
$39.95 ($41.95 CDN)	 Shelve In:
Computer Security/Programming

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LAY FLAT.” This book uses RepKover — a durable binding that won’t snap shut.

“Give a man an exploit and you make him a hacker for
a day; teach a man to exploit bugs and you make him a
hacker for a lifetime.” — Felix “FX” Lindner

Seemingly simple bugs can have
drastic consequences, allowing
attackers to compromise systems,
escalate local privileges, and
otherwise wreak havoc on a system.

A Bug Hunter’s Diary follows
security expert Tobias Klein as he
tracks down and exploits bugs in
some of the world’s most popular
software, like Apple’s iOS, the VLC
media player, web browsers, and
even the Mac OS X kernel. In this
one-of-a-kind account, you’ll see
how the developers responsible for
these flaws patched the bugs — or
failed to respond to them at all.

Along the way you’ll learn how to:

*	 Use field-tested techniques to
find bugs, like identifying and
tracing user input data and
reverse engineering

*	 Exploit vulnerabilities like
NULL pointer dereferences,
buffer overflows, and type
conversion flaws

*	 Develop proof-of-concept code
that verifies the security flaw

*	 Report bugs to vendors or third
party brokers

A Bug Hunter’s Diary is packed with
real-world examples of vulnerable
code and the custom programs used
to find and test bugs. Whether you’re
hunting bugs for fun, for profit, or
to make the world a safer place,
you’ll learn valuable new skills by
watching over the shoulder of a
professional bug hunter in action.

About The Author
Tobias Klein is a security researcher
and founder of NESO Security Labs,
an information security consulting
and research company. He is the
author of two information security
books published in the German
language by dpunkt.verlag.

2
Back to the ’90s

Sunday, October 12, 2008
Dear Diary,

I had a look at the source code of VideoLAN’s popular VLC media
player today. I like VLC because it supports all different kinds of
media files and runs on all my favorite operating system platforms.
But supporting all those different media file formats has downsides.
VLC does a lot of parsing, and that often means a lot of bugs just wait-
ing to be discovered.

Note	 According to Parsing Techniques: A Practical Guide by Dick
Grune and Ceriel J.H. Jacobs,1 “Parsing is the process of structur-
ing a linear representation in accordance with a given grammar.”
A parser is software that breaks apart a raw string of bytes into indi-
vidual words and statements. Depending on the data format, parsing
can be a very complex and error-prone task.

After I became familiar with the inner workings of VLC, finding
the first vulnerability took me only about half a day. It was a classic
stack buffer overflow (see Section A.1). This one occurred while

A Bug Hunter's Diary
© 2011 by Tobias Klein

10 Chapter 2

parsing a media file format called TiVo, the proprietary format native
to TiVo digital recording devices. Before finding this bug, I had never
heard of this file format, but that didn’t stop me from exploiting it.

2.1  Vulnerability Discovery
Here is how I found the vulnerability:

•	 Step 1: Generate a list of the demuxers
of VLC.

•	 Step 2: Identify the input data.

•	 Step 3: Trace the input data.

I’ll explain this process in detail in the following sections.

Step 1: Generate a List of the Demuxers of VLC
After downloading and unpacking the source code of VLC,2 I gener-
ated a list of the available demuxers of the media player.

Note	 In digital video, demuxing or demultiplexing refers to the process
of separating audio and video as well as other data from a video stream
or container in order to play the file. A demuxer is software that extracts
the components of such a stream or container.

Generating a list of demuxers wasn’t too hard, as VLC separates
most of them in different C files in the directory vlc-0.9.4\modules\
demux\ (see Figure 2-1).

Figure 2-1: VLC demuxer list

← I used VLC 0.9.4 on the Microsoft Windows Vista SP1 (32-bit) platform for all the following steps.

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 11

Step 2: Identify the Input Data
Next, I tried to identify the input data processed by the demuxers.
After reading some C code, I stumbled upon the following structure,
which is declared in a header file included in every demuxer.

Source code file vlc-0.9.4\include\vlc_demux.h

[..]
41 struct demux_t
42 {
43 VLC_COMMON_MEMBERS
44
45 /* Module properties */
46 module_t *p_module;
47
48 /* eg informative but needed (we can have access+demux) */
49 char *psz_access;
50 char *psz_demux;
51 char *psz_path;
52
53 /* input stream */
54 stream_t *s; /* NULL in case of a access+demux in one */
[..]

