
We can create new types in C# in several 
ways, and we need to consider the individual 

characteristics of each approach to determine 
which best suits our goals. In particular, know-

ing how value types differ from reference types helps us 
choose the right way forward, because these differences 
have significant and sometimes unconsidered implica-
tions when we’re defining our own types. Certain trade-
offs will affect how we design our type and what we can 
use it for. In this chapter, we’ll investigate those differ-
ences and what they mean for our programs.

We’ll explore the following:

•	 What choices we have when creating our own types

•	 Why C# has both reference types and value types

2
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•	 How choosing one or the other affects construction, null checking,  
and other type behavior

•	 Why value type is not the same as value semantics

•	 Where different types are stored in memory and how that affects an 
object’s lifetime

User-Defined Types
Most modern programming languages allow you to create custom types. 
The basic principles of user-defined types in C# will be familiar to pro-
grammers of many other languages, but some of the details are different. 
Therefore, in this section we’ll examine the four kinds of user-defined 
types: structs, classes, and the newer records and record structs (introduced 
in C# v9.0 and v10.0, respectively).

It’s important to recognize that the behavior of these types relies heav-
ily on whether they are reference types or value types. Let’s look briefly at 
each kind of user-defined type with these differences in mind.

Structs and Classes
Listing 2-1 defines a simple struct to represent colors.

public readonly struct Color
{
	 public Color(int r, int g, int b)
		  => (Red, Green, Blue) = (r, g, b);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

Listing 2-1: Defining a simple struct

The Color struct is marked readonly to indicate that instances of Color 
are immutable—that is, they never change their value. Correspondingly, 
none of the three properties (Red, Green, and Blue) has a set accessor, so their 
values can’t be changed after they’ve been given initial values using the 
constructor.

The constructor in this example uses the expression body syntax (=>), 
which you saw in Chapter 1, instead of a body enclosed between braces 
{...}. We make the expression body a single-line statement by using tuple 
assignment, which assigns the tuple of three parameter values r, g, and b to 
the tuple of three properties. The compiler translates this syntax into an 
efficient assignment from the parameter values directly to the respective 
backing fields for the Red, Green, and Blue properties.

The readonly keyword in the struct’s definition is not mandatory but 
reinforces that instances of Color are immutable. Immutable value types 
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make our code easier to comprehend and may allow some optimizations by 
the compiler.

By contrast, if we define a Color class instead of a struct, we can’t use the 
readonly keyword in its definition, although we can make it immutable by 
not providing set accessors for the properties. The only other difference in 
defining Color as a class is the use of the class keyword in the definition:

public class Color
{
--snip--

The definition of Color is otherwise identical to that in Listing 2-1.
The principal difference between these two types is that a class is a ref-

erence type, and a struct is a value type. Before we analyze the implications 
of this difference, let’s look at record and record struct types.

Records and Record Structs
As of C# v9.0, we can define a record type with the record keyword. Records 
introduce a new syntax for compactly defining a type. Listing 2-2 creates a 
record type named Color.

public record Color(int Red, int Green, int Blue);

Listing 2-2: Defining a record

This example shows a positional record; the Color type has no body, but 
the type definition has its own positional parameters that are used by the 
compiler to generate a complete type. Behind the scenes, the compiler 
translates the record into a class definition, meaning that records are refer-
ence types. The compiler also translates the parameter names Red, Green, 
and Blue into public properties of the same name, along with a public con-
structor with matching parameters to initialize the property values. The 
positional parameters are also used by the compiler to generate other meth-
ods, including Equals, GetHashCode, and ToString, which are overrides of their 
counterparts in the object base class.

Listing 2-3 creates a new instance of the Color record and uses its prop-
erties exactly as if it were a class or a struct.

var tomato = new Color(Red: 255, Green: 99, Blue: 71);

Assert.That(tomato.Red, Is.EqualTo(255));
Assert.That(tomato.Green, Is.EqualTo(99));
Assert.That(tomato.Blue, Is.EqualTo(71));

Listing 2-3: Creating an instance of Color

Here, we use named arguments when constructing the tomato variable 
of type Color to emphasize the names given by the compiler to the construc-
tor parameters. Note that the property names used in the assertions are 
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identical to the names used in the constructor, and that both match the 
names used in the record definition.

N O T E 	 One important difference between records and structs or classes relates to handling 
equality comparisons between two instances, a topic we’ll examine in more detail in 
“Identity Equality vs. Value Equality” on page 47.

Very closely related to records are record structs, introduced in  
C# v10.0. In contrast to records, which are compiled as classes, record 
structs are translated by the compiler into struct definitions, making them 
value types. Otherwise, they’re the same as records. Record structs are 
denoted by the record struct keywords, as shown here:

public readonly record struct Color(int Red, int Green, int Blue);

This record struct, much like the struct in Listing 2-1, is marked readonly. 
If we left out the readonly keyword, the properties generated by the compiler 
would be read-write properties, with both get and set accessors. Using the 
readonly keyword makes Color an immutable record struct.

Inheritance
One common way of representing relationships between classes and between 
records is to use inheritance, or deriving one type from another. However, 
we can’t apply inheritance to structs or record structs; it’s available only to 
reference types.

Another restriction of inheritance is that a record can inherit from 
another record but not explicitly from a class. Similarly, classes can’t inherit 
from records. In every other respect, records follow the same rules and 
have the same characteristics as classes as far as inheritance is concerned. 
Classes and records can define virtual methods and properties, allowing a 
more derived type to provide its own behavior by overriding the method or 
property, and we can choose to ignore, override, or hide any virtual meth-
ods in a derived type.

In contrast, structs and record structs are implicitly sealed, meaning that 
inheriting from them is prohibited. If we attempt to derive from a struct or 
record struct, we get a compile-time error. Structs and record structs can’t 
inherit from another user-defined type either.

Another restriction for a class or record is that it can inherit from only 
one base type. Any attempt at multiple inheritance results in a compiler 
error. If no base type is explicitly specified, object becomes the implied base 
class. As you’ll see in “The Common Type System” on page 45, every type 
ultimately inherits from object, either directly or indirectly. For example, 
the Command class in Listing 2-4 implicitly derives from object, while the 
DummyCommand class derives explicitly from Command, implicitly inheriting from 
object via the Command base class.
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public class Command
{
	 public virtual IEnumerable<Result> RunQuery(string query)
	 {
		  using var transaction = connection.BeginTransaction();
		  return connection.Execute(transaction, query);
	 }

	 private readonly DatabaseConnection connection;
}

public class DummyCommand : Command
{
	 public override IEnumerable<Result> RunQuery(string query)
	 {
		  return new List<Result>();
	 }
}

Listing 2-4: Inheritance syntax

This Command base class defines a virtual RunQuery method, which is over-
ridden in the derived DummyCommand class to alter the method’s behavior.  
A stub implementation like DummyCommand might be used during testing to 
avoid having the test code depend on the underlying data store’s contents.

Any type may implement multiple interfaces, but it’s important to under-
stand that inheritance is quite different from interface implementation. 
When we implement an interface, the implementing method is, by default, 
not virtual. A class or record implementing a method from an interface can 
choose to make its implementation of the method virtual, but a struct or 
record struct cannot.

We can explicitly designate any member of a class or record as protected, 
as opposed to public, private, or internal. A protected member is accessible 
within the class declaring it and to any types that inherit from that class, 
but it’s not visible to any other code. Since value types are sealed, it makes 
no sense for them to have virtual or protected members. If we try to make a 
method virtual in a value type definition or to define any protected fields, 
properties, or methods, we’re rewarded with a compiler error.

We can choose to declare a class or record type as sealed so that it can’t be 
used for further inheritance. Sealing a class does not affect what it can inherit, 
only what can inherit from it. It’s common to seal classes that have value-like 
characteristics, such as string, or when we wish to restrict a class’s behavior to 
that defined in our own implementation. If a class is intended to be immu-
table, whether or not it’s intended to have value-like characteristics, sealing it 
ensures that its immutability can’t be subverted by a mutable derived class.

Records are specifically intended to be value-like types and have value-
like behavior defined for them by the compiler. This means we should seal 
record types unless we have a compelling reason not to do so. We’ll look in 
detail at the meaning of value-like and why such types should be sealed in 
Chapters 6 and 7.
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A BS T R AC T BA SE T Y PES

An abstract type is one that can be used only as a base type for inheritance; it 
can’t be instantiated directly with new. One implication is that while classes and 
records can be abstract, structs and record structs can’t. It would make no sense: 
we can’t inherit from a value type, so it could never be instantiated.

In an abstract type, we can designate methods and properties as abstract, 
meaning they have no implementation. Their purpose is simply to define the 
operations that a concrete type must support. An abstract method or property 
is implicitly virtual, but providing an implementation for one prompts a com-
piler error. Abstract types don’t have to define any abstract members, but only 
abstract classes or records can have abstract methods and properties. Any 
abstract methods or properties remain abstract unless they’re explicitly overrid-
den in a derived class. Providing an implementation for an abstract method in a 
derived type makes that method concrete.

