms. In HLA, MASM/TASM, and
Gas, one form of this instruction has a single operand. If that operand is
an 8-bit operand (register or memory), then the imul instruction multiplies
the 8-bit value in AL by that operand, producing the signed product in AX.
If that operand is a 16-bit operand, then the imul instruction multiplies the
16-bit value in AX by the operand, leaving the signed product in DX:AX (DX
contains the HO word, and AX contains the LO word). If the operand is a
32-bit operand, then the imul instruction multiples the 32-bit quantity in EAX
by the operand leaving the signed product in EDX:EAX (EDX contains the
HO double word and EAX contains the LO double word). This instruction
scrambles the zero and sign flags in the EFLAGS register. You cannot rely
on their values after executing an imul instruction. It sets the carry and
overflow flags if the result doesn’t fit into the size specified by the single
operand.

A second form of the integer multiply instruction exists that does not
produce an extended-precision result. Gas and MASM/TASM continue to
use the imul mnemonic for this instruction; HLA uses the intmul mnemonic
(because the semantics are different for this instruction, it deserves a
different mnemonic).

Table A-35: HLA Syntax for imul

Instruction Description

imul(reg8); ax := al * reg8
reg8 must be an 8-bit general-purpose register.

imul(reg16); dx:ax := ax * reg16
reg16 must be a 16-bit general-purpose register.

imul(reg32); edx:eax := eax * reg32
reg32 must be a 32-bit general-purpose register.

imul(mem8); ax := al * mem8
mem8 must be an 8-bit memory location.

imul(mem16); dx:ax := ax * mem16
mem16 must be a 16-bit memory location.

imul(mem32); edx:eax := eax * mem32
mem32 must be a 32-bit memory location.

intmul(constant, srcreg, destreg); destreg := srcreg * constant
srcreg and destreg may be 16-bit or 32-bit general-
purpose registers; they must both be the same size.

intmul(constant, destreg); destreg := destreg * constant
destreg may be a 16-bit or 32-bit general-purpose
register.

intmul(srcreg, destreg); destreg := srcreg * destreg
srcreg and destreg may be 16-bit or 32-bit general-
purpose registers; they must both be the same size.

intmul(mem, destreg); destreg := mem * destreg
destreg must be a 16-bit or 32-bit general-purpose
register. mem is a memory location that must be the
same size as the register.

wgc2_OA_02.fm Page 14 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 15

Table A-36: Gas Syntax for imul

Instruction Description

imulb reg8 ax := al * reg8
reg8 must be an 8-bit general-purpose register.

imulw reg16 dx:ax := ax * reg16
reg16 must be a 16-bit general-purpose register.

imull reg32 edx:eax := eax * reg32
reg32 must be a 32-bit general-purpose register.

imulb mem8 ax := al * mem8
mem8 must be an 8-bit memory location.

imulw mem16 dx:ax := ax * mem16
mem16 must be a 16-bit memory location.

imull mem32 edx:eax := eax * mem32
mem32 must be a 32-bit memory location.

imulw constant, srcreg,
destreg

destreg := srcreg * constant
srcreg and destreg must be 16-bit general-purpose registers.

imull constant, srcreg,
destreg

destreg := srcreg * constant
srcreg and destreg must be 32-bit general-purpose registers.

imulw constant, destreg destreg := destreg * constant
destreg must be a 16-bit general-purpose register.

imull constant, destreg destreg := destreg * constant
destreg may be a 32-bit general-purpose register.

imulw srcreg, destreg destreg := srcreg * destreg
srcreg and destreg must both be 16-bit general-purpose
registers.

imull srcreg, destreg destreg := srcreg * destreg
srcreg and destreg must both be 32-bit general-purpose
registers.

imulw mem, destreg destreg := mem * destreg
destreg must be a 16-bit general-purpose register. mem is a
memory location that must be the same size as the register.

imull mem, destreg destreg := mem * destreg
destreg must be a 32-bit general-purpose register. mem is a
memory location that must be the same size as the register.

Table A-37: MASM/TASM Syntax for imul

Instruction Description

imul reg8 ax := al * reg8
reg8 must be an 8-bit general-purpose register.

imul reg16 dx:ax := ax * reg16
reg16 must be a 16-bit general-purpose register.

imul reg32 edx:eax := eax * reg32
reg32 must be a 32-bit general-purpose register.

imul mem8 ax := al * mem8
mem8 must be an 8-bit memory location.

imul mem16 dx:ax := ax * mem16
mem16 must be a 16-bit memory location.

wgc2_OA_02.fm Page 15 Thursday, April 20, 2006 12:23 PM

16 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.11 inc

The inc (increment) instruction requires a single operand. The CPU adds
one to the value of this operand. This instruction also sets several flags in the
EFLAGS register, based on the result. You should note, however, that the
flags are not set identically to the add instruction.

imul mem32 edx:eax := eax * mem32
mem32 must be a 32-bit memory location.

imul destreg, srcreg, constant destreg := srcreg * constant
srcreg and destreg may be 16-bit or 32-bit general-purpose
registers; they must both be the same size.

imul destreg, constant destreg := destreg * constant
destreg may be a 16-bit or 32-bit general-purpose register.

imul destreg, srcreg destreg := srcreg * destreg
srcreg and destreg may be 16-bit or 32-bit general-purpose
registers; they must both be the same size.

imul destreg, mem destreg := mem * destreg
destreg must be a 16-bit or 32-bit general-purpose register.
mem is a memory location that must be the same size as the
register.

Table A-38: EFLAGS Settings for imul

Flag Setting

Carry Set if signed overflow occurs.

Overflow Set if signed overflow occurs.

Sign Scrambled by the idiv instruction.

Zero Scrambled by the idiv instruction.

Table A-37: MASM/TASM Syntax for imul (continued)

Instruction Description

Table A-39: HLA Syntax for inc

Instruction Description

inc(reg); reg := reg + 1
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

inc(mem); mem := mem + 1
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

wgc2_OA_02.fm Page 16 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 17

A.12 Conditional Jumps (Jcc)

The 80x86 supports a wide variety of conditional jumps that allow the CPU to
make decisions based on conditions computed by instructions, such as cmp,
that affect various flags in the EFLAGS register. Note that the Jcc instructions
do not affect any of the flags in the EFLAGS register. Here are the specific
instructions and the conditions they test:

Table A-40: Gas Syntax for inc

Instruction Description

incb reg8
incw reg16
incl reg32

regn := regn + 1
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register, as
appropriate for the suffix.

incb mem8
incw mem16
incl mem32

memn := memn + 1
memn must be an 8-bit, 16-bit, or 32-bit memory variable, as appropriate for
the suffix.

Table A-41: MASM/TASM Syntax for inc

Instruction Description

inc reg reg := reg + 1
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

inc mem mem := mem + 1
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-42: EFLAGS Settings for inc

Flag Setting

Carry Unaffected by the inc instruction.

Overflow Set if adding one produces a signed overflow.

Sign Set if adding one produces a one in the HO bit position.

Zero Set if adding one produces zero.