In line 54, the structure element s is declared and described as
input stream. This was exactly what I was searching for: a reference to
the input data that is processed by the demuxers.

Step 3: Trace the Input Data
After I discovered the demux_t structure and its input stream element,
I searched the demuxer files for references to it. The input data was
usually referenced by p_demux->s, as shown in lines 1623 and 1641
below. When I found such a reference, I traced the input data while
looking for coding errors. Using this approach, I found the following
vulnerability.

Source code file vlc-0.9.4\modules\demux\Ty.c

Function parse_master()

[..]
1623 static void parse_master(demux_t *p_demux)
1624 {
1625 demux_sys_t *p_sys = p_demux->p_sys;
1626 uint8_t mst_buf[32];
1627 int i, i_map_size;
1628 int64_t i_save_pos = stream_Tell(p_demux->s);
1629 int64_t i_pts_secs;
1630
1631 /* Note that the entries in the SEQ table in the stream may have
1632 different sizes depending on the bits per entry. We store them
1633 all in the same size structure, so we have to parse them out one
1634 by one. If we had a dynamic structure, we could simply read the
1635 entire table directly from the stream into memory in place. */

A Bug Hunter's Diary
© 2011 by Tobias Klein

12 Chapter 2

1636
1637 /* clear the SEQ table */
1638 free(p_sys->seq_table);
1639
1640 /* parse header info */
1641 stream_Read(p_demux->s, mst_buf, 32);
1642 i_map_size = U32_AT(&mst_buf[20]); /* size of bitmask, in bytes */
1643 p_sys->i_bits_per_seq_entry = i_map_size * 8;
1644 i = U32_AT(&mst_buf[28]); /* size of SEQ table, in bytes */
1645 p_sys->i_seq_table_size = i / (8 + i_map_size);
1646
1647 /* parse all the entries */
1648 p_sys->seq_table = malloc(p_sys->i_seq_table_size * sizeof(ty_seq_table_t));
1649 for (i=0; i<p_sys->i_seq_table_size; i++) {
1650 stream_Read(p_demux->s, mst_buf, 8 + i_map_size);
[..]

The stream_Read() function in line 1641 reads 32 bytes of user-
controlled data from a TiVo media file (referenced by p_demux->s) and
stores them in the stack buffer mst_buf, declared in line 1626. The
U32_AT macro in line 1642 then extracts a user-controlled value from
mst_buf and stores it in the signed int variable i_map_size. In line 1650,
the stream_Read() function stores user-controlled data from the media
file in the stack buffer mst_buf again. But this time, stream_Read() uses
the user-controlled value of i_map_size to calculate the size of the data
that gets copied into mst_buf. This leads to a straight stack buffer over-
flow (see Section A.1) that can be easily exploited.

Here is the anatomy of the bug, as illustrated in Figure 2-2:

1.	 32 bytes of user-controlled TiVo media file data are copied
into the stack buffer mst_buf. The destination buffer has a size
of 32 bytes.

2.	 4 bytes of user-controlled data are extracted from the buffer and
stored in i_map_size.

3.	 User-controlled TiVo media-file data is copied into mst_buf once
again. This time, the size of the copied data is calculated using
i_map_size. If i_map_size has a value greater than 24, a stack buffer
overflow will occur (see Section A.1).

2.2  Exploitation
To exploit the vulnerability, I performed the following steps:

•	 Step 1: Find a sample TiVo movie file.

•	 Step 2: Find a code path to reach the vulnerable code.

•	 Step 3: Manipulate the TiVo movie file to crash VLC.

•	 Step 4: Manipulate the TiVo movie file to gain control of EIP.

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 13

Stack before
overflow

TiVo File

(1)

(2)

p_demux->s

Stack after
overflow

TiVo File

(3)
p_demux->s

RET

mst_buf

i_map_size

mst_buf

RET

i_map_size

32 Bytes

i_map_size +
8 Bytes

w
ri
ti
ng

 d
ir
ec

ti
on

Figure 2-2: Overview of the vulnerability from input to stack buffer overflow

There’s more than one way to exploit a file-format bug. You can
create a file with the right format from scratch, or you can manipulate
a valid preexisting file. I chose the latter in this example.