We can inherit one abstract type from another and choose to either pro-
vide implementations for the base type’s abstract methods or leave them as 
abstract. We can only directly create an instance of a class or record that is 
fully concrete; that is, any and all abstract methods have been overridden.

If we inherit from an abstract class, we can’t then inherit from any other 
class because that would be a form of multiple inheritance, which is prohibited.

It can be tempting to think of C# interfaces and their members as being 
abstract (especially for users familiar with C++, where interfaces are commonly 
implemented as classes with all pure-virtual methods), but that’s not the case. 
An interface contains only signatures of methods and properties; they are nei-
ther abstract nor virtual.

Inheritance is a central feature of object-oriented code, but it applies 
exclusively to reference types. Inheritance—as well as the features that sup-
port it, such as virtual methods—is not appropriate for value types, in part 
because of the way value type instances use memory.

Type Instance Lifetimes
Value types and reference types differ in the way each uses memory and, 
more specifically, in the lifetime of their instances. Value type instances are 
short-lived, and their lifetime is bound to the lifetime of the variables that 
represent them. For value types, the variable is the instance; when we create 
a new instance of a value type, the target variable effectively contains the 
instance data—that is, the value of each field of the type.

In many cases, the lifetime of a variable is defined by a block, such as 
a method body or a foreach loop. Any local variables within the block cease 
to exist when the block ends. Alternatively, a variable might be contained 
in another object, in which case the variable’s lifetime is defined by the 
lifetime of the enclosing object. Whenever we copy a value type variable by 
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assigning it to another variable or passing it as an argument to a method, 
the copy is a whole new instance of the type in a different variable.

Reference type instances, on the other hand, are generally long-lived 
and can be referred to by many variables. When we create a new instance 
of a reference type, we’re given a reference to that instance in memory. 
Whenever we copy that reference, we’re not also copying the instance. The 
original reference and the copy both refer to the same instance. References 
are stored in reference variables.

All reference type instances are allocated on the heap. Their lifetime 
is managed by automatic garbage collection, which releases their memory 
when they’re no longer needed by the program. An object is considered 
unused when the garbage collector determines that no other live references 
to that instance exist. While reference type instances are not subject to 
their scope, reference variables are subject to scope, so when one goes out of 
scope, it’s no longer a live reference to an instance. The lifetime of a refer-
ence type instance, then, is determined by the lifetimes of all the references 
to that instance.

A cost is associated with being allocated on the heap, because the gar-
bage collection process takes time while the program is running. Ensuring 
that unused heap memory is properly cleaned up is a complex operation 
and may interrupt a program’s normal execution for a short time, so an 
overhead is associated with reference types.

Value types don’t require the overhead associated with garbage col-
lection. The memory used by a value type instance can be freed when the 
lifetime of its variable ends. To understand lifetime a little better, let’s look 
more closely at what we mean by variable in different contexts.

Variables
A variable is simply a named area of memory. We use this name—or identifier— 
to manipulate a memory location during the variable’s lifetime. C# has five 
main kinds of variables:

Local variables

These are block-scope variables, where a block might be a method with 
a statement body, the body of a loop, or any section of code delimited 
by matching braces, {}. When control leaves a block at the closing 
brace, any variables that are local to the block go out of scope. When 
an exception is thrown in a block, the control flow also leaves that 
scope and any containing scope until the exception is caught or the 
program exits.

Instance fields

These are normal data members, known as fields, of structs and non-
static classes. Each instance of a type has its own copies of any instance 
fields. The lifetime of an instance field is defined by the lifetime of the 
object to which it belongs.
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Static fields

These fields are associated with a type, rather than individual instances 
of the type. The lifetime of a static field is normally tied to an applica-
tion, so the instances associated with static fields are usually released 
when an application exits.

Array elements

Individual elements in an array are all variables. We can access a partic-
ular element by its index and alter the element instance if it is mutable.

Method parameters

The parameters in a method definition are technically called formal 
parameters but are commonly known as just parameters. A parameter’s 
scope is the body of the method, exactly as if the parameter were declared 
as a local variable within the method’s body. In code that calls a method, 
we pass actual parameters, better known as arguments, that correspond to 
the method’s parameters.

Regardless of its kind, a variable always has an associated type. This 
might be an explicitly declared type, as in the declaration int size, or, for 
local variables, the type might be implied with the var keyword. If the vari-
able’s type is a reference type, the variable’s value is a reference. A non-null 
reference is a handle to an instance somewhere on the heap. If the vari-
able’s type is a value type, the variable’s value is an instance of the type.

Variables vs. Values
It’s not always easy to intuit what counts as a variable and what counts as a 
value, but the distinction is important:

•	 Variables can be assigned to, although a readonly field variable can be 
assigned only within a constructor of the type of which it is a member, 
or using field initialization (which we’ll discuss in “Field Initializers”  
on page 58).

•	 Values are the results of expressions—such as the result of calling new, 
the return value from a method, or a constant expression such as a 
literal number or string literal. Values can’t be assigned to, but we use 
them to initialize variables by using assignment or passing them as 
arguments to method parameters.

Variables, for the most part, have names. Strictly speaking, individual 
array elements don’t have their own names, but for an array variable arr, 
the expression arr[ index] is essentially the element’s identifier. A value can 
have a name but doesn’t require one: the expression 2 + 2 produces a new 
value, but it is anonymous unless we assign that value to a variable.

The type of a value defines what an instance looks like. Among other 
things, the type might have multiple fields that need space allocated in 
memory when an instance of the type is created. The type of a variable 
defines the sort of value it can contain.
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A value is just a pattern of bits. The type is a formal specification for 
interpreting that bit pattern to give it meaning in a program. Two values 
with identical bit patterns may be interpreted differently if they are differ-
ent types. A pattern of bits that are all 0 means one thing if the type is long, 
but something else entirely if the type is DateTime.

A variable of value type directly contains its data, whereas a variable 
of reference type contains a reference to its data. More precisely, reference 
variables have a value that is a reference to an object somewhere on the 
heap. Put simply, a reference refers to an instance of a reference type; the 
value of a reference type variable is a reference.

The relationship between variables and values is that all variables have a 
value, although the value can’t be accessed until the variable has been defi-
nitely assigned.

Definite Assignment
We can’t read the value of a variable unless the compiler is satisfied that  
the variable has definitely been given an initial value. More formally, a  
variable can be read only after a value has been definitely assigned to it. 
The C# Language Specification precisely defines what constitutes definite 
assignment, but the essence is that a variable must have been assigned or 
initialized with a value at least once before its value is read.

If we try to obtain the value of any variable that hasn’t been definitely 
assigned, the compiler raises an error to tell us that this isn’t allowed. For 
example, when we declare a local variable within a method, it is uninitial-
ized unless or until we assign a value to it. Such variables are initially con-
sidered unassigned. Conceptually, at least, an unassigned variable doesn’t 
have a value.

When we assign something to a variable, we give that variable a new 
value. When we read from a variable, we obtain its value. Variables and val-
ues are both expressions, meaning we can evaluate them to produce a value, 
as long as they have been definitely assigned.

To reiterate, attempting to read a value from any variable that hasn’t 
yet been definitely assigned is an error. When we use a var declaration 
for a local variable, we must provide an initial value where the variable is 
declared, because the type of the variable is inferred from the type of the 
value being assigned to it.

Instances and Storage
Now that we’ve clearly defined variables and values, we can explore how 
they relate to type instances. Whether an instance is a value type or a refer-
ence type affects where it is allocated and managed in memory; as a result, 
value type variables have some peculiarities that don’t apply to references.

Value types do not always live on the stack, despite common misconcep-
tions. Values for local variables are most often tied to the block scope of a 
method, and so might be associated with a stack frame for the method, but 



40   Chapter 2

values can also be contained within another object as a member or an ele-
ment in an array. Let’s examine this more closely by looking at some exam-
ples of how variables are embedded in objects.