Table A-43: HLA, Gas, and MASM/TASM Conditional Jump Instructions

Instruction Description

ja label; //HLA
ja label ;Gas/MASM/TASM

Conditional jump if (unsigned) above. You would generally
use this instruction immediately after a cmp instruction to test
to see if one operand is greater than another using an
unsigned comparison. Control transfers to the specified
label if this condition is true. Control falls through to the
next instruction if the condition is false.

jae label; //HLA
jae label ;Gas/MASM/TASM

Conditional jump if (unsigned) above or equal. See ja
earlier in this table for details.

jb label; //HLA
jb label ;Gas/MASM/TASM

Conditional jump if (unsigned) below. See ja earlier in this
table for details.

jbe label; //HLA
jbe label ;Gas/MASM/TASM

Conditional jump if (unsigned) below or equal. See ja
earlier in this table for details.

wgc2_OA_02.fm Page 17 Thursday, April 20, 2006 12:23 PM

18 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

jc label; //HLA
jc label ;Gas/MASM/TASM

Conditional jump if carry is one. See ja earlier in this table
for details.

je label; //HLA
je label ;Gas/MASM/TASM

Conditional jump if equal. See ja earlier in this table for
details.

jg label; //HLA
jg label ;Gas/MASM/TASM

Conditional jump if (signed) greater. See ja earlier in this
table for details.

jge label; //HLA
jge label ;Gas/MASM/TASM

Conditional jump if (signed) greater or equal. See ja
earlier in this table for details.

jl label; //HLA
jl label ;Gas/MASM/TASM

Conditional jump if (signed) less than. See ja earlier in this
table for details.

jle label; //HLA
jle label ;Gas/MASM/TASM

Conditional jump if (signed) less than or equal. See ja
earlier in this table for details.

jna label; //HLA
jna label ;Gas/MASM/TASM

Conditional jump if (unsigned) not above. See ja earlier in
this table for details.

jnae label; //HLA
jnae label ;Gas/MASM/TASM

Conditional jump if (unsigned) not above or equal. See ja
earlier in this table for details.

jnb label; //HLA
jnb label ;Gas/MASM/TASM

Conditional jump if (unsigned) below. See ja earlier in this
table for details.

jnbe label; //HLA
jnbe label ;Gas/MASM/TASM

Conditional jump if (unsigned) below or equal. See ja
earlier in this table for details.

jnc label; //HLA
jnc label ;Gas/MASM/TASM

Conditional jump if carry flag is clear (no carry). See ja
earlier in this table for details.

jne label; //HLA
jne label ;Gas/MASM/TASM

Conditional jump if not equal. See ja earlier in this table
for details.

jng label; //HLA
jng label ;Gas/MASM/TASM

Conditional jump if (signed) not greater. See ja earlier in
this table for details.

jnge label; //HLA
jnge label ;Gas/MASM/TASM

Conditional jump if (signed) not greater or equal. See ja
earlier in this table for details.

jnl label; //HLA
jnl label ;Gas/MASM/TASM

Conditional jump if (signed) not less than. See ja earlier in
this table for details.

jnle label; //HLA
jnle label ;Gas/MASM/TASM

Conditional jump if (signed) not less than or equal. See ja
earlier in this table for details.

jno label; //HLA
jno label ;Gas/MASM/TASM

Conditional jump if no overflow (overflow flag = 0). See ja
earlier in this table for details.

jns label; //HLA
jns label ;Gas/MASM/TASM

Conditional jump if no sign (sign flag = 0). See ja earlier
in this table for details.

jnz label; //HLA
jnz label ;Gas/MASM/TASM

Conditional jump if not zero (zero flag = 0). See ja earlier
in this table for details.

jo label; //HLA
jo label ;Gas/MASM/TASM

Conditional jump if overflow (overflow flag = 1). See ja
earlier in this table for details.

js label; //HLA
js label ;Gas/MASM/TASM

Conditional jump if sign (sign flag = 1). See ja earlier in
this table for details.

jz label; //HLA
jz label ;Gas/MASM/TASM

Conditional jump if zero (zero flag = 1). See ja earlier in
this table for details.

Table A-43: HLA, Gas, and MASM/TASM Conditional Jump Instructions (continued)

Instruction Description

wgc2_OA_02.fm Page 18 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 19

A.13 jmp

The jmp instruction unconditionally transfers control (“jumps”) to the
memory location specified by its operand. This instruction does not affect
any flags.

jcxz label; // HLA syntax
jcxz label ;Gas/MASM/TASM

Conditional jump if CX is zero. See ja earlier in this table
for details. Note: The range of this branch is limited to
±128 bytes around the instruction.

jecxz label; // HLA syntax
jecxz label ; MASM/TASM/Gas

Conditional jump if ECX is zero. See ja earlier in this table
for details. Note: The range of this branch is limited to
±128 bytes around the instruction.

Table A-43: HLA, Gas, and MASM/TASM Conditional Jump Instructions (continued)

Instruction Description

Table A-44: HLA Syntax for jmp

Instruction Description

jmp label;
jmp(label);

Transfers control to the machine instruction following the label in the
source file.

jmp(reg32); Transfers control to the memory location whose address is held in the 32-bit
general-purpose register reg32.

jmp(mem32); Transfers control to the memory location whose 32-bit address is held in the
memory location specified by mem32.

Table A-45: Gas Syntax for jmp

Instruction Description

jmp label Transfers control to the machine instruction following the label in the
source file.

jmp *reg32 Transfers control to the memory location whose address is held in the 32-bit
general-purpose register reg32.

jmp mem32 Transfers control to the memory location whose 32-bit address is held in the
memory location specified by mem32.

Table A-46: MASM/TASM Syntax for jmp

Instruction Description

jmp label Transfers control to the machine instruction following the label in the
source file.

jmp reg32 Transfers control to the memory location whose address is held in the 32-bit
general-purpose register reg32.

jmp mem32 Transfers control to the memory location whose 32-bit address is held in the
memory location specified by mem32.

wgc2_OA_02.fm Page 19 Thursday, April 20, 2006 12:23 PM

20 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.14 lea

The lea instruction loads a register with the effective address of a memory
operand. This is in direct contrast to the mov instruction that loads a register
with the contents of a memory location. Like mov, the lea instruction does not
affect any bits in the EFLAGS register. Many compilers actually use this
instruction to add a constant to a register, or multiply a register’s value by 2,
4, or 8, and then copy the result into a different register.

A.15 leave

The leave instruction cleans up after a procedure, removing local variable
storage and restoring the EBP register to its original value.

1. It copies the value of EBP into ESP.

2. It pops EBP’s value from the stack.

Table A-47: HLA Syntax for lea

Instruction Description

lea(reg32, mem);
lea(mem, reg32);

reg32 := address of mem
reg32 must be a 32-bit general-purpose register. mem can be any sized
memory location. Note that both syntaxes are identical in HLA.

Table A-48: Gas Syntax for lea

Instruction Description

leal mem, reg32 reg32 := address of mem
reg32 must be a 32-bit general-purpose register. mem can be any sized
memory location.

Table A-49: MASM/TASM Syntax for lea

Instruction Description

lea reg32, mem reg32 := address of mem
reg32 must be a 32-bit general-purpose register. mem can be any sized
memory location.

Table A-50: Gas/MASM/TASM Syntax for leave

Instruction Description

leave; // HLA syntax
leave ;MASM/TASM/Gas

mov(ebp, esp);
pop(ebp);

wgc2_OA_02.fm Page 20 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 21

A.16 mov

The mov instruction requires two operands: a source operand and a destina-
tion operand. It copies the value from the source operand to the destination
operand. It does not affect any bits in the EFLAGS register.

Table A-51: EFLAGS Settings for leave

Flag Setting

Carry Unaffected by the leave instruction.

Overflow Unaffected by the leave instruction.

Sign Unaffected by the leave instruction.

Zero Unaffected by the leave instruction.