Step 1: Find a Sample TiVo Movie File
First I downloaded the following
TiVo sample file from http://samples
.mplayerhq.hu/:

$ wget http://samples.mplayerhq.hu/TiVo/test-dtivo-junkskip.ty%2b
--2008-10-12 21:12:25-- http://samples.mplayerhq.hu/TiVo/test-dtivo-junkskip.ty%2b
Resolving samples.mplayerhq.hu... 213.144.138.186
Connecting to samples.mplayerhq.hu|213.144.138.186|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 5242880 (5.0M) [text/plain]
Saving to: `test-dtivo-junkskip.ty+´

100%[=========================>] 5,242,880 240K/s in 22s

2008-10-12 21:12:48 (232 KB/s) - `test-dtivo-junkskip.ty+´ saved [5242880/5242880]

Step 2: Find a Code Path to Reach the Vulnerable Code
I couldn’t find documentation on the specifications of the TiVo file
format, so I read the source code in order to find a path to reach the
vulnerable code in parse_master().

← The website http://samples .mplayerhq.hu/ is a good starting point to search for all kinds of multimedia file-format samples.

A Bug Hunter's Diary
© 2011 by Tobias Klein

14 Chapter 2

If a TiVo file is loaded by VLC, the following execution flow is
taken (all source code references are from vlc-0.9.4\modules\demux\Ty.c
of VLC). The first relevant function that’s called is Demux():

[..]
386 static int Demux(demux_t *p_demux)
387 {
388 demux_sys_t *p_sys = p_demux->p_sys;
389 ty_rec_hdr_t *p_rec;
390 block_t *p_block_in = NULL;
391
392 /*msg_Dbg(p_demux, "ty demux processing");*/
393
394 /* did we hit EOF earlier? */
395 if(p_sys->eof)
396 return 0;
397
398 /*
399 * what we do (1 record now.. maybe more later):
400 * - use stream_Read() to read the chunk header & record headers
401 * - discard entire chunk if it is a PART header chunk
402 * - parse all the headers into record header array
403 * - keep a pointer of which record we're on
404 * - use stream_Block() to fetch each record
405 * - parse out PTS from PES headers
406 * - set PTS for data packets
407 * - pass the data on to the proper codec via es_out_Send()
408
409 * if this is the first time or
410 * if we're at the end of this chunk, start a new one
411 */
412 /* parse the next chunk's record headers */
413 if(p_sys->b_first_chunk || p_sys->i_cur_rec >= p_sys->i_num_recs)
414 {
415 if(get_chunk_header(p_demux) == 0)
[..]

After some sanity checks in lines 395 and 413, the function
get_chunk_header() is called in line 415.

[..]
 112 #define TIVO_PES_FILEID (0xf5467abd)
[..]
1839 static int get_chunk_header(demux_t *p_demux)
1840 {
1841 int i_readSize, i_num_recs;
1842 uint8_t *p_hdr_buf;
1843 const uint8_t *p_peek;
1844 demux_sys_t *p_sys = p_demux->p_sys;
1845 int i_payload_size; /* sum of all records' sizes */
1846
1847 msg_Dbg(p_demux, "parsing ty chunk #%d", p_sys->i_cur_chunk);
1848
1849 /* if we have left-over filler space from the last chunk, get that */
1850 if (p_sys->i_stuff_cnt > 0) {

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 15

1851 stream_Read(p_demux->s, NULL, p_sys->i_stuff_cnt);
1852 p_sys->i_stuff_cnt = 0;
1853 }
1854
1855 /* read the TY packet header */
1856 i_readSize = stream_Peek(p_demux->s, &p_peek, 4);
1857 p_sys->i_cur_chunk++;
1858
1859 if ((i_readSize < 4) || (U32_AT(&p_peek[0]) == 0))
1860 {
1861 /* EOF */
1862 p_sys->eof = 1;
1863 return 0;
1864 }
1865
1866 /* check if it's a PART Header */
1867 if(U32_AT(&p_peek[0]) == TIVO_PES_FILEID)
1868 {
1869 /* parse master chunk */
1870 parse_master(p_demux);
1871 return get_chunk_header(p_demux);
1872 }
[..]

In line 1856 of get_chunk_header(), the user-controlled data
from the TiVo file is assigned to the pointer p_peek. Then, in line 1867,
the process checks whether the file data pointed to by p_peek equals
TIVO_PES_FILEID (which is defined as 0xf5467abd in line 112). If so, the
vulnerable function parse_master() gets called (see line 1870).