Embedded Values
If a variable is a field embedded within an instance of another type, its value 
is allocated within the memory for its enclosing object. This is especially 
important for value type variables that directly contain the instance of their 
type. Consider the Color struct in Listing 2-5.

public readonly struct Color
{
	 public Color(int r, int g, int b)
		  => (Red, Green, Blue) = (r, g, b);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

Listing 2-5: Defining a Color struct with multiple fields

The Color struct has three properties representing the components of 
an RGB color. When a Color value is used as a field or property in a class, an 
instance of that class will wholly contain a Color value on the heap. Take, for 
example, the Brush class in Listing 2-6, which has several fields, one of which 
is a Color type.

public class Brush
{
--snip--
	 public enum BrushStyle { Solid, Gradient, Texture }

	 private readonly int width;
	 private readonly Color color;
	 private readonly BrushStyle style;
}

Listing 2-6: A Color value embedded within the Brush class

The Brush type is a class and therefore a reference type. When we cre-
ate an instance of any reference type, it’s allocated on the heap. The Brush 
class has three fields, one of which is a Color instance, which itself has three 
fields (Red, Green, and Blue). An instance of Brush might look roughly like 
Figure 2-1 in memory.
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Figure 2-1: A Color value embedded in a Brush instance on the heap

When we create a new Brush, the instance is created on the heap and 
we’re given a reference to it. The color field occupies memory directly within 
the memory space for the Brush instance. If we implemented Color as a 
record struct instead of a struct, the outcome would be the same. Record 
structs are value types in exactly the same way as structs and are allocated 
directly within the memory space of any enclosing object.

Value type instances are not individually garbage collected, but if a 
value type instance is embedded in another object that has been allocated 
on the heap, the memory used by the value type instance will be reclaimed 
during garbage collection of the enclosing object.

The lifetime of the Color instance represented by the color field is tied 
to the lifetime of the Brush instance. When the garbage collector determines 
that the Brush instance is no longer used, it will free up the memory for that 
instance, including the embedded Color value.

Array Elements

When a value type instance is an element in an array, it isn’t (strictly speak-
ing) a field of the array object, but the value is still embedded within the 
memory for the array. Arrays are always allocated on the heap, regardless of 
the type of their elements. When we create an array, we’re given a reference 
to it. To illustrate, consider this array of Color values, where Color is a struct:

var colors = new Color[3];

The colors variable here is a reference to an array of three Color 
instances on the heap. The memory layout of the colors array might look 
like Figure 2-2.
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Figure 2-2: An array of Color structs in memory
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In the colors array, each element is large enough to store the three int 
backing fields. If the element type had more fields, each element would 
require more space on the heap. If the Color type were a record struct 
rather than a struct, the layout would be identical; recall that the compiler 
translates record structs into structs.

Reference variables, by contrast, are all the same size, regardless of the 
number of fields declared in the type definition. The memory required for 
an array of references is determined only by the number of elements, not 
the size of each instance.

Whether the elements of an array are references or value type instances, 
the array is always on the heap, and the array variable refers to its elements. 
If the garbage collector determines that the array is no longer in use—that 
is, no live reference variables to it exist—then the memory for all of its 
elements is freed in one go.

Embedded References

Reference fields are also embedded in their enclosing type, but their instances 
are not. If we had implemented Color as a reference type in Listing 2-5, 
rather than a value type, the layout of a Brush instance would be somewhat 
different. The color field of the Brush class would be a reference, as illus-
trated in Figure 2-3.
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Figure 2-3: A color reference field embedded in a Brush instance

Instead of containing the entire instance of Color within its own mem-
ory, the Brush type’s color field refers to a separate Color instance somewhere 
else on the heap. Reference type instances are always allocated on the heap 
and are independent of one another. This applies to any reference type, so 
it would be true if we implemented Color as either a class or a record.

The lifetime of the Color instance here is independent of the Brush instance. 
When the Brush instance is no longer used and its memory is released, the 



Value and Reference Types   43

Color instance will remain in memory until the garbage collector determines 
that it’s no longer needed.

Field and Property Layout

All user-defined types can contain instance fields and properties. However, 
structs and record structs have one restriction that does not apply to classes 
or records: a value type definition can’t embed a field of its own type.

You’ve already seen how value type instances directly contain their 
fields. If a type has a field that is itself a value type, that field also directly 
contains its data. If the type of that field is the same as its containing type, 
the compiler is unable to determine how to create it. Consider the simple 
struct in Listing 2-7 that embeds an instance of itself as a field.

struct Node
{
	 Node p;
}

Listing 2-7: A struct containing an instance of itself

This example will not compile. The compiler can’t know how to lay out 
the contained field named p, because p’s type isn’t fully defined at the point 
where it is declared. The same is true of properties, because even automatic 
properties require a backing field, though that field is hidden from us.

The same reasoning applies to an indirect dependency, illustrated in 
Listing 2-8.

struct Tree
{
	 Node root;
}
struct Node
{
	 Tree leftChild, rightChild;
}

Listing 2-8: A struct with a cyclic dependency

Neither the Tree type nor the Node type can be created here because 
the layout of each depends on the other. This might sound draconian, but 
in practice it’s rarely a problem, and we have an easy workaround: if we 
change the definition of either Tree or Node to make it a reference type, the 
compiler will accept this code. The rule applies only to value types because, 
as mentioned previously, references are always the same size regardless of 
the type to which they refer. This means the compiler doesn’t need to know 
the layout of a class or record to establish a reference to it.
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Boxed Values
References can refer only to objects on the heap and can’t refer to individ-
ual value type instances, even those enclosed within a reference type object. 
The only way for a reference variable to individually refer to a value type 
instance is to make a copy of the value, put that copy on the heap, and refer 
to the copy with a new reference. The process of creating a copy and storing 
it on the heap, known as boxing, is automatic when the type of the variable is 
a reference type. A boxed value can always be converted back to its original 
value type, a process called unboxing, where the value contained in the box 
is copied into the target variable.

Boxing happens automatically when we refer to a value using a refer-
ence variable such as object, or when we pass a value as an argument to a 
method that takes a reference type parameter. Unboxing is always explicit: 
we need to cast the boxed variable back to its correct value type, as shown 
in Listing 2-9.

public readonly struct Color
{
	 public Color(int r, int g, int b)
		  => (Red, Green, Blue) = (r, g, b);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

var red = new Color(0xFF, 0, 0);
var green = new Color(0, 0xFF, 0);

1 object copy = green;
Assert.That(object.Equals(2 red, copy), Is.False);

var copyGreen = 3 (Color)copy;

Listing 2-9: Boxing and unboxing

The type of the copy variable is object, and is therefore a reference, so 
the value of green gets boxed into copy 1. Similarly, calling the object.Equals 
method boxes the value of red, because the method takes two object param-
eters 2. We don’t need to explicitly cast the value to the object type; it’s 
boxed implicitly. We do require an explicit cast to unbox the value stored in 
copy into a new variable 3.

As you’ll see shortly when we cover the Common Type System, object 
is the base class of every type, meaning we can always use object to refer to 
any other variable, including value type instances. A struct can also imple-
ment one or more interfaces. Interfaces are reference types, so if we use 
either object or an interface type to refer to a value, that value is automati-
cally boxed onto the heap.

A boxed value can be unboxed only to its original type. We can’t, for 
instance, unbox an int value into a double, even though an implicit built-in 
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conversion exists from int to double. If we attempt to unbox a value to 
anything other than its original type, we’ll get an InvalidCastException at 
run time.

Boxed values are copied to the heap, which means the box is no longer 
subject to the scope of its variable and may exist beyond the lifespan of its 
original value. It’s up to the garbage collector to clean up boxed values. 
Chapter 4 discusses boxing in more detail.

Semantics and Type
Value types have semantic implications that go beyond being an instance of 
a struct or record struct. Choosing a value type instead of a reference type 
when we define our own types requires much more than a consideration of 
possible optimizations. Records, in particular, differ from classes, because 
even though records are compiled into classes and are therefore reference 
types, they share some important behavioral characteristics with value types.

Before delving into the behavior of record and record struct types, we 
need to better understand how structs differ from classes.

The Common Type System
C# has a hierarchical type system, known as the Common Type System, in 
which all types derive from object, a keyword alias for the System.Object 
type. This is why we can always use object to refer to any other variable—
although, as you just saw, in the case of value types, the instances are boxed 
so they can be referred to by object references.

Even the built-in types, such as int and float, inherit from object. In 
fact, all built-in types are aliases for types in the System namespace. The 
System types that underlie the numeric types are all structs and therefore 
value types. For example, int is an alias for the System type public readonly 
struct Int32.

Enumeration types created with the enum keyword are not aliases to 
System types, although they all derive from the System.Enum class. The indi-
vidual values of an enum declaration have an underlying numeric type, which 
by default is int. We could specify a different numeric type—for example, if 
we wanted to allow the enum elements to have values larger or smaller than is 
permitted for an int.

The non-numeric built-ins string and object are aliases to classes in the 
System namespace, so they’re both reference types.

When we use the class or record keyword to define our own refer-
ence type, our new type derives directly from the object base class unless 
it explicitly inherits from another type. The object base class is neither an 
interface nor abstract. It has a mix of virtual, nonvirtual, and static mem-
bers, which provide the default implementations common to all objects.

All struct types (including record structs) and the System.Enum type 
implicitly derive from System.ValueType (for which there’s no keyword alias), 
which in turn derives from the object base class, so all struct types derive 
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indirectly from object. Value types, unlike reference types, have an interme-
diate base class defined by the language.