Table A-52: HLA Syntax for mov

Instruction Description

mov(constant, destreg); destreg := constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

mov(constant, destmem); destmem := constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

mov(srcreg, destreg); destreg := srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

mov(srcmem, destreg); destreg := srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. srcmem can be any like-sized memory location.

mov(srcreg, destmem); destmem := srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-53: Gas Syntax for mov

Instruction Description

movb constant, destreg8
movw constant, destreg16
movl constant, destreg32

destregn := constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

movb constant, destmem8
movw constant, destmem16
movl constant, destmem32

destmemn := constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

movb srcreg8, destreg8
movw srcreg16, destreg16
movl srcreg32, destreg32

destregn := srcregn
destregn and srcregn must be 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

wgc2_OA_02.fm Page 21 Thursday, April 20, 2006 12:23 PM

22 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.17 movs, movsb, movsd, movsw

The movs instructions do not require any explicit operands. These are the
move string instructions that copy blocks of data from one range of memory
locations to another. These instructions take two forms: the move string
instruction by itself or a move string instruction with a “repeat” prefix.

Without a repeat prefix, these instructions copy a byte (movsb), word
(movsw), or double word (movsd) from the memory location pointed at by ESI
(the source index register) to the memory location pointed at by EDI (the
destination index register). After copying the data, the CPU either incre-
ments or decrements these two registers by the size, in bytes, of the transfer.
That is, movsb increments or decrements ESI and EDI by one, movsw incre-
ments or decrements them by two, and movsd increments or decrements them
by four. These instructions determine whether to increment or decrement
ESI and EDI based on the value of the direction flag in the EFLAGs register.
If the direction flag is clear, the move string instructions increment ESI and
EDI; if the direction flag is clear, the move string instructions decrement ESI
and EDI.

movb srcmem8, destreg8
movw srcmem16, destreg16
movl srcmem32, destreg32

destregn :=srcmemn
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register; according to the suffix, srcmemn can be any like-sized
memory location.

movb srcreg8, destmem8
movw srcreg16, destmem16
movl srcreg32, destmem32

destmemn := srcregn
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register; as specified by the suffix, destmemn can be any like-sized
memory location.

Table A-54: MASM/TASM Syntax for mov

Instruction Description

mov destreg, constant destreg := constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

mov destmem, constant destmem := constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

mov destreg, srcreg destreg := srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-purpose
registers. They must both be the same size.

mov destreg, srcmem destreg := srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

mov destmem, srcreg destmem := srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-53: Gas Syntax for mov (continued)

Instruction Description

wgc2_OA_02.fm Page 22 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 23

If the repeat prefix is attached to one of these move string instructions,
then the CPU repeats the move operation the number of times specified by
the ECX register.

These instructions do not affect any flags.

A.18 movsx, movzx

The movsx and movzx instructions require two operands: a source operand and
a destination operand. The destination operand must be larger than the
source operand. These instructions copy the smaller data to the larger object
using sign extension (movsx) or zero extension (movzx). See Write Great Code,

Table A-55: HLA Syntax for movsb, movsd, and movsw

Instruction Description

movsb();
movsw();
movsd();

[edi] := [esi]
Copies the byte, word, or double word pointed at by ESI to the memory
location pointed at by EDI. After moving the data, these instructions increment
ESI and EDI by 1, 2, or 4 if the direction flag is clear, they decrement ESI and
EDI by 1, 2, or 4 if the direction flag is set.

rep.movsb();.
rep.movsw();
rep.movsd();

[edi] := [esi]
Copies a block of ECX bytes, words, or double words from where ESI points
to where EDI points. Increments or decrements ESI and EDI after each move-
ment by the size of the data moved, based on the value of the direction flag.

Table A-56: Gas Syntax for movsb, movsd, movsw

Instruction Description

movsb
movsw
movsl

[edi] := [esi]
Copies the byte, word, or double word pointed at by ESI to the memory location
pointed at by EDI. After moving the data, these instructions increment ESI and
EDI by 1, 2, or 4 if the direction flag is clear; they decrement ESI and EDI by 1,
2, or 4 if the direction flag is set.

rep movsb
rep movsw
rep movsl

destreg := srcmem
Zero extends the value of srcmem to the size of destreg.
destreg must be a 16-bit or 32-bit general-purpose register. srcmem is an 8-bit or
16-bit memory location that is smaller than destreg.

Table A-57: MASM/TASM Syntax for movsb, movsd, movsw

Instruction Description

movsb
movsw
movsd

[edi] := [esi]
Copies the byte, word, or double word pointed at by ESI to the memory location
pointed at by EDI. After moving the data, these instructions increment ESI and
EDI by 1, 2, or 4 if the direction flag is clear; they decrement ESI and EDI by 1,
2, or 4 if the direction flag is set.

rep movsb
rep movsw
rep movsd

destreg := srcmem
Zero extends the value of srcmem to the size of destreg.
destreg must be a 16-bit or 32-bit general-purpose register. srcmem is an 8-bit or
16-bit memory location that is smaller than destreg.

wgc2_OA_02.fm Page 23 Thursday, April 20, 2006 12:23 PM

24 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

Volume 1 for details on these operations. Compilers use these instructions to
translate smaller values to larger objects. These instructions do not affect
any flags.

Table A-58: HLA Syntax for movsx, movzx

Instruction Description

movsx(srcreg, destreg); destreg := srcreg.
Sign extends srcreg to the size of destreg.
destreg can be a 16-bit or 32-bit register. srcreg must be an 8-bit
or 16-bit register that is smaller than destreg.

movzx(srcreg, destreg); destreg := srcreg
Zero extends srcreg to the size of destreg.
destreg can be a 16-bit or 32-bit register, srcreg must be an 8-bit
or 16-bit register that is smaller than destreg.

movsx(srcmem, destreg); destreg := srcmem
Sign extends the value of srcmem to the size of destreg.
destreg must be a 16-bit or 32-bit general-purpose register.
srcmem is an 8-bit or 16-bit memory location that is smaller than
destreg.

movzx(srcmem, destreg); destreg := srcmem
Zero extends the value of srcmem to the size of destreg.
destreg must be a 16-bit or 32-bit general-purpose register.
srcmem is an 8-bit or 16-bit memory location that is smaller than
destreg.

Table A-59: Gas Syntax for movsx, movzx (movsbw, movsbl, movswl, movzbw, movzbl, and movzwl)

Instruction Description

movsbw srcreg8, destreg16
movsbl srcreg8, destreg32
movswl srcreg16, destreg32

destregn := srcregm
Sign extends srcregm to the size of destregn.
destregn must be a 16-bit or 32-bit register, as appropriate for
the instruction. srcregm must be an 8-bit or 16-bit register, as
appropriate for the instruction.

movzbw srcreg8, destreg16
movzbl srcreg8, destreg32
movzwl srcreg16, destreg32

destregn := srcregm
Zero extends srcregm to the size of destregn.
destregn must be a 16-bit or 32-bit register, as appropriate for
the instruction. srcregm must be an 8-bit or 16-bit register, as
appropriate for the instruction.

movsbw srcmem8, destreg16
movsbl srcmem8, destreg32
movswl srcmem16, destreg32

destregn := srcmemm
Sign extends the value of srcmemn to the size of destregn.
destregn must be a 16-bit or 32-bit register, as appropriate for
the instruction. srcmemm must be an 8-bit or 16-bit memory
location, as appropriate for the instruction.

movzbw srcmem8, destreg16
movzbl srcmem8, destreg32
movzwl srcmem16, destreg32

destregn := srcmemm
Zero extends the value of srcmemm to the size of destregn.
destregn must be a 16-bit or 32-bit register, as appropriate for
the instruction. srcmemm must be an 8-bit or 16-bit memory
location, as appropriate for the instruction.

wgc2_OA_02.fm Page 24 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 25

A.19 mul

The mul instruction allows a single operand. If that operand is an 8-bit
operand (register or memory), then the mul instruction multiplies the 8-bit
value in AL by that operand, producing an unsigned product in AX. If that
operand is a 16-bit operand, then the mul instruction multiplies the 16-bit
value in AX by the operand, leaving the unsigned product in DX:AX (DX
contains the HO word; AX contains the LO word). If the operand is a 32-bit
operand, then the mul instruction multiples the 32-bit quantity in EAX by the
operand leaving the unsigned product in EDX:EAX. (EDX contains the HO
double word and EAX contains the LO double word.) This instruction
scrambles the zero and sign bits in the EFLAGS register; you cannot rely on
their values after executing an mul instruction. It sets the carry and overflow
flags if the result doesn’t fit into the size specified by the single operand.