To reach the vulnerable function using this code path, the TiVo
sample file had to contain the value of TIVO_PES_FILEID. I searched the
TiVo sample file for the TIVO_PES_FILEID pattern and found it at file
offset 0x00300000 (see Figure 2-3).

00300000h: F5 46 7A BD 00 00 00 02 00 02 00 00 00 01 F7 04 ; õFz½..........÷.
00300010h: 00 00 00 08 00 00 00 02 3B 9A CA 00 00 00 01 48 ;;šÊ....H

Figure 2-3: TIVO_PES_FILEID pattern in TiVo sample file

Based on the information from the parse_master() function (see
the following source code snippet) the value of i_map_size should be
found at offset 20 (0x14) relative to the TIVO_PES_FILEID pattern found
at file offset 0x00300000.

[..]
1641 stream_Read(p_demux->s, mst_buf, 32);
1642 i_map_size = U32_AT(&mst_buf[20]); /* size of bitmask, in bytes */
[..]

At this point, I had discovered that the TiVo sample file I down-
loaded already triggers the vulnerable parse_master() function, so it
wouldn’t be necessary to adjust the sample file. Great!

A Bug Hunter's Diary
© 2011 by Tobias Klein

16 Chapter 2

Step 3: Manipulate the TiVo Movie File to Crash VLC
Next, I tried to manipulate the TiVo sample file in order to crash
VLC. To achieve this, all I had to do was change the 4-byte value at the
sample file offset of i_map_size (which was 0x00300014 in this example).

As illustrated in Figure 2-4, I changed the 32-bit value at file offset
0x00300014 from 0x00000002 to 0x000000ff. The new value of 255 bytes
(0xff) should be enough to overflow the 32-byte stack buffer and to
overwrite the return address stored after the buffer on the stack (see
Section A.1). Next, I opened the altered sample file with VLC while
debugging the media player with Immunity Debugger.3 The movie file
was played as before, but after a few seconds—as soon as the altered
file data was processed—the VLC player crashed, with the result
shown in Figure 2-5.

00300010h: 00 00 00 08 00 00 00 ff 3B 9A CA 00 00 00 01 48 ;;šÊ....H

00300010h: 00 00 00 08 00 00 00 02 3B 9A CA 00 00 00 01 48 ;;šÊ....H

Figure 2-4: New value for i_map_size in TiVo sample file

Figure 2-5: VLC access violation in Immunity Debugger

As expected, VLC crashed while parsing the malformed TiVo
file. The crash was very promising, since the instruction pointer (EIP

Get the →
vulnerable
Windows version
of VLC from
http://download
.videolan.org/
pub/videolan/
vlc/0.9.4/
win32/.

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 17

register) was pointing to an invalid memory location (indicated by the
message Access violation when executing [20030000] in the status bar of
the debugger). This might mean that I could easily gain control of the
instruction pointer.

Step 4: Manipulate the TiVo Movie File to Gain Control of EIP
My next step was to determine which bytes of the sample file actu-
ally overwrote the return address of the current stack frame so that
I could take control of EIP. The debugger stated that EIP had a value
of 0x20030000 at the time of the crash. To determine which offset
this value is found at, I could try to calculate the exact file offset, or
I could simply search the file for the byte pattern. I chose the latter
approach and started from file offset 0x00300000. I found the desired
byte sequence at file offset 0x0030005c, represented in little-endian
notation, and I changed the 4 bytes to the value 0x41414141 (as illus-
trated in Figure 2-6).

00300050h: 56 4A 00 00 03 1F 6C 49 6A A0 25 45 00 00 03 20 ; VJ....lIj %E...

00300050h: 56 4A 00 00 03 1F 6C 49 6A A0 25 45 41 41 41 41 ; VJ....lIj %EAAAA

Figure 2-6: New value for EIP in TiVo sample file

I then restarted VLC in the debugger and opened the new file
(see Figure 2-7).

Figure 2-7: EIP control of VLC media player

A Bug Hunter's Diary
© 2011 by Tobias Klein

18 Chapter 2

EIP = 41414141 . . . Mission EIP control accomplished! I was able to
build a working exploit, intended to achieve arbitrary code execution,
using the well-known jmp reg technique, as described in “Variations in
Exploit Methods Between Linux and Windows” by David Litchfield.4

Since Germany has strict laws against it, I will not provide you with
a full working exploit, but if you’re interested, you can watch a short
video I recorded that shows the exploit in action.5

2.3  Vulnerability Remediation
Saturday, October 18, 2008

Now that I’ve discovered a security vulnerability, I could disclose it in
several ways. I could contact the software developer and “responsibly”
tell him what I’ve found and help him to create a patch. This process
is referred to as responsible disclosure. Since this term implies that other
means of disclosure are irresponsible, which isn’t necessarily true, it is
slowly being replaced by coordinated disclosure.