N O T E 	 ValueType itself is not a struct, which is sometimes overlooked. All structs implicitly 
inherit from ValueType, so ValueType itself must be a class. Moreover, ValueType is an 
abstract class, meaning we can create an instance of object but not of ValueType.

The ValueType class overrides all the virtual methods defined in the 
object base class—Equals, GetHashCode, and ToString—and customizes their 
implementations to provide behavior tailored for value types. The ValueType 
implementations for Equals and GetHashCode are extremely important because 
they provide the value-based definition of equality that distinguishes value 
types from reference types. The difference between these implementations 
has to do with the way values are copied.

Copy Semantics
The difference between where reference types and value types store their 
instance data has important implications when we copy variables, because 
copying a reference does not copy the instance. Listing 2-10 shows a simple 
example to illustrate the difference.

var thing = new Thing { Host = "Palmer" };
1 var copy = thing;
2 copy.Host = "Bennings";
Assert.That(thing.Host, Is.EqualTo("Palmer"));

Listing 2-10: Copying a variable

Here we’re copying the value of the thing variable into a new variable 
called copy 1. Then we assign a new value to the Host property of copy 2.  
The test checks that the properties of the original variable haven’t changed. 
The success of the test assertion depends on whether Thing is a value type or 
a reference type.

As noted earlier, all variables have a value that we may copy to a new 
variable. If Thing is a value type, any copy we make is a new instance of the 
type, so if we modify any fields of that copy, those changes have no effect 
on the fields of the original value. Therefore, if Thing is a struct or a record 
struct, the test will pass.

If Thing is a reference type, on the other hand, the thing variable’s value 
is a reference. When we copy a reference, only the value of the reference is 
copied, and it refers to the same instance as the original variable’s value. 
This means if we modify the instance using one reference, that change is 
reflected in all the references to it. Thus, if Thing is a class or a record, the 
test will fail.

Locks and Reference Semantics

Some situations require the behavior of reference type variables, and using 
a value type instance would be incorrect or even disallowed. For example, 
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we can’t use a value type in a lock statement to prevent a section of code 
from being executed concurrently by multiple threads. The compiler for-
bids it because the variable used as a lock needs to be a reference to an 
object on the heap. The purpose of locking an object is to allow only a 
single thread to execute the code it protects at any given time. The object 
instance identifies the lock and can then have multiple references to it  
from different threads.

The underlying mechanism for the lock statement is the System 
.Threading.Monitor class. The lock statement translates to the Enter method 
of Monitor, which takes object as its parameter. Any instance of a value type 
passed to Monitor.Enter as an argument will automatically be boxed. Each 
thread calling Monitor.Enter will box the value separately, and the acquisi-
tion of the lock would never fail, rendering it pointless.

When we’ve finished with the lock, we need to call Monitor.Exit and 
pass the same reference used to acquire the lock with Monitor.Enter. 
The compiler inserts the code to call Monitor.Exit at the closing brace 
of a lock block. If we use a value type, the call to Exit will result in a new 
boxed value on the heap, and so will be a different reference to that used 
in the call to Enter. The result is that releasing the lock will fail with a 
SynchronizationLockException error.

This is one situation actively requiring reference semantics, because 
passing a reference to the Enter method doesn’t copy the instance. The 
monitor and the code using the lock both have a reference to the same 
instance.

Identity Equality vs. Value Equality

When we say we’re comparing variables to see whether they’re equal, what 
we really mean is that we’re comparing the variables’ values. If two vari-
ables have the same value, they’re considered equal. The type of each value 
plays an important role: the values being compared must be the same type, 
although one or both values may have resulted from an implicit conversion.

If we compare the values of two variables of the same reference type, 
their respective values are references, which compare equal by default if 
they both refer to the same object in memory. This is known as an identity 
comparison. We can override the default identity comparison behavior in 
our own reference types (a topic we’ll examine in detail in Chapter 5), but 
two references to separate instances that have identical field values compare 
unequal according to the default identity comparison because they refer to 
different objects.

By contrast, two value type instances compare equal—again by default, 
because we can modify this behavior—if all the fields of one compare equal 
with their counterparts on the other. The difference in equality compari-
son behavior between value type instances and reference type instances is 
directly related to their respective copy semantics. Since a copy of a value 
type instance is a new independent instance with identical state, an identity 
comparison makes no sense. The two concepts of copying and equality are 
therefore intimately related.
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The ability to compare two values to see whether they are equal is often 
underappreciated. Even if we rarely need to compare variables in our own 
code, commonly used classes such as List< T >, Dictionary< T >, and the LINQ 
methods that work on collections may be making those comparisons out of 
sight. Equals is a virtual method defined by the object base class, which is a 
clue to how fundamental it really is, because it means we can call the Equals 
method on any value to compare it with any other.

However, the object.Equals implementation always performs an identity 
comparison, which, again, is pointless for value types. For this reason, all 
structs implicitly inherit the ValueType class. ValueType overrides the Equals 
method to perform a value-based comparison.

The difference between what equality means for reference types and value 
types affects the way our code behaves at run time. Consider Listing 2-11, where 
the Thing type has not yet been allocated as a reference type or value type 
and does not explicitly override the Equals method. Here, we create two 
instances of Thing with the same value for their Host property. What happens 
when we call Equals depends entirely on whether Thing is a class, record, 
struct, or record struct.

public ??? Thing
{
	 public string Host { get; set; }
}

var thing = new Thing { Host = "Palmer" };
var clone = new Thing { Host = "Palmer" };

Assert.That(clone.Equals(thing), Is.True);

Listing 2-11: Comparing equality of two independent variables

This assertion will fail if Thing is a class, because the object.Equals 
method will return true only if both clone and thing are references to the 
same instance, and they’re not. The assertion will pass if Thing is a struct, 
because the ValueType implementation of Equals returns true if both clone 
and thing have the same value; that is, all their fields compare equal.

The clone and thing variables also compare equal if Thing is either a 
record or a record struct because they also use a value-based comparison 
for equality.

Records, Structs, and Value Semantics
Records are reference types but have value-like behavior when it comes to 
comparing two record variables for equality. When a record type is com-
piled, the compiler generates a class definition with an overridden imple-
mentation of the Equals method unless we define one ourselves. The Equals 
method generated for records compares two instances to determine if they 
have the same state, rather than just comparing two references to deter-
mine if they refer to the same instance.
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In a struct, on the other hand, if we don’t override Equals, the equality 
comparison relies on the implementation of Equals provided by the ValueType 
base class. Records, as reference types, don’t inherit from ValueType. Record 
structs do inherit from ValueType, but, as with records, Equals is overridden 
by a compiler-generated implementation, because ValueType.Equals might 
not be the optimal implementation.

The ValueType implementation is necessarily general; it must work for 
any struct type, regardless of the types of the struct’s fields. If a field of the 
type has a custom implementation of Equals, instances of the containing 
type must use that field’s implementation for comparisons; a simple struc-
tural or bitwise comparison of the instances may not always be correct. The 
implementation of Equals provided by ValueType relies on reflection at run 
time to determine how to compare the fields and will use an overridden 
implementation of Equals to compare a field if the type of that field has one.

If we want to avoid the overhead of reflection in a struct, we must 
override Equals with our own implementation to compare each field and 
property with its corresponding field or property in the instance being 
compared. If each field and property value compares equal, using its Equals 
method where required, then the two instances are equal. This is essen-
tially the implementation provided by the compiler for records and record 
structs.

To reiterate, structs, records, and record structs all employ a value-
based comparison of their state to implement the Equals method, but for 
records and record structs, the implementation is generated automatically 
by the compiler, freeing us from the responsibility of providing our own 
custom implementation.

The variables we use for records—but not record structs—are refer-
ences, and when we assign one record reference to another variable, we still 
get two references to the same record instance, just as we do if the type is 
a class. Records therefore have reference semantics for copying and value 
semantics for equality comparison.

The different comparison and copy semantics for value types and ref-
erence types have important consequences for the way instances of those 
types behave at run time. However, important differences also exist in the 
way those instances are created in the first place. In the next section, we’ll 
look at how construction and initialization differ depending on whether the 
type of the instance is a value type or reference type.

Construction and Initialization
Creating a new object is superficially a simple operation, but behind the 
scenes the compiler goes to a great deal of trouble to make the process as 
efficient as possible. In principle, creating an object involves allocating the 
memory for an instance of a type and then calling a constructor whose job 
is to initialize the instance’s fields. The syntax is identical for both value 
types and reference types, but new treats them differently and hides some 
complexity around how and where different types are allocated in memory. 
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In other words, the new expression is an abstraction that shields us from the 
implementation details of how memory is allocated and used.