Table A-60: MASM/TASM Syntax for movsx, movzx

Instruction Description

movsx destreg, srcreg destreg := srcreg.
Sign extends srcreg to the size of destreg.
destreg can be a 16-bit or 32-bit register. srcreg must be an 8-bit or
16-bit register that is smaller than destreg.

movzx destreg, srcreg destreg := srcreg
Zero extends srcreg to the size of destreg.
destreg can be a 16-bit or 32-bit register. srcreg must be an 8-bit or
16-bit register that is smaller than destreg.

movsx destreg, srcmem destreg := srcmem
Sign extends the value of srcmem to the size of destreg.
destreg must be a 16-bit or 32-bit general-purpose register. srcmem is
an 8-bit or 16-bit memory location that is smaller than destreg.

movzx destreg, srcmem destreg := srcmem
Zero extends the value of srcmem to the size of destreg.
destreg must be a 16-bit or 32-bit general-purpose register. srcmem is
an 8-bit or 16-bit memory location that is smaller than destreg.

Table A-61: HLA Syntax for mul

Instruction Description

mul(reg8); ax := al * reg8
reg8 must be an 8-bit general-purpose register.

mul(reg16); dx:ax := ax * reg16
reg16 must be a 16-bit general-purpose register.

mul(reg32); edx:eax := eax * reg32
reg32 must be a 32-bit general-purpose register.

mul(mem8); ax := al * mem8
mem8 must be an 8-bit memory location.

mul(mem16); dx:ax := ax * mem16
mem16 must be a 16-bit memory location.

mul(mem32); edx:eax := eax * mem32
mem32 must be a 32-bit memory location.

wgc2_OA_02.fm Page 25 Thursday, April 20, 2006 12:23 PM

26 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.20 neg

The neg (negate) instruction requires a single operand. The CPU takes the
two’s complement of this operand (that is, it negates the value). This instruc-
tion also sets several flags in the EFLAGS register, based on the result.

Table A-62: Gas Syntax for mul

Instruction Description

mulb reg8 ax := al * reg8
reg8 must be an 8-bit general-purpose register.

mulw reg16 dx:ax := ax * reg16
reg16 must be a 16-bit general-purpose register.

mull reg32 edx:eax := eax * reg32
reg32 must be a 32-bit general-purpose register.

mulb mem8 ax := al * mem8
mem8 must be an 8-bit memory location.

mulw mem16 dx:ax := ax * mem16
mem16 must be a 16-bit memory location.

mull mem32 edx:eax := eax * mem32
mem32 must be a 32-bit memory location.

Table A-63: MASM/TASM Syntax for mul

Instruction Description

mul reg8 ax := al * reg8
reg8 must be an 8-bit general-purpose register.

mul reg16 dx:ax := ax * reg16
reg16 must be a 16-bit general-purpose register.

mul reg32 edx:eax := eax * reg32
reg32 must be a 32-bit general-purpose register.

mul mem8 ax := al * mem8
mem8 must be an 8-bit memory location.

mul mem16 dx:ax := ax * mem16
mem16 must be a 16-bit memory location.

mul mem32 edx:eax := eax * mem32
mem32 must be a 32-bit memory location.

Table A-64: EFLAGS Settings for mul

Flag Setting

Carry Set if unsigned overflow occurs.

Overflow Set if unsigned overflow occurs.

Sign Scrambled by the mul instruction.

Zero Scrambled by the mul instruction.

wgc2_OA_02.fm Page 26 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 27

A.21 not

The not instruction requires a single operand. The CPU inverts all the bits in
this operand. This instruction also sets several flags in the EFLAGS register,
based on the result.

Table A-65: HLA Syntax for neg

Instruction Description

neg(reg); reg := - reg
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

neg(mem); mem := - mem
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-66: Gas Syntax for neg

Instruction Description

negb reg8
negw reg16
negl reg32

regn := -regn
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register, as appropriate
for the suffix.

negb mem8
negw mem16
negl mem32

memn := -memn
memn must be an 8-bit, 16-bit, or 32-bit memory variable, as appropriate for the
suffix.

Table A-67: MASM/TASM Syntax for neg

Instruction Description

neg reg reg := -reg
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

neg mem mem := -mem
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-68: EFLAGS Settings for neg

Flag Setting

Carry Set if there is an unsigned overflow.

Overflow Set if the original value was the smallest negative value that can fit in the size
specified (which cannot be negated in the two’s complement system).
Example: With a byte operand, if you negate −128, the result (+128) no
longer fits in a byte. The largest number that fits in a byte is +127.

Sign Set if negation produces a one in the HO bit position.

Zero Set if negation produces zero (i.e., the value was originally zero).

wgc2_OA_02.fm Page 27 Thursday, April 20, 2006 12:23 PM

28 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.22 or

The or instruction requires two operands: a source operand and a destina-
tion operand. It computes the bitwise logical OR of these two operands’
values and stores the result into the destination operand. It also sets several
flags in the EFLAGS register, based on the result of the bitwise result.

Table A-69: HLA Syntax for not

Instruction Description

not(reg); reg := not reg
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

not(mem); mem := not mem
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-70: Gas Syntax for not

Instruction Description

notb reg8
notw reg16
notl reg32

regn := not regn
regn must be an 8-bit, 16-bit, or 32-bit general-purpose register, as appropriate
for the suffix.

notb mem8
notw mem16
notl mem32

memn := not memn
memn must be an 8-bit, 16-bit, or 32-bit memory variable, as appropriate for the
suffix.

Table A-71: MASM/TASM Syntax for not

Instruction Description

not reg reg := not reg
reg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

not mem mem := not mem
mem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-72: EFLAGS Settings for not

Flag Setting

Carry Always cleared.

Overflow Always cleared.

Sign Set if logical NOT produces a one in the HO bit position.

Zero Set if logical NOT produces zero (i.e., the value was originally all one bits).

Table A-73: HLA Syntax for or

Instruction Description

or(constant, destreg); destreg := destreg OR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

or(constant, destmem); destmem := destmem OR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

wgc2_OA_02.fm Page 28 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 29

or(srcreg, destreg); destreg := destreg OR srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-purpose
registers. They must both be the same size.

or(srcmem, destreg); destreg := destreg OR srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

or(srcreg, destmem); destmem := destmem OR srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-74: Gas Syntax for or

Instruction Description

orb constant, destreg8
orw constant, destreg16
orl constant, destreg32

destregn := destregn OR constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

orb constant, destmem8
orw constant, destmem16
orl constant, destmem32

destmemn := destmemn OR constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

orb srcreg8, destreg8
orw srcreg16, destreg16
orl srcreg32, destreg32

destregn := destregn OR srcregn
destregn and srcregn must be 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

orb srcmem8, destreg8
orw srcmem16, destreg16
orl srcmem32, destreg32

destregn := destregn OR srcmemn
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, according to the suffix; srcmemn can be any like-sized
memory location.

orb srcreg8, destmem8
orw srcreg16, destmem16
orl srcreg32, destmem32

destmemn := destmemn OR srcregn
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose register,
as specified by the suffix; destmemn can be any like-sized memory
location.