On the other hand, I could sell my findings to a vulnerability broker
and let him tell the software developer. Today, the two primary players
in the commercial vulnerability market are Verisign’s iDefense Labs,
with its Vulnerability Contribution Program (VCP), and Tipping Point’s
Zero Day Initiative (ZDI). Both VCP and ZDI follow coordinated-
disclosure practices and work with the affected vendor.

Another option is full disclosure. If I chose full disclosure, I would
release the vulnerability information to the public without notifying
the vendor. There are other disclosure options, but the motivation
behind them usually doesn’t involve fixing the bug (for example, sell-
ing the findings in underground markets).6

In the case of the VLC vulnerability described in this chapter, I
chose coordinated disclosure. In other words, I notified the VLC main-
tainers, provided them with the necessary information, and coordi-
nated with them on the timing of public disclosure.

After I informed the VLC maintainers about the bug, they devel-
oped the following patch to address the vulnerability:7

--- a/modules/demux/ty.c
+++ b/modules/demux/ty.c
@@ -1639,12 +1639,14 @@ static void parse_master(demux_t *p_demux)
 /* parse all the entries */
 p_sys->seq_table = malloc(p_sys->i_seq_table_size * sizeof(ty_seq_table_t));
 for (i=0; i<p_sys->i_seq_table_size; i++) {
- stream_Read(p_demux->s, mst_buf, 8 + i_map_size);
+ stream_Read(p_demux->s, mst_buf, 8);
 p_sys->seq_table[i].l_timestamp = U64_AT(&mst_buf[0]);
 if (i_map_size > 8) {
 msg_Err(p_demux, "Unsupported SEQ bitmap size in master chunk");
+ stream_Read(p_demux->s, NULL, i_map_size);
 memset(p_sys->seq_table[i].chunk_bitmask, i_map_size, 0);

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 19

 } else {
+ stream_Read(p_demux->s, mst_buf + 8, i_map_size);
 memcpy(p_sys->seq_table[i].chunk_bitmask, &mst_buf[8], i_map_size);
 }
 }

The changes are quite straightforward. The formerly vulnerable
call to stream_Read() now uses a fixed size value, and the user-controlled
value of i_map_size is used only as a size value for stream_Read() if it is
less than or equal to 8. An easy fix for an obvious bug.

But wait—is the vulnerability really gone? The variable i_map_size is
still of the type signed int. If a value greater than or equal to 0x80000000
is supplied for i_map_size, it’s interpreted as negative, and the overflow
will still occur in the stream_Read() and memcpy() functions of the else
branch of the patch (see Section A.3 for a description of unsigned int
and signed int ranges). I also reported this problem to the VLC main-
tainers, resulting in another patch:8

[..]
@@ -1616,7 +1618,7 @@ static void parse_master(demux_t *p_demux)

 {
 demux_sys_t *p_sys = p_demux->p_sys;
 uint8_t mst_buf[32];
- int i, i_map_size;
+ uint32_t i, i_map_size;
 int64_t i_save_pos = stream_Tell(p_demux->s);
 int64_t i_pts_secs;
[..]

Now that i_map_size is of the type unsigned int, this bug is fixed.
Perhaps you’ve already noticed that the parse_master() function con-
tains another buffer overflow vulnerability. I also reported that bug to
the VLC maintainers. If you can’t spot it, then take a closer look at the
second patch provided by the VLC maintainers, which fixed this bug
as well.

One thing that surprised me was the fact that none of the lauded
exploit mitigation techniques of Windows Vista were able to stop me
from taking control of EIP and executing arbitrary code from the
stack using the jmp reg technique. The security cookie or /GS feature
should have prevented the manipulation of the return address. Fur-
thermore, ASLR or NX/DEP should have prevented arbitrary code
execution. (See Section C.1 for a detailed description of all of these
mitigation techniques.)

To solve this mystery, I downloaded Process Explorer9 and config-
ured it to show the processes’ DEP and ASLR status.