Specifically, the memory for reference type instances is allocated 
dynamically. When a new instance of a class or record type is created, the 
memory is allocated on the heap at run time. Instances of struct and record 
struct types are allocated differently, depending on how the resulting 
instance is used. Consider this code, which initializes a variable with a new 
instance of a type named Thing:

var thing = new Thing();

This basic syntax for creating an object and assigning it to a variable is 
the same whether Thing is a class, struct, record, or record struct. As you’ll 
see over the coming sections, this code depends on Thing having an acces-
sible constructor that can be invoked with no arguments, which isn’t neces-
sarily the case when Thing is a reference type. For the time being, though, 
let’s assume that Thing instances can be created this way. If Thing is a class 
or a record, new causes memory to be allocated on the heap at run time 
and returns a reference to the new object, which is assigned to the thing 
variable.

If Thing is a struct or a record struct, the new instance is assigned to the 
thing variable. However, this code may or may not allocate memory for a 
new instance of Thing and may or may not call a constructor. The reason is 
that construction and initialization are separate processes. Part of the dif-
ference is related to whether a Thing is a value type or reference type.

Default Initialization
Default initialization means that each of a type’s fields, including the backing 
fields for properties, is given a default value, which is defined in the lan-
guage to mean one of the following:

•	 References are set to null.

•	 Built-in numeric value type variables are set to 0.

•	 All other value types are default-initialized.

Default-initialized reference type fields are a common cause of errors. 
For example, the simple MusicTrack struct in Listing 2-12 relies on us manu-
ally initializing an instance by setting its properties. If we neglect to set suit-
able values for the properties of a MusicTrack instance, we may be rewarded 
with an exception when we use the instance.

public struct MusicTrack
{
	 public string Artist { get; set; }
	 public string Name { get; set; }

	 public override string ToString()
		  => $"{Artist.ToUpper()}: {Name.ToUpper()}";
}
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var defaultTrack = new MusicTrack();

var print = defaultTrack.ToString();

Listing 2-12: Initializing reference type fields

The call to ToString causes a null reference exception because the 
defaultTrack value has been default-initialized. The ToString method calls 
ToUpper on its Artist and Name properties, whose default-initialized value 
is null. We need to be alert to any uses of default-initialized references in 
order to avoid such problems resulting from accessing a null reference. One 
way to minimize the impact of default-initialized values is by providing our 
own instance constructors.

Instance Constructors
An instance constructor, like a method, can have zero or more parameters. 
Also like methods, constructors can be overloaded, so we can define several 
constructors for a type, each with a different number of parameters, or 
parameters of different types. Constructor definitions for classes, structs, 
records, and record structs have many similarities, but several important 
differences exist.

In Listing 2-13, we add a constructor for the MusicTrack struct and use 
the parameter values to initialize the instance’s property values. We use the 
null-coalescing operator ?? to assign an empty string for each property if its 
corresponding parameter is null.

public readonly struct MusicTrack
{
	 public MusicTrack(string artist, string name)
	 => (Artist, Name) = (artist ?? string.Empty, name ?? string.Empty);

	 public string Artist { get; }
	 public string Name { get; }

	 public override string ToString()
		  => $"{Artist.ToUpper()}: {Name.ToUpper()}";
}

Listing 2-13: Adding an instance constructor with parameters

By adding a constructor, we no longer have to rely on MusicTrack users 
setting the properties explicitly, since the initial values for those properties 
are set in the constructor. We have made those properties get-only—that 
is, they can be given a value only in the constructor—and made MusicTrack 
a readonly struct. However, we must still be cautious of using the property 
values inside the ToString method because instances of any value type can 
always be default-initialized, regardless of the presence of a user-defined 
constructor definition. Adding our own constructor for MusicTrack to give 
meaningful values to the properties isn’t sufficient protection against 
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exceptions that occur from calling methods using a null reference, because 
MusicTrack is a struct type.

If the nullable reference type feature is enabled (see “Nullable Reference 
Types” on page 64 for more), the constructor’s parameters will be non-nullable 
variables, meaning that passing null for either argument would cause a 
compiler warning. Using non-nullable parameters doesn’t mean that null 
can’t be passed as an argument, but we may decide that the warning is 
sufficient protection, potentially allowing us to omit the null-coalescing 
assignments in the constructor. The nullable reference type feature doesn’t, 
however, mean we can avoid verifying that the property values are not null 
prior to using them in the ToString method. Fortunately, the null-conditional 
operator makes the check straightforward and safe:

public override string ToString()
    => $"{Artist?.ToUpper()}: {Name?.ToUpper()}";

Here the presence of the null-conditional operator, a ? appended to 
each property name, means that in each case the ToUpper method will be 
called only if the property is a non-null value. If either property is null, the 
result of the expression between the braces within the string is null, which 
the string interpolation treats as an empty string.

If MusicTrack were a class or record, the presence of our own constructor 
would mean we could no longer create an instance without passing argu-
ments like this:

var track = new MusicTrack();

If we attempt to create a default-constructed instance, we get the follow-
ing compiler error:

[CS7036] There is no argument given that corresponds to the required formal parameter 'artist'
of 'MusicTrack.MusicTrack(string, string)'

If we don’t provide any constructors for a class or record, the compiler 
inserts a default constructor for us. If we define a constructor when we 
define our own reference type, however, the compiler will not generate 
the default constructor. The compiler doesn’t create a default constructor 
for value types, but an instance of a struct or record struct can be default-
initialized whether or not we define our own constructor.

Default and Generated Constructors

The behavior of reference types and value types differs partly because 
reference types are allocated on the heap, but value types might not be. 
The compiler generates a default constructor for reference types because 
instances of such types are allocated dynamically, and their instances are 
initialized at run time. When a reference type instance is allocated on the 
heap, the memory for it is set to zero, effectively default-initializing the 
instance.
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Value types are treated differently because their memory isn’t neces-
sarily allocated at run time: for local value type variables, the compiler 
may reserve memory for the instance data, and the program accesses that 
memory directly. The underlying Common Intermediate Language (CIL) 
has an efficient instruction for default-initializing value type instances that 
effectively zeroes out the memory used by the instance, wherever its mem-
ory actually resides.

We can think of the default initialization of a struct or record struct as 
being performed by a compiler-provided default constructor, because the 
result is identical in any case. Default-initializing value types offers a minor 
performance advantage because it doesn’t require a method call to a con-
structor, although it’s almost never the most significant optimization.

In a positional record or a positional record struct, the compiler gener-
ates a public constructor based on the parameters we use in the type defini-
tion, like this:

public sealed record Color(int Red, int Green, int Blue);

The parameters to Color in this example tell the compiler to create pub-
lic properties using those names and their types. The compiler also creates 
a constructor with the same signature as the record’s parameter list, where 
the properties are assigned their values. The constructor generated by the 
compiler is the equivalent of this:

public Color(int Red, int Green, int Blue)
    => (this.Red, this.Green, this.Blue) = (Red, Green, Blue);

Although the constructor has been generated by the compiler, it’s still 
considered a user-defined constructor and therefore still suppresses the 
default constructor for the Color record.

Regardless of its type, an instance is always default-initialized when 
it’s first created, whether its memory is being allocated on the heap or 
elsewhere.

When we define our own constructor for a class, we can rely on all  
the fields having been default-initialized prior to the constructor’s body; the 
fields of a class are considered initially assigned within the constructor. In a 
struct’s constructor, the fields are initially unassigned, so we must definitely 
assign a value for every field of a struct or record struct, even if it’s simply to 
replace the value with its default-initialized equivalent.

Overloaded Constructors

We can provide a constructor with parameters for any type, and we can 
overload the constructor by defining several constructors that have differ-
ent numbers or types of parameters. This is useful when we want to support 
different ways to construct our type. For instance, Listing 2-14 shows a struct 
that has two constructors with differing signatures.
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public readonly struct Color
{
	 public Color(int red, int green, int blue)
		  => (Red, Green, Blue) = (red, green, blue);

	 public Color(uint rgb)
		  => (Red, Green, Blue) = Unpack(rgb);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

Listing 2-14: Overloading constructors

The first constructor initializes the three properties from three separate 
parameters (red, green, blue). The second constructor receives a numeric 
representation of an RGB value and initializes the Red, Green, and Blue 
properties by calling the Unpack method (not shown here) to unpack  
the number into its component parts. We select the different overloads 
when using the constructor by passing different arguments, as shown in 
Listing 2-15.

var orange = new Color(0xFFA500);
var yellow = new Color(0xFF, 0xFF, 0);

Listing 2-15: Selecting the correct overload

Here, the orange variable is created using the constructor with a single 
uint parameter (the second constructor in Listing 2-14), and the yellow vari-
able uses the constructor with three int parameters (the first constructor in 
Listing 2-14).