Table A-75: MASM/TASM Syntax for or

Instruction Description

or destreg, constant destreg := destreg OR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

or destmem, constant destmem := destmem OR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

or destreg, srcreg destreg := destreg OR srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-purpose
registers. They must both be the same size.

or destreg, srcmem destreg := destreg OR srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

or destmem, srcreg destmem := destmem OR srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-73: HLA Syntax for or (continued)

Instruction Description

wgc2_OA_02.fm Page 29 Thursday, April 20, 2006 12:23 PM

30 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.23 push, pushfd, pushd, and pushw

The push instruction pushes data onto the 80x86 hardware stack. The hard-
ware stack is a region in memory that is addressed by the 80x86 ESP (extended
stack pointer) register. The push instruction requires a single 16-bit or 32-bit
register, memory, or constant operand, and it does the following:

1. Subtract the size of the operand in bytes (2 or 4) from the ESP.

2. Store a copy of the operand’s value at the memory location now
referenced by ESP.

The pushfd instruction pushes a copy of the 80x86 EFLAGS register onto
the stack (four bytes). Often, you will see the instructions pushd and pushw in
some assembly code. They are used to push double-word or word constants
(respectively) onto the stack.

None of these instructions affects any flags in the EFLAGS register.

Table A-76: EFLAGS Settings for or

Flag Setting

Carry Always clear.

Overflow Always clear.

Sign Set if the result has a one in its HO bit position.

Zero Set if the result is zero.

Table A-77: HLA Syntax for push, pushfd, pushw, and pushd

Instruction Description

push(constant);
pushd(constant);

Pushes a 32-bit constant onto the stack.

pushw(constant); Pushes a 16-bit constant onto the stack.

push(srcreg); Pushes a register onto the stack.
srcreg must be a 16-bit or 32-bit general-purpose register.

push(srcmem); Pushes the contents of a memory location onto the stack.
srcmem must be a 16-bit or 32-bit memory variable.

pushfd(); Pushes a copy of the EFLAGS register onto the stack.

Table A-78: Gas Syntax for push, pushfd, pushw, and pushd

Instruction Description

pushw constant Pushes a 16-bit constant onto the stack.

pushl constant Pushes a 32-bit constant onto the stack.

pushw srcreg16
pushl srcreg32

Pushes a register onto the stack.
srcregn must be a 16-bit or 32-bit general-purpose register, as
appropriate for the instruction.

wgc2_OA_02.fm Page 30 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 31

A.24 pop and popfd

The pop instruction removes data pushed onto the 80x86 hardware stack (see
the previous section for details on the stack). The pop instruction requires a
single 16-bit or 32-bit register or memory operand, and it does the following:

1. Fetch a copy of the word or double word (depending on pop’s operand
size) from the memory location pointed at by ESP and move this data to
the location specified by the operand.

2. Add the size of the operand in bytes (2 or 4) to the ESP register.

The popfd instruction pops the double word on the stack into the 80x86
EFLAGS register.

The pop instruction does not affect any flags in the EFLAGS register;
however, the popfd instruction replaces all the allowed flags with the value
read from the stack. Please note that depending on the privilege level of the
current task, the CPU will only allow some of the flags to be modified on the
copy of the EFLAGS register.

pushw srcmem16
pushl srcmem32

Pushes the contents of a memory location onto the stack.
srcmemn must be a 16-bit or 32-bit memory variable, as appropriate
for the instruction.

pushfd Pushes a copy of the EFLAGS register onto the stack.

Table A-79: MASM/TASM Syntax for push, pushfd, pushw, and pushd

Instruction Description

pushd constant Pushes a 32-bit value onto the stack.

pushw constant Pushes a 16-bit constant onto the stack.

push srcreg Pushes a register onto the stack.
srcreg must be a 16-bit or 32-bit general-purpose register.

push srcmem Pushes the contents of a memory location onto the stack.
srcmem must be a 16-bit or 32-bit memory variable.

pushfd Pushes a copy of the EFLAGS register onto the stack.

Table A-78: Gas Syntax for push, pushfd, pushw, and pushd (continued)

Instruction Description

Table A-80: HLA Syntax for pop and popfd

Instruction Description

pop(destreg); Pops a value from the stack into a register.
destreg must be a 16-bit or 32-bit general-purpose register.

pop(destmem); Pops a value from the stack into a memory variable.
destmem must be a 16-bit or 32-bit memory variable.

popfd(); Pops the double word on the stack into the EFLAGS register .

wgc2_OA_02.fm Page 31 Thursday, April 20, 2006 12:23 PM

32 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.25 ret

The ret instruction returns control from a subroutine. There are two forms
of this instruction: one with no operand and one with a single constant
operand. Both forms pop a return address from the stack and transfer
control to the location specified by this return address. This is generally an
address pushed onto the stack by a call instruction. The ret instruction with
a 16-bit constant operand also zero extends the value to 32 bits and adds it to
the ESP register (after popping the return address from the stack). This form
automatically removes parameters passed on the stack by the calling code.
These two instructions do not affect any flags in the EFLAGS register.

Table A-81: Gas Syntax for pop and popfd

Instruction Description

popw destreg16
popl destreg32

Pops a value from the stack into a register.
destregn must be a 16-bit or 32-bit general-purpose register, as
appropriate for the instruction suffix.

popw destmem16
popl destmem32

Pops a value from the stack into a memory variable.
destmemn must be a 16-bit or 32-bit memory variable, as appropriate for
the instruction.

popfd Pushes a copy of the EFLAGS register onto the stack.

Table A-82: MASM/TASM Syntax for pop and popfd

Instruction Description

pop destreg Pops a value from the stack into a register.
destreg must be a 16-bit or 32-bit general-purpose register.

pop destmem Pops a value from the stack into a memory variable.
destmem must be a 16-bit or 32-bit memory variable.

popfd Pops the double word on the stack into the EFLAGS register .

Table A-83: EFLAGS Settings for popfd

Flag Setting

Carry Set or cleared according to the value found on the stack.

Overflow Set or cleared according to the value found on the stack.

Sign Set or cleared according to the value found on the stack.

Zero Set or cleared according to the value found on the stack.

Table A-84: HLA Syntax for ret

Instruction Description

ret(); Pops a return address from the stack and transfers control to that return
address.

ret(constant16); Pops a return address from the stack, adds the constant operand’s value
to the ESP register, and then transfers control to the return address.

wgc2_OA_02.fm Page 32 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 33

A.26 sar, shr, shl

The sar, shr, and shl instructions require two operands: a count and a desti-
nation. These instructions shift the destination operand count bits to the left
or right (depending on the instruction).

The sar (shift arithmetic right) instruction copies all the bits in the
destination operand from HO bit positions to LO bit positions, shifting them
the number of positions specified by the count operand. The last bit shifted
out of the LO bit position is shifted into the carry flag in the EFLAGS
register. The HO bit is unaffected by the sar instruction.

The shr (shift right, or shift logical right) instruction shifts all the bits in
the destination operand from HO bit positions to LO bit positions, shifting
them by the number of positions specified by the count operand. The last
bit shifted out of the LO bit position is shifted into the carry flag in the
EFLAGS register. This instruction shifts a zero into the HO bit position
after each bit shift occurs.

The shl (shift left, or shift logical left) instruction shifts all the bits in
the destination operand from LO bit positions to HO bit positions shifting
them by the number of positions specified by the count operand. The last
bit shifted out of the HO bit position is shifted into the carry flag in the
EFLAGS register. This instruction shifts a zero into the LO bit position
after each shift operation.