A Bug Hunter's Diary
© 2011 by Tobias Klein

20 Chapter 2

Note	 To configure Process Explorer to show the processes’ DEP and ASLR
status, I added the following columns to the view: View4Select
Columns4DEP Status and View4Select Columns4ASLR
Enabled. Additionally, I set the lower pane to view DLLs for a
process and added the “ASLR Enabled” column.

The output of Process Explorer, illustrated in Figure 2-8, shows
that VLC and its modules use neither DEP nor ASLR (this is denoted
by an empty value in the DEP and ASLR columns). I investigated fur-
ther to determine why the VLC process does not use these mitigation
techniques.

Figure 2-8: VLC in Process Explorer

DEP can be controlled by system policy through special APIs and
compile-time options (see Microsoft’s Security Research and Defense
blog 10 for more information on DEP). The default system-wide DEP
policy for client operating systems such as Windows Vista is called
OptIn. In this mode of operation, DEP is enabled only for processes
that explicitly opt in to DEP. Because I used a default installation of
Windows Vista 32-bit, the system-wide DEP policy should be set to
OptIn. To verify this, I used the bcdedit.exe console application from
an elevated command prompt:

C:\Windows\system32>bcdedit /enum | findstr nx
nx OptIn

The output of the command shows that the system was indeed
configured to use the OptIn operation mode of DEP, which explains
why VLC doesn’t use this mitigation technique: The process simply
doesn’t opt in to DEP.

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 21

There are different ways to opt a process in to DEP. For example,
you could use the appropriate linker switch (/NXCOMPAT) at com-
pile time, or you could use the SetProcessDEPPolicy API to allow an
application to opt in to DEP programmatically.

To get an overview of the security-relevant compile-time options
used by VLC, I scanned the executable files of the media player with
LookingGlass (see Figure 2-9).11

Note	 In 2009, Microsoft released a tool called BinScope Binary Analyzer,
which analyzes binaries for a wide variety of security protections with
a very straightforward and easy-to-use interface.12

LookingGlass showed that the linker switch for neither ASLR
nor DEP was used to compile VLC.13 The Windows releases of VLC
media player are built using the Cygwin14 environment, a set of utili-
ties designed to provide the look and feel of Linux within the Windows
operating system. Since the linker switches that I mentioned are sup-
ported only by Microsoft’s Visual C++ 2005 SP1 and later (and thus
are not supported by Cygwin), it isn’t a big surprise that they aren’t
supported by VLC.

Figure 2-9: LookingGlass scan result of VLC

← Exploit
mitigation
techniques of
Microsoft’s Visual
C++ 2005 SP1
and later:
• /GS for stack
cookies/canaries
• /dynamicbase
for aslr
• /nxcompat for
dep/nx
• /safeseh for
exception handler
protection

A Bug Hunter's Diary
© 2011 by Tobias Klein

22 Chapter 2

See the following excerpt from the VLC build instructions:

[..]
Building VLC from the source code
=================================
[..]
- natively on Windows, using cygwin (www.cygwin.com) with or without the POSIX
emulation layer. This is the preferred way to compile vlc if you want to do it on
Windows.
[..]
UNSUPPORTED METHODS

[..]
- natively on Windows, using Microsoft Visual Studio. This will not work.
[..]

At the time of this writing, VLC didn’t make use of any of the
exploit mitigation techniques provided by Windows Vista or later
releases. As a result, every bug in VLC under Windows is as easily
exploited today as 20 years ago, when none of these security features
were widely deployed or supported.

2.4  Lessons Learned
As a programmer:

•	 Never trust user input (this includes file data, network data, etc.).

•	 Never use unvalidated length or size values.

•	 Always make use of the exploit mitigation techniques offered by
modern operating systems wherever possible. Under Windows,
software has to be compiled with Microsoft’s Visual C++ 2005
SP1 or later, and the appropriate compiler and linker options
have to be used. In addition, Microsoft has released the Enhanced
Mitigation Experience Toolkit,15 which allows specific mitigation tech-
niques to be applied without recompilation.

As a user of media players:

•	 Don’t ever trust media file extensions (see Section 2.5 below).

2.5  Addendum
Monday, October 20, 2008

Since the vulnerability was fixed and a new version of VLC is now avail-
able, I released a detailed security advisory on my website (Figure 2-10
shows the timeline).16 The bug was assigned CVE-2008-4654.