Parameterless Constructors

As noted earlier, defining our own constructor for a class type will inhibit 
the compiler-generated default constructor, meaning that we can create 
new instances of the type only by passing arguments to our own construc-
tor’s parameters. If we need to create instances of such a reference type 
without arguments, we can define our own parameterless constructor, which 
we might use to initialize reference type fields and properties to non-null 
values. This is common when a class contains a collection that needs to be 
initialized but can be empty, as demonstrated in Listing 2-16.

public sealed class Playlist
{
	 public Playlist(IEnumerable<MusicTrack> items)
		  1 => queue = new(items);

	 public Playlist()
		  2 => queue = new();
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	 public void Append(MusicTrack item)
		  => queue.Add(item);
--snip--

	 private Queue<MusicTrack> queue;
}

Listing 2-16: Defining a parameterless constructor

The two constructors defined here allow us to create a Playlist either by 
passing a sequence of items to populate the queue 1 or by passing no argu-
ments 2. If we pass no arguments, the queue field is initialized as an empty 
queue, ensuring that it isn’t null.

Both constructors initialize the queue field by using type inference,  
a feature called target-typed new, introduced in C# v9.0. The compiler deduces 
the type required by new from the type of the target variable being initialized—
in this example, a Queue< MusicTrack>. The queue field is guaranteed to be 
non-null for any Playlist instance, so we don’t need to check for null in the 
Playlist.Append method.

In a positional record, the compiler creates a constructor based on the 
positional arguments for the record, so by default, instances of a positional 
record can’t be created without arguments. We can define our own param-
eterless constructor for a positional record if we require that behavior.  
A struct or positional record struct, on the other hand, can always be cre-
ated without arguments, whether or not we define our own constructors.

Structs and Default Values

As of C# v10.0, we can define our own parameterless constructors for value 
types to help ensure that any reference fields are non-null. However, we  
still need to check for null in a value type’s implementation because an 
instance of a struct or record struct can always be default-initialized, effec-
tively bypassing any constructors we define. This is illustrated in Listing 2-17, 
where we add a parameterless constructor for the MusicTrack struct that 
explicitly initializes the two string properties.

public readonly struct MusicTrack
{
	 public MusicTrack()
		  => (Artist, Name) = (string.Empty, string.Empty);

	 public MusicTrack(string artist, string name)
		  => (Artist, Name) = (artist, name);

	 public string Artist { get; }
	 public string Name { get; }

	 public override string ToString()
		  => $"{Artist?.ToUpper()}: {Name?.ToUpper()}";
}

Listing 2-17: Adding a parameterless constructor for a struct
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The parameterless constructor sets both reference type properties to a 
non-null value, so calling ToUpper on either property is safe when we’re using 
a MusicTrack instance that was created using new MusicTrack. However, this 
doesn’t mean we can omit the null-conditional checks in ToString. It’s still 
possible for Artist or Name to be null if the instance is a default-initialized 
MusicTrack—for example, when it’s an element in an array:

var favorites = new MusicTrack[3];

var print = favorites[0].ToString();

Without the checks for null in ToString, this code would cause ToString 
to throw a NullReferenceException because the creation of the favorites array 
doesn’t call our parameterless constructor on its elements. Each element is 
default-initialized, leaving the Name and Artist properties with their default 
value of null, so attempting to call the ToUpper method on a null reference 
causes the exception.

Array elements are default-initialized without invoking any parameter-
less constructor we provide. The parameterless constructor is reserved for 
when we create a new instance by using the new keyword.

Value Type Initialization

One quite subtle consequence of the way value type instances are allocated 
in memory is that if a value type’s fields are all public, we can definitely 
assign a value for each field outside the constructor (as long as they’re not 
read-only), which results in the whole instance being fully assigned.

For example, Listing 2-18 assigns a value to each field of an uninitial-
ized struct variable.

public struct Color
{
	 public int red;
	 public int green;
	 public int blue;
}

Color background;   // initially unassigned variable

background.red = 0xFF;
background.green = 0xA5;
background.blue = 0;

Assert.That(background.red, Is.EqualTo(0xFF));

Listing 2-18: Definitely assigning a struct

This code compiles, and the test passes. We can read the value of the 
red field, even though we’ve never allocated the background variable with 
new or invoked a constructor for it. The same would be true if Color were a 
record struct instead.
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This example demonstrates that value type variables directly contain an 
instance of their type. Assigning to each field means we don’t need to explicitly 
construct an instance. However, relying on this behavior is likely to cause other 
problems, not the least of which is that using public fields leaves the Color type 
open to misuse, intended or not. In practice, a constructor is a much better way 
to initialize a value type’s fields, which should all be private and read-only.

Note that if we alter the public fields to be publicly mutable properties, 
this code will fail to compile. We can’t access a property of a value type in 
any way until the instance itself has been fully, and definitely, assigned. 
Every property has a backing field generated by the compiler, and that 
backing field is always private.

Constructor Accessibility

Constructors with parameters can be made public or private in any type. 
Private constructors are useful when we want to prevent users from creat-
ing instances with certain arguments. We used this technique in “Static 
Creation Methods” in Chapter 1 to force users to call the static class factory 
methods we defined in order to create certain values, rather than using 
the new keyword directly. In a class or record, we can make the parameter-
less constructor private to prevent users from creating default-constructed 
instances, shown for the Color record in Listing 2-19.

public sealed record Color
{
	 private Color() { }

	 public static Color Black { get; } = new Color();

--snip--
}

Listing 2-19: Making constructors private for reference types

Since the constructor for Color is marked private, we can use it to initial-
ize the static Black property value and any other static or instance members 
of Color, but it’s inaccessible to code outside of the Color type. If users of Color 
forget and attempt to create an instance with new, the compiler forbids it:

var black = new Color();

[CS0122] 'Color.Color()' is inaccessible due to its protection level

Classes and records can also use the protected keyword on a constructor, 
making it available to inheriting types. Since structs and record structs can’t 
be inherited, the compiler will prevent the use of protected in a value type.

In a struct or record struct, if we define our own parameterless con-
structor, it must be public. Struct and record struct instances can always be 
default-initialized, whether or not we provide a parameterless constructor.
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Field Initializers
In a class or record definition, and in structs or record structs after  
C# v10.0, we can assign initial values to fields inline by using field initializers. 
We can do the same with automatic properties by using property initializ-
ers, which initialize the hidden backing field associated with the property. 
Listing 2-20 uses a field initializer for the queue field of the Playlist class 
from Listing 2-16 to assign an initial value and adds a Name property for 
Playlist that we also assign an initial value by using a property initializer.

public sealed class Playlist
{
--snip--

	 public string Name { get; set; } = "_playlist";

	 private Queue<MusicTrack> queue = new();
}

Listing 2-20: Assigning initial values for fields and properties

Field and property initializers are part of object construction but are not 
applied when a value type instance is being default-initialized. Conceptually, 
initializers are applied just before the body of a constructor. As noted previ-
ously, the compiler creates a default constructor for class and record types 
if no user-defined or positional constructors are present; however, the 
compiler won’t synthesize a parameterless constructor for any value type. 
Therefore, if we want to use field or property initializers for struct or record 
struct types, we must also define at least one constructor of our own. This 
can be a parameterless constructor or a constructor taking one or more 
parameters.

Field initializers can’t reference any instance members. However, since 
static fields are guaranteed to be definitely assigned before any instance 
fields, a field initializer can reference a static value. Static fields can also 
have initializers and can reference other static fields. However, we need to 
take care when referencing one static field from another static field because 
they’re initialized in the order in which they appear in the class.

Object Initializers
With object initializers, we set values for publicly mutable properties of a vari-
able at the point of creating a new instance, like this:

var fineBrush = new Brush { Width = 2 };

Classes, records, structs, and record structs accept this syntax, and 
they all behave the same way. The initialization process is the same for 
each: a constructor is invoked in the usual way to create an instance, 
and then the value is assigned to the property of the instance. In this 
example, a Brush is created using a parameterless constructor (or one with 
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all-optional parameters), but we can call any constructor before the ini-
tialization expression inside the braces. In the special case of a construc-
tor that requires no arguments, we can leave out the parentheses for the 
constructor.

Classes and records require an accessible parameterless constructor to 
use this syntax. If the parameterless constructor of a class or record is hid-
den or nonpublic, we must invoke a valid constructor before the object ini-
tialization within the braces. We don’t have to worry about this for struct or 
record struct types because they can always be default-initialized if the type 
has no parameterless constructor.

init-Only Properties

As of C# v9.0, any property can be init-only, meaning it can be written to 
only during the creation of a new instance. Prior to C# v9.0, object initial-
ization required properties to have a public set accessor, meaning object 
initialization couldn’t be used with immutable properties. Object initializa-
tion requires the value of the property to be set after the constructor has 
completed, which wasn’t permitted for properties without a public set  
accessor. An init accessor allows a property to be set during object initial-
ization and then makes the property immutable after the initialization is 
complete.