The count operand can either be an immediate constant or the CL
register.

Table A-85: Gas Syntax for ret

Instruction Description

ret Pops a return address from the stack and transfers control to that return
address.

ret constant16 Pops a return address from the stack, adds the constant operand’s value
to the ESP register, and then transfers control to the return address.

Table A-86: MASM/TASM Syntax for ret

Instruction Description

ret Pops a return address from the stack and transfers control to that return
address.

ret constant16 Pops a return address from the stack, adds the constant operand’s value
to the ESP register, and then transfers control to the return address.

wgc2_OA_02.fm Page 33 Thursday, April 20, 2006 12:23 PM

34 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

Table A-87: HLA Syntax for shl, shr, and sar

Instruction Description

shl(constant, destreg); destreg := destreg SHL constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

shl(constant, destmem); destmem := destmem SHL constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

shl(cl, destreg); destreg := destreg SHL CL
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

shl(cl, destmem); destmem := destmem SHL CL
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

shr(constant, destreg); destreg := destreg SHR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

shr(constant, destmem); destmem := destmem SHR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

shr(cl, destreg); destreg := destreg SHR CL
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

shr(cl, destmem); destmem := destmem SHR CL
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

sar(constant, destreg); destreg := destreg SAR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

sar(constant, destmem); destmem := destmem SAR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

sar(cl, destreg); destreg := destreg SAR CL
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

sar(cl, destmem); destmem := destmem SAR CL
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-88: Gas Syntax for shl, sar, and shr

Instruction Description

shlb constant, destreg8
shlw constant, destreg16
shll constant, destreg32

destregn := destregn SHL constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the instruction.

shlb constant, destmem8
shlw constant, destmem16
shll constant, destmem32

destmemn := destmemn SHL constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the instruction.

shlb cl, destreg8
shlw cl, destreg16
shll cl, destreg32

destregn := destregn SHL CL
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the instruction.

shlb cl, destmem8
shlw cl, destmem16
shll cl, destmem32

destmemn := destmemn SHL CL
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the instruction.

wgc2_OA_02.fm Page 34 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 35

shrb constant, destreg8
shrw constant, destreg16
shrl constant, destreg32

destregn := destregn SHR constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the instruction.

shrb constant, destmem8
shrw constant, destmem16
shrl constant, destmem32

destmemn := destmemn SHR constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the instruction.

shrb cl, destreg8
shrw cl, destreg16
shrl cl, destreg32

destregn := destregn SHR CL
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the instruction.

shrb cl, destmem8
shrw cl, destmem16
shrl cl, destmem32

destmemn := destmemn SHR CL
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the instruction.

sarb constant, destreg8
sarw constant, destreg16
sarl constant, destreg32

destregn := destregn SAR constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the instruction.

sarb constant, destmem8
sarw constant, destmem16
sarl constant, destmem32

destmemn := destmemn SAR constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the instruction.

sarb cl, destreg8
sarw cl, destreg16
sarl cl, destreg32

destregn := destregn SAR CL
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the instruction.

sarb cl, destmem8
sarlw cl, destmem16
sarl cl, destmem32

destmemn := destmemn SAR CL
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the instruction.

Table A-89: MASM/TASM Syntax for shl, sar, and shr

Instruction Description

shl destreg, constant destreg := destreg SHL constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

shl destmem, constant destmem := destmem SHL constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

shl destreg, cl destreg := destreg SHL CL
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

shl destmem, cl destmem := destmem SHL CL
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

shr destreg, constant destreg := destreg SHR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

shr destmem, constant destmem := destmem SHR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

shr destreg, cl destreg := destreg SHR CL
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

shr destmem, cl destmem := destmem SHR CL
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

sar destreg, constant destreg := destreg SAR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

sar destmem, constant destmem := destmem SAR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-88: Gas Syntax for shl, sar, and shr (continued)

Instruction Description

wgc2_OA_02.fm Page 35 Thursday, April 20, 2006 12:23 PM

36 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.27 Conditional Set (Scc) Instructions

The 80x86 supports a wide variety of conditional set instructions that set an
8-bit register or memory location to zero or one based upon tests on the
EFLAGS register. These instructions allow the CPU to set Boolean variables
to true or false based on conditions computed by instructions such as cmp that
affect the EFLAGS register. Note that these instructions do not modify the
EFLAGS register. Here are the specific instructions and the conditions they
test:

sar destreg, cl destreg := destreg SAR CL
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

sar destmem, cl destmem := destmem SAR CL
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

Table A-90: EFLAGS Settings for shl, sar, shr*

* Actually, the flags are only defined if the shift count is one.

Flag Setting

Carry Contains the last bit shifted out of the LO bit position (shr, sar) or the HO bit
position (shl).

Overflow Set if the HO two bits change their values during the shift.

Sign Set if the result has a one in its HO bit position.

Zero Set if the result is zero.

Table A-89: MASM/TASM Syntax for shl, sar, and shr (continued)

Instruction Description

Table A-91: Conditional Set Instructions

Instruction Description

HLA:
seta(reg8);
seta(mem8);
MASM/TASM/Gas:
seta reg8
seta mem8

Conditional set if (unsigned) above (carry = 0 and zero = 0). Stores a
one in the destination operand if the result of the previous comparison
found the first operand to be greater than the second using an
unsigned comparison. Stores a zero into the destination operand
otherwise.

HLA:
setae(reg8);

setae(mem8);
MASM/TASM/Gas:
setae reg8
setae mem8

Conditional set if (unsigned) above or equal (carry = 0). See the
description for seta for details.

HLA:
setb(reg8);

setb(mem8);
MASM/TASM/Gas:
setb reg8
setb mem8

Conditional set if (unsigned) below (carry = 1). See the description for
seta for details.

wgc2_OA_02.fm Page 36 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 37

HLA:
setbe(reg8);

setbe(mem8);
MASM/TASM/Gas:
setbe reg8
setbe mem8

Conditional set if (unsigned) below or equal (carry = 1 or zero = 1).
See the description for seta for details.

HLA:
setc(reg8);
setc(mem8);
MASM/TASM/Gas:
setc reg8
setc mem8

Conditional set if carry set (carry = 1). See the description for seta for
details.

HLA:
sete(reg8);

sete(mem8);
MASM/TASM/Gas:
sete reg8
sete mem8

Conditional set if equal (zero = 1). See the description for seta for
details.

HLA:
setg(reg8);

setg(mem8);
MASM/TASM/Gas:
setg reg8
setg mem8

Conditional set if (signed) greater (sign = overflow and zero = 0). See
the description for seta for details.

HLA:
setge(reg8);

setge(mem8);
MASM/TASM/Gas:
setge reg8
setge mem8

Conditional set if (signed) greater or equal (sign = overflow or zero =
1). See the description for seta for details.

HLA:
setl(reg8);

setl(mem8);
MASM/TASM/Gas:
setl reg8
setl mem8

Conditional set if (signed) less than (sign <> overflow). See the
description for seta for details.

HLA:
setle(reg8);

setle(mem8);
MASM/TASM/Gas:
setle reg8
setle mem8

Conditional set if (signed) less than or equal (sign <> overflow or
zero = 1). See the description for seta for details.

HLA:
setna(reg8);
setna(mem8);
MASM/TASM/Gas:
setna reg8
setna mem8

Conditional set if (unsigned) not above (carry = 1 or zero = 1). See the
description for seta for details.