A Bug Hunter's Diary
© 2011 by Tobias Klein

Back to the ’90s 23

Note	 According to the documentation provided by MITRE,17 Common
Vulnerabilities and Exposures Identifiers (also called CVE names,
CVE numbers, CVE-IDs, and CVEs) are “unique, common identi-
fiers for publicly known information security vulnerabilities.”

10.18.2008 10.20.2008

VLC maintainers
notified

Patch developed by
VLC maintainers

Release date of my
security advisory

Fixed VLC version
available

Figure 2-10: Timeline of the vulnerability

Monday, January 5, 2009

In reaction to the bug and my detailed advisory, I got a lot of mail
with various questions from worried VLC users. There were two ques-
tions that I saw over and over:

I have never heard of the TiVo media format before. Why
would I ever open such an obscure media file?

Am I secure if I don’t open TiVo media files in VLC anymore?

These are valid questions, so I asked myself how I would normally
learn about the format of a media file I downloaded via the Internet
with no more information than the file extension. I could fire up a
hex editor and have a look at the file header, but to be honest, I don’t
think ordinary people would go to the trouble. But are file extensions
trustworthy? No, they aren’t. The regular file extension for TiVo files
is .ty. But what stops an attacker from changing the filename from
fun.ty to fun.avi, fun.mov, fun.mkv, or whatever she likes? The file will
still be opened and processed as a TiVo file by the media player, since
VLC, like almost all media players, does not use file extensions to
recognize the media format.

Notes

1. See Dick Grune and Ceriel J.H. Jacobs, Parsing Techniques: A Practical Guide,
2nd ed. (New York: Springer Science+Business Media, 2008), 1.

2. The vulnerable source code version of VLC can be downloaded at http://
download.videolan.org/pub/videolan/vlc/0.9.4/vlc-0.9.4.tar.bz2.

A Bug Hunter's Diary
© 2011 by Tobias Klein

24 Chapter 2

3. Immunity Debugger is a great Windows debugger based on OllyDbg. It
comes with a nice GUI and a lot of extra features and plug-ins to support bug
hunting and exploit development. It can be found at http://www.immunityinc
.com/products-immdbg.shtml.

4. See David Litchfield, “Variations in Exploit Methods Between Linux
and Windows,” 2003, http://www.nccgroup.com/Libraries/Document_Downloads/
Variations_in_Exploit_methods_between_Linux_and_Windows.sflb.ashx.

5. See http://www.trapkit.de/books/bhd/.

6. For more information on responsible, coordinated, and full disclosure
as well as the commercial vulnerability market, consult Stefan Frei, Dominik
Schatzmann, Bernhard Plattner, and Brian Trammel, “Modelling the Security
Ecosystem—The Dynamics of (In)Security,” 2009, http://www.techzoom.net/
publications/security-ecosystem/.

7. The Git repository of VLC can be found at http://git.videolan.org/. The first
fix issued for this bug can be downloaded from http://git.videolan.org/?p=vlc
.git;a=commitdiff;h=26d92b87bba99b5ea2e17b7eaa39c462d65e9133.

8. The fix for the subsequent VLC bug that I found can be downloaded from
http://git.videolan.org/?p=vlc.git;a=commitdiff;h=d859e6b9537af2d7326276f70de2
5a840f554dc3.

9. To download Process Explorer, visit http://technet.microsoft.com/en-en/
sysinternals/bb896653/.

10. See http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-
mitigation-technology-part-1.aspx.

11. LookingGlass is a handy tool to scan a directory structure or the running
processes to report which binaries do not make use of ASLR and NX. It can
be found at http://www.erratasec.com/lookingglass.html.

12. To download BinScope Binary analyzer, visit http://go.microsoft.com/
?linkid=9678113.

13. A good article on the exploit mitigation techniques introduced by Micro-
soft Visual C++ 2005 SP1 and later: Michael Howard, “Protecting Your Code
with Visual C++ Defenses,” MSDN Magazine, March 2008, http://msdn.microsoft
.com/en-us/magazine/cc337897.aspx.

14. See http://www.cygwin.com/.

15. The Enhanced Mitigation Experience Toolkit is available at http://
blogs.technet.com/srd/archive/2010/09/02/enhanced-mitigation-experience-toolkit-
emet-v2-0-0.aspx.

16. My security advisory that describes the details of the VLC vulnerability can
be found at http://www.trapkit.de/advisories/TKADV2008-010.txt.

17. See http://cve.mitre.org/cve/identifiers/index.html.

A Bug Hunter's Diary
© 2011 by Tobias Klein