The Color struct in Listing 2-21 demonstrates how init-only properties 
are used during object initialization.

public readonly struct Color
{
	 public int Red { get; init; }
	 public int Green { get; init; }
	 public int Blue { get; init; }
}
var orange = new Color { Red = 0xFF, Green = 0xA5 };

Assert.That(orange.Red, Is.EqualTo(0xFF));
Assert.That(orange.Green, Is.EqualTo(0xA5));
Assert.That(orange.Blue, Is.EqualTo(0));

Listing 2-21: Setting properties as init-only

When we create the orange variable, a new Color is first default-constructed, 
giving each property its default value of 0. The object initializer between 
the braces gives new values to the Red and Green properties, leaving the Blue 
property with its default value. Note that Color is a readonly struct, which 
requires that the struct has no mutable properties.

We can assign a value to an init-only property in an instance construc-
tor or by using object initialization, but we can’t assign a new value after 
the instance has been created. An init-only property is immutable. The 
init accessor syntax can be used for properties and indexers for any type, 
although it was introduced in C# v9.0 to support a special initialization syn-
tax supported by records and known as non-destructive mutation.
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Non-destructive Mutation

Records and record structs support the non-destructive mutation syntax, 
and as of C# v10.0, so do structs and anonymous types. Syntactically, non-
destructive mutation is similar to object initialization, except that it initial-
izes a new instance by copying an existing one and providing new values for 
selected properties in that copy. Listing 2-22 demonstrates this syntax, using 
the with keyword to copy the orange record variable to a new variable named 
yellow, and then assigning a new value to one of the properties of the copy.

public sealed record Color(int Red, int Green, int Blue);
var orange = new Color(0xFF, 0xA5, 0);

var yellow = orange with { Green = 0xFF };

Assert.That(yellow.Red, Is.EqualTo(0xFF));
Assert.That(yellow.Green, Is.EqualTo(0xFF));

Assert.That(orange.Green, Is.EqualTo(0xA5)); // unchanged in orange
Assert.That(orange.Blue, Is.EqualTo(0));

Listing 2-22: Initializing a copy of a record with non-destructive mutation

The with expression we use when we create the yellow variable creates a 
new instance of the Color record with property values identical to the origi-
nal orange instance. Those properties specified between the braces following 
with are then assigned the values by using the same syntax as object initial-
ization. This approach is called non-destructive mutation because no changes 
are made to the original record.

Constructors and initializers are both ways we can create new instances 
with known values. However, sometimes we can’t provide an initial value for 
a variable, but leaving it uninitialized is too restrictive: we can’t even test it 
to see whether it has a value, owing to the rules governing definite assign-
ment. In the next section, we’ll examine the options open to us when we 
need a variable with no value, and how value types and reference types dif-
fer here too.

null Values and Default Values
A plain value type variable can never be null. An instance of a value type 
directly contains all of its fields, and there’s not necessarily a representation 
of “no value.” A default-initialized instance of a value type is not the same 
thing—it’s a complete instance of the type, just with the default-initialized 
values for each of its fields.

We can employ a nullable value type, which can be assigned and com-
pared with the value null, as you’ll see shortly, but plain value type instances 
are incompatible with null. The null constant expression is a reference 
and therefore can be assigned only to reference variables. One of the 
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implications of not being able to assign null to a value type variable is that 
we can’t pass null as an argument to a value type method parameter.

Similarly, attempting to compare a value with null makes no sense. If we 
do, as shown in Listing 2-23, the compiler rejects the code.

public readonly struct Speed
{
--snip--
}

var c = new Speed();

Assert.That(c == null, Is.False);

Listing 2-23: Comparing a value type variable with null

The error from the compiler is shown here:

[CS0019] Operator '==' cannot be applied to operands of type 'Speed' and '<null>'

We can, however, compare any reference type with null, and, as of C# v8.0,  
we can use a constant pattern to make this comparison more direct by using 
the is keyword:

Assert.That(someObject is null, Is.True);

Comparing any value type with null makes no sense, whatever method 
we choose, because null is a reference and as such is represented differently 
than a value type. That said, the rule against comparing value types with 
null has one exception: generic types.

Generics and null
In a generic class or method, an unconstrained type parameter variable can 
be compared with null. An unconstrained generic type can be either a value 
type or a reference type. To illustrate, the simple example in Listing 2-24 
compares an instance of a generic parameter type with null.

public static int Compare<T>(T left, T right)
{
	 if(left is null) return right is null ? 0 : -1;
--snip--
}

Listing 2-24: Comparing a generic type parameter instance with null

The Compare generic method has a type parameter named T that might 
represent either a value type or a reference type, because it has no type con-
straints. In this instance, T is not known to be a value type, so the compiler 
allows the syntax. If T’s type is determined at run time to be a value type, 
the whole expression simply evaluates as false.
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The compiler still prevents us from assigning null to a variable of type T, 
because if T were a value type, the assignment would fail at run time. Similarly, 
we can’t return null through an unconstrained type parameter, demonstrated 
in Listing 2-25.

public static T Consume<T>(IProducerConsumerCollection<T> collection)
	 => collection.TryTake(out var item) ? item : null;

Listing 2-25: Trying to return null as a generic parameter type

This gives the following error:

[CS0403] Cannot convert null to type parameter 'T' because it could be a non-nullable value
type. Consider using 'default(T)' instead.

In this example, the difficulty arises because T is unconstrained. It 
might represent a struct or record struct type, for which null is not a valid 
value. The error message gives us a clue that instead of returning null, we 
can return a default value for T. Default values have other, more significant 
use cases too, but also some limitations.

Generics and Default Values
The concept of a default value is closely related to a null value, especially  
in the context of generic types and methods. At times, we—and the  
compiler—must ensure that an instance of a generic parameter type T is 
definitely assigned, even when T’s type is not known at compile time. We 
can’t just use new to make a new instance of type T because the compiler 
isn’t able to determine which constructors are available for T.

If T is a value type, we can always make a default instance by using 
default initialization or by calling a parameterless constructor, but if T is a 
reference type, it might not have an accessible default or parameterless con-
structor. We can use the new constraint on T, meaning that our generic type 
or method will work only with types that have an accessible parameterless 
constructor, but this might be too restrictive.

In a generic type, we can use the generic parameter to denote a field or 
property of the generic parameter type. Generic value types must ensure 
that all their fields are definitely assigned before control leaves the con-
structor. To make that possible, we use the default keyword to initialize a 
default instance of T, as in the generic struct shown in Listing 2-26.

public readonly struct Node<T>
{
	 public Node(int index)
	 {
		  idx = index;
		  contained = default;
	 }
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	 private readonly int idx;
	 private readonly T contained;
}

Listing 2-26: Initializing a default instance of a type parameter

In the Node constructor, the contained field is assigned the default value 
of its type by using the target-typed default literal (available since C# v7.1), 
which is equivalent to the expression default(T). Where T is a class or record, 
its default value is null, and where T is a struct or record struct, the default 
value is a default-initialized instance. Note that initializing a value by using 
default does not invoke a parameterless constructor, if we have defined one. 
This code is valid because we can always create a default value for a variable 
of type T: if T is a value type, the value is a default instance of T, and if T is a 
reference type, a default T is null. The default keyword has many uses outside 
of generic types and methods, but within generic code it’s indispensable.

Default values are useful, but they’re not sufficient to identify a par-
ticular value type instance as invalid. In other words, we can’t use a default 
when what we really mean is no value present. The default value of a struct or 
record struct is a default-initialized instance and might therefore be a valid 
value. Consider Listing 2-27.

int x = default;
int y = 0;

Assert.That(x.Equals(y), Is.True);

Listing 2-27: Default values can be valid.

The default value for an int type is 0, which we may use to indicate an  
invalid number in some circumstances but not all. Whether that matters,  
especially for our own value types, depends on the context in which 
instances of the type are used, but limiting valid integers to only nonzero 
values would be very restrictive. Fortunately, we have an alternative.

Nullable Value Types
Nullable value types allow us to have a representation of a value type that 
means no value present. A nullable value type is a wrapper around a value 
type, and a nullable value type variable may or may not have a value. A 
nullable value type variable can also be assigned the value null, demon-
strated by using a simple test in Listing 2-28.

int? x = null;
int y = 0;

Assert.That(x.Equals(y), Is.False);

Listing 2-28: Using nullable values
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The ? following the int type of the x variable is shorthand for saying that 
x is a Nullable< int>. We can now represent an invalid value for x that’s distinct 
from any valid values for int. We can use a nullable variable for any value 
type, not just built-ins. The default value for a nullable is null, as shown here:

int? x = default;
int? y = null;

Assert.That(x.Equals(y), Is.True);

This test passes because x and y are both null. The declaration of x in 
the first line doesn’t initialize a default int but rather a default Nullable< int>. 
Equality comparison between nullable values compares the underlying 
value if there is one. Two nullable values are equal if they both have no 
value, or values that themselves compare equal. Nullable< T > is a struct and 
overrides the Equals method to provide this behavior.