Table A-91: Conditional Set Instructions (continued)

Instruction Description

wgc2_OA_02.fm Page 37 Thursday, April 20, 2006 12:23 PM

38 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

HLA:
setnae(reg8);
setnae(mem8);
MASM/TASM/Gas:
setnae reg8
setnae mem8

Conditional set if (unsigned) not above or equal (carry = 1). See the
description for seta for details.

HLA:
setnb(reg8);
setnb(mem8);
MASM/TASM/Gas:
setnb reg8
setnb mem8

Conditional set if (unsigned) not below (carry = 0). See the description
for seta for details.

HLA:
setnbe(reg8);

setnbe(mem8);
MASM/TASM/Gas:
setnbe reg8
setnbe mem8

Conditional set if (unsigned) not below or equal (carry = 0 and
zero = 0). See the description for seta for details.

HLA:
setnc(reg8);

setnc(mem8);
MASM/TASM/Gas:
setnc reg8
setnc mem8

Conditional set if carry clear (carry = 0). See the description for seta
for details.

HLA:
setne(reg8);
setne(mem8);
MASM/TASM/Gas:
setne reg8
setne mem8

Conditional set if not equal (zero = 0). See the description for seta for
details.

HLA:
setng(reg8);
setng(mem8);
MASM/TASM/Gas:
setng reg8
setng mem8

Conditional set if (signed) not greater (sign <> overflow or zero = 1).
See the description for seta for details.

HLA:
setnge(reg8);

setnge(mem8);
MASM/TASM/Gas:
setnge reg8
setnge mem8

Conditional set if (signed) not greater than (sign <> overflow). See the
description for seta for details.

HLA:
setnl(reg8);

setnl(mem8);
MASM/TASM/Gas:
setnl reg8
setnl mem8

Conditional set if (signed) not less than (sign = overflow). See the
description for seta for details.

Table A-91: Conditional Set Instructions (continued)

Instruction Description

wgc2_OA_02.fm Page 38 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 39

A.28 stos, stosb, stosd, stosw

The stos instructions do not require any explicit operands. These are the
store string instructions that copy a value in AL, AX, or EAX into a range of
memory locations. These instructions take two forms: the store string
instruction by itself or a store string instruction with a “repeat” prefix.

HLA:
setnle(reg8);

setnle(mem8);
MASM/TASM/Gas:
setnle reg8
setnle mem8

Conditional set if (signed) not less than or equal (sign = overflow and
zero = 0). See the description for seta for details.

HLA:
setno(reg8);
setno(mem8);
MASM/TASM/Gas:
setno reg8
setno mem8

Conditional set if no overflow (overflow = 0). See the description for
seta for details.

HLA:
setns(reg8);

setns(mem8);
MASM/TASM/Gas:
setns reg8
setns mem8

Conditional set if no sign (sign = 0). See the description for seta for
details.

HLA:
setnz(reg8);

setnz(mem8);
MASM/TASM/Gas:
setnz reg8
setnz mem8

Conditional set if not zero (zero = 0). See the description for seta for
details.

HLA:
seto(reg8);

seto(mem8);
MASM/TASM/Gas:
seto reg8
seto mem8

Conditional set if overflow (overflow = 1). See the description for seta
for details.

HLA:
sets(reg8);

sets(mem8);
MASM/TASM/Gas:
sets reg8
sets mem8

Conditional set if sign set (sign = 1). See the description for seta for
details.

HLA:
setz(reg8);

setz(mem8);
MASM/TASM/Gas:
setz reg8
setz mem8

Conditional set if zero (zero = 1). See the description for seta for
details.

Table A-91: Conditional Set Instructions (continued)

Instruction Description

wgc2_OA_02.fm Page 39 Thursday, April 20, 2006 12:23 PM

40 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

Without a repeat prefix, these instructions copy the value in AL (stosb),
AX (stosw), or EAX (stosd) to the memory location pointed at by EDI (the
destination index register). After copying the data, the CPU either increments
or decrements EDI by the size, in bytes, of the transfer. That is, stosb incre-
ments or decrements EDI by one, stosw increments or decrements EDI by
two, and stosd increments or decrements EDI by four. These instructions
determine whether to increment or decrement EDI based on the value
of the direction flag in the EFLAGs register. If the direction flag is clear,
the store string instruction increments EDI; if the direction flag is clear, the
store string instruction decrements EDI.

If the repeat prefix is attached to one of these store string instructions,
then the CPU repeats the store operation the number of times specified by
the ECX register. Compilers typically use this instruction to clear out a block
of bytes in memory (that is, set the block of bytes to all zeros).

These instructions do not affect any flags.

Table A-92: HLA Syntax for stosb, stosd, and stosw

Instruction Description

stosb();
stosw();
stosd();

[edi] := AL
[edi] := AX
[edi] := EAX
Copies the byte, word, or double word held in AL/AX/EAX to the memory
location pointed at by EDI. After moving the data, these instructions increment
EDI by 1, 2, or 4 if the direction flag is clear; they decrement EDI by 1, 2, or
4 if the direction flag is set.

rep.stosb();.
rep.stosw();
rep.stosd();

[edi]..[edi+ecx-1] := AL/AX/EAX
Copies the value in AL, AX, or EAX to a block of ECX bytes, words, or
double words in memory, where EDI points. Increments or decrements EDI
after each movement by the size of the data moved, based on the value of
the direction flag.

Table A-93: Gas Syntax for stosb, stosl, stosw

Instruction Description

stosb
stosw
stosl

[edi] := AL
[edi] := AX
[edi] := EAX
Copies the byte, word, or double word held in AL/AX/EAX to the memory
location pointed at by EDI. After moving the data, these instructions increment
EDI by 1, 2, or 4 if the direction flag is clear; they decrement EDI by 1, 2, or 4
if the direction flag is set.

rep movsb
rep movsw
rep movsd

[edi]..[edi+ecx-1] := AL/AX/EAX
Copies the value in AL, AX, or EAX to a block of ECX bytes, words, or
double words in memory, where EDI points. Increments or decrements EDI
after each movement by the size of the data moved, based on the value of
the direction flag.

wgc2_OA_02.fm Page 40 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 41

A.29 sub

The sub instruction requires two operands: a source operand and a destina-
tion operand. It computes the difference of the values of these two operands
and stores the difference back into the destination operand. It also sets
several flags in the EFLAGS register, based on the result of the subtraction
operation. (Note that sub affects the flags exactly the same way as the cmp
instruction.)

Table A-94: MASM/TASM Syntax for stosb, stosd, stosw

Instruction Description

stosb
stosw
stosd

[edi] := AL
[edi] := AX
[edi] := EAX
Copies the byte, word, or double word held in AL/AX/EAX to the memory
location pointed at by EDI. After moving the data, these instructions increment
EDI by 1, 2, or 4 if the direction flag is clear; they decrement EDI by 1, 2, or 4
if the direction flag is set.

rep movsb
rep movsw
rep movsd

[edi]..[edi+ecx-1] := AL/AX/EAX
Copies the value in AL, AX, or EAX to a block of ECX bytes, words, or
double words in memory, where EDI points. Increments or decrements EDI
after each movement by the size of the data moved, based on the value of
the direction flag.