As a consequence of not being able to assign null to a plain value type 
variable, we can’t use a plain value type on the right-hand side of an as 
expression, like this:

object speed = new Speed();
var actual = speed as Speed;

If Speed is a struct or record struct, this code won’t compile, because 
if the cast fails, the as operator will return null. As we know, null can’t 
be assigned to a value. The solution is to use a nullable value type as the 
source of the conversion, as shown here:

var actual = speed as Speed?;

The type of the actual variable is a nullable Speed in this example and 
will have the value null if the conversion fails—that is, if the speed variable is 
not in fact a Speed type.

Nullable Reference Types
C# v8.0 introduced nullable reference types, a feature that allows the compiler 
to warn us when a reference is or might be null and we expect it to have a 
real value. While reference variables have always been able to have a null 
value, the nullable reference type feature allows us to express whether we 
intend for them to. In other words, when we use a nullable reference type 
variable, we’re being explicit about our intention that null is an expected 
potential value for a variable.

Reference variables are non-nullable by default. In the declaration in 
Listing 2-29, the brush variable is a non-nullable reference.

object brush = null;

Listing 2-29: Declaring a non-nullable reference variable
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The compiler performs static analysis that enables it to issue a warning 
if a non-nullable reference can’t be guaranteed to be non-null. To state that 
with fewer negatives, the compiler issues a warning if a value that may be 
null is assigned to a non-nullable reference. In particular, assigning null to 
a non-nullable reference, as we just did, provokes this warning:

[CS8600] Converting null literal or possible null value to non-nullable type

If we attempt to pass a possibly null value as an argument to a non-
nullable method parameter, we’ll get a warning from the compiler. Consider 
the method in Listing 2-30, which capitalizes the first character of each 
word in a string.

public static string ToTitleCase(string original)
{
	 var txtInfo = Thread.CurrentThread.CurrentCulture.TextInfo;
	 return txtInfo.ToTitleCase(original.Trim());
}

Listing 2-30: Defining the ToTitleCase method with a non-nullable reference parameter

Within the ToTitleCase method, we should be able to depend on the 
original parameter having a real, non-null value, because it’s a non-nullable 
string. That means we can avoid explicitly writing code to check that it isn’t 
null. When we call ToTitleCase, if the compiler can’t guarantee that the 
argument we pass isn’t null, it will give us a warning.

We might have a legitimate need for a null reference, however, in which 
case we mark the type of a variable as nullable to suppress the compiler 
warnings about possible null assignment. The syntax is the same as for 
nullable value types: we append a ? to the type. Listing 2-31 shows a collec-
tion of nullable string elements designated by the string? type name.

var names = new List<string?>();
// Load names from somewhere, may contain null elements
--snip--
var properNames = names.Select(name => ToTitleCase(name));

Listing 2-31: Passing a possibly null argument for a non-nullable parameter

If we apply the ToTitleCase method from Listing 2-30 to this collection, 
we get a similar compiler warning as with Listing 2-29, where we explicitly 
assigned null to a non-nullable reference type variable:

[CS8604] Possible null reference argument for parameter 'original' in 'string
ToTitleCase(string original)'.

We’re given this warning because the compiler can’t guarantee that the 
collection contains no null elements. The compiler assumes any of the ele-
ments may be null because the element type of the collection is a nullable 
reference.
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If we explicitly check each element before making the call to ToTitleCase, 
the compiler can determine that we’re not using a null reference as an argu-
ment to the method. To achieve that, we could unpack the Select expression 
into a loop, such as the foreach loop in Listing 2-32.

foreach (var name in names)
{
	 if(name is not null)
		  properNames.Add(ToTitleCase(name));
}

Listing 2-32: Explicitly using a non-null reference

This code doesn’t prompt a warning about the argument in the call to 
ToTitleCase because the compiler can perform enough analysis on the code 
preceding the method call to guarantee that the name argument isn’t null.

However, sometimes the compiler needs our help to determine whether 
it’s safe to assign a variable to a non-nullable reference or to call a method 
with a non-nullable parameter. Listing 2-33 shows a slightly modified ver-
sion of Listing 2-31 calling ToTitleCase, where any null elements are filtered 
out before the method is called.

var properNames = names
	 .Where(name => name is not null)
	 .Select(name => ToTitleCase(name));

Listing 2-33: Removing null elements before the method call

This code gives us the same warning as in Listing 2-31, however, 
because the compiler can’t be certain ToTitleCase won’t be invoked with 
a null argument. Although it looks as if the check for null is being made 
inline, in fact we’re calling a lambda function to make that comparison, 
and the compiler doesn’t attempt to analyze every possible code path to 
make this safe. Fortunately, we have a workaround.

The Null-Forgiving Operator
We can use the null-forgiving operator to inform the compiler that we defi-
nitely know what we’re doing and that no null references are used as argu-
ments to a non-nullable parameter. The null-forgiving operator is an ! 
appended to the variable, which is why it’s also referred to as the dammit 
operator, as in, “It’s definitely not null, dammit!” When we’ve filtered out all 
the null elements from our collection, we apply the dammit operator to the 
argument for ToTitleCase, as shown in Listing 2-34.

var properNames = names
	 .Where(name => name is not null)
	 .Select(name => ToTitleCase(name!));

Listing 2-34: Using the null-forgiving operator
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Using the null-forgiving operator with the argument to ToTitleCase  
convinces the compiler that it is safe to call the method having a non-null 
reference type parameter. If we were to inadvertently pass a null reference, 
we’d (justifiably) get the dreaded Object reference not set to an instance of 
an object exception. We must take care when using the null-forgiving opera-
tor that we really do know that the variable can’t be null.

Nullable reference types, while having the same syntax as nullable 
value types, are just a device that indicates to the compiler that we’re mak-
ing certain assumptions about the variable. Unlike nullable value types, 
which are underpinned by a distinct type with behavior injected by the 
compiler, nullable reference types are a purely compile-time mechanism, 
used for static analysis, and do not change the behavior of our code in any 
way. At run time, nullable and non-nullable references are just references. 
Nevertheless, distinguishing between them in code is useful for encoding 
our assumptions about nullability.

Unexpected null reference exceptions are the curse of many programs 
and a class of error that programmers everywhere go to great lengths to 
try to avoid. The nullable reference type feature of modern C# is one that 
shifts some of that responsibility away from the programmer and onto the 
compiler.

Summary
My goal was to ensure that all use of references should be absolutely safe, with checking 

performed automatically by the compiler. But I couldn’t resist the temptation to put in a null 
reference, simply because it was so easy to implement. This has led to innumerable errors, 
vulnerabilities, and system crashes, which have probably caused a billion dollars of pain  

and damage in the last forty years.
—Tony (C.A.R.) Hoare

The type system in C# is broadly similar to many other programming lan-
guages, including its support for user-defined types. C# differs in its distinc-
tion between reference types and value types. Although there are various 
recommendations on when to choose to define a value type instead of a 
reference type, including documentation from Microsoft, those guidelines 
often take only part of the story into consideration.

The technical purpose of distinguishing value types from reference 
types is to allow the compiler and Common Language Runtime to make 
assumptions about values that may allow certain opportunities for optimiza-
tion. Some of the differences we’ve discussed result from the way reference 
and value type instances are stored and managed in memory. That value 
type variables are not independently subject to garbage collection can itself 
be a big win. However, we can’t just turn our classes into structs or record 
structs and expect that our programs will suddenly use less memory or 
run more quickly. Value semantics involves much more than just declaring 
something as a value type.



68   Chapter 2

Likewise, the copy-by-value behavior of value types is more than just 
a side effect of the way values use memory. Copying by value gives rise to 
many of the constraints that are imposed on value types and for which  
reference types have no need. Using value types where they’re appropriate 
can make our code clearer and simpler in subtle ways, like not having to 
check for null values on every use of a value. The characteristics of copying 
values also affect the behavior of the Equals method; although comparing 
variables to see if they are equal may sound inconsequential, it’s an essential 
aspect of working with variables.

The distinction between value types and reference types, then, is not just 
a list of restrictions. Genuine semantic differences affect our programs’ behav-
ior and can bring tangible benefits. One advantage of value types is that 
they can never be null. Constantly having to check references to ensure that 
they’re valid can be tiresome and error-prone. Using the non-nullable refer-
ence type feature is one way we reduce the occurrence of unexpected errors 
arising from dereferencing a null reference.

One of the great strengths of C# being a compiled and type-safe lan-
guage is that the compiler can identify many kinds of errors before our pro-
gram is ever run.