Table A-95: HLA Syntax for sub

Instruction Description

sub(constant, destreg); destreg := destreg - constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

sub(constant, destmem); destmem := destmem - constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

sub(srcreg, destreg); destreg := destreg - srcreg
destreg and srcreg must be an 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

sub(srcmem, destreg); destreg := destreg - srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. srcmem can be any like-sized memory location.

sub(srcreg, destmem); destmem := destmem - srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

wgc2_OA_02.fm Page 41 Thursday, April 20, 2006 12:23 PM

42 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

Table A-96: Gas Syntax for sub

Instruction Description

subb constant, destreg8
subw constant, destreg16
subl constant, destreg32

destregn := destregn - constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

subb constant, destmem8
subw constant, destmem16
subl constant, destmem32

destmemn := destmemn - constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

subb srcreg8, destreg8
subw srcreg16, destreg16
subl srcreg32, destreg32

destregn := destregn - srcregn
destregn and srcregn must be 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

subb srcmem8, destreg8
subw srcmem16, destreg16
subl srcmem32, destreg32

destregn := destregn - srcmemn
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, according to the suffix; srcmemn can be any like-sized
memory location.

subb srcreg8, destmem8
subw srcreg16, destmem16
subl srcreg32, destmem32

destmemn := destmemn - srcregn
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as specified by the suffix; destmemn can be any like-sized
memory location.

Table A-97: MASM/TASM Syntax for sub

Instruction Description

sub destreg, constant destreg := destreg - constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

sub destmem, constant destmem := destmem - constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

sub destreg, srcreg destreg := destreg - srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-purpose
registers. They must both be the same size.

sub destreg, srcmem destreg := destreg - srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

sub destmem, srcreg destmem := destmem - srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-98: EFLAGS Settings for sub

Flag Setting

Carry Set if the difference of the two values produces an unsigned overflow.

Overflow Set if the difference of the two values produces a signed overflow.

Sign Set if the difference of the two values has a one in its HO bit position.

Zero Set if the difference of the two values is zero.

wgc2_OA_02.fm Page 42 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 43

A.30 test

The test instruction requires two operands: a source operand and a desti-
nation operand. It computes the logical AND of the values of these two
operands but only updates the EFLAGS register; it does not store the result
of the logical AND operation into either of the two operands. Note that test
sets the flags exactly the same way as the AND instruction and is often used as
an efficient way to test a register to see if it contains zero (by ANDing that
register with itself). It is also often used to test to see if a particular bit in a
binary value is set or clear.

Table A-99: HLA Syntax for test

Instruction Description

test(constant, destreg); destreg AND constant (result to EFLAGS)
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

test(constant, destmem); destmem - constant (result to EFLAGS)
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

test(srcreg, destreg); destreg - srcreg (result to EFLAGS)
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

test(srcmem, destreg); destreg - srcmem (result to EFLAGS)
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. srcmem can be any like-sized memory location.

test(srcreg, destmem); destmem - srcreg (result to EFLAGS)
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. destmem can be any like-sized memory location.

Table A-100: Gas Syntax for test

Instruction Description

testb constant, destreg8
testw constant, destreg16
testl constant, destreg32

destregn - constant (result to EFLAGS)
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

testb constant, destmem8
testw constant, destmem16
testl constant, destmem32

destmemn - constant (result to EFLAGS)
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

testb srcreg8, destreg8
testw srcreg16, destreg16
testl srcreg32, destreg32

destregn - srcregn (result to EFLAGS)
destregn and srcregn must be 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

testb srcmem8, destreg8
testw srcmem16, destreg16
testl srcmem32, destreg32

destregn - srcmemn (result to EFLAGS)
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, according to the suffix; srcmemn can be any like-sized
memory location.

testb srcreg8, destmem8
testw srcreg16, destmem16
testl srcreg32, destmem32

destmemn - srcregn (result to EFLAGS)
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as specified by the suffix; destmemn can be any like-sized
memory location.

wgc2_OA_02.fm Page 43 Thursday, April 20, 2006 12:23 PM

44 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

A.31 xor

The xor instruction requires two operands: a source operand and a desti-
nation operand. It computes the exclusive-OR of the values of these two
operands and stores the result back into the destination operand. It also sets
several flags in the EFLAGS register, based on the result of the exclusive-OR
operation.

Table A-101: MASM/TASM Syntax for test

Instruction Description

test destreg, constant destreg - constant (result to EFLAGS)
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

test destmem, constant destmem - constant (result to EFLAGS)
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

test destreg, srcreg destreg - srcreg (result to EFLAGS)
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-purpose
registers. They must both be the same size.

test destreg, srcmem destreg - srcmem (result to EFLAGS)
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

test destmem, srcreg destmem - srcreg (result to EFLAGS)
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-102: EFLAGS Settings for test

Flag Setting

Carry Cleared

Overflow Cleared

Sign Set if the logical AND of the two operands has a one in the HO bit position.

Zero Set if the logical AND of the two operands produces a zero result.

Table A-103: HLA Syntax for xor

Instruction Description

xor(constant, destreg); destreg := destreg XOR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register.

xor(constant, destmem); destmem := destmem XOR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

xor(srcreg, destreg); destreg := destreg XOR srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-
purpose registers. They must both be the same size.

wgc2_OA_02.fm Page 44 Thursday, April 20, 2006 12:23 PM

Onl ine Appendi x A: The Minima l 80x86 Ins tr uc ti on Set 45

xor(srcmem, destreg); destreg := destreg XOR srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose
register. srcmem can be any like-sized memory location.

xor(srcreg, destmem); destmem := destmem XOR srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-104: Gas Syntax for xor

Instruction Description

xorb constant, destreg8
xorw constant, destreg16
xorl constant, destreg32

destregn := destregn XOR constant
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as appropriate for the suffix.

xorb constant, destmem8
xorw constant, destmem16
xorl constant, destmem32

destmemn := destmemn XOR constant
destmemn must be an 8-bit, 16-bit, or 32-bit memory variable, as
appropriate for the suffix.

xorb srcreg8, destreg8
xorw srcreg16, destreg16
xorl srcreg32, destreg32

destregn := destregn XOR srcregn
destregn and srcregn must be 8-bit, 16-bit, or 32-bit general-
purpose registers, as specified by the suffix.

xorb srcmem8, destreg8
xorw srcmem16, destreg16
xorl srcmem32, destreg32

destregn := destregn XOR srcmemn
destregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, according to the suffix; srcmemn can be any like-sized
memory location.

xorb srcreg8, destmem8
xorw srcreg16, destmem16
xorl srcreg32, destmem32

destmemn := destmemn XOR srcregn
srcregn must be an 8-bit, 16-bit, or 32-bit general-purpose
register, as specified by the suffix; destmemn can be any like-sized
memory location.

Table A-105: MASM/TASM Syntax for xor

Instruction Description

xor destreg, constant destreg := destreg XOR constant
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.

xor destmem, constant destmem := destmem XOR constant
destmem must be an 8-bit, 16-bit, or 32-bit memory variable.

xor destreg, srcreg destreg := destreg XOR srcreg
destreg and srcreg must be 8-bit, 16-bit, or 32-bit general-purpose
registers. They must both be the same size.

xor destreg, srcmem destreg := destreg XOR srcmem
destreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
srcmem can be any like-sized memory location.

xor destmem, srcreg destmem := destmem XOR srcreg
srcreg must be an 8-bit, 16-bit, or 32-bit general-purpose register.
destmem can be any like-sized memory location.

Table A-103: HLA Syntax for xor (continued)

Instruction Description

wgc2_OA_02.fm Page 45 Thursday, April 20, 2006 12:23 PM

46 Wri te Great Code, Volume 2: Th inking Low-Level, Wri ti ng H igh- Le vel

Table A-106: EFLAGS Settings for xor

Flag Setting

Carry Cleared

Overflow Cleared

Sign Set if the logical XOR of the two operands has a one in the HO bit position.

Zero Set if the logical XOR of the two operands produces a zero result.

wgc2_OA_02.fm Page 46 Thursday, April 20, 2006 12:23 PM

