
We can create new types in C# in several
ways, and we need to consider the individual

characteristics of each approach to determine
which best suits our goals. In particular, know-

ing how value types differ from reference types helps us
choose the right way forward, because these differences
have significant and sometimes unconsidered implica-
tions when we’re defining our own types. Certain trade-
offs will affect how we design our type and what we can
use it for. In this chapter, we’ll investigate those differ-
ences and what they mean for our programs.

We’ll explore the following:

•	 What choices we have when creating our own types

•	 Why C# has both reference types and value types

2
V A L U E A N D R E F E R E N C E T Y P E S

32 Chapter 2

•	 How choosing one or the other affects construction, null checking,
and other type behavior

•	 Why value type is not the same as value semantics

•	 Where different types are stored in memory and how that affects an
object’s lifetime

User-Defined Types
Most modern programming languages allow you to create custom types.
The basic principles of user-defined types in C# will be familiar to pro-
grammers of many other languages, but some of the details are different.
Therefore, in this section we’ll examine the four kinds of user-defined
types: structs, classes, and the newer records and record structs (introduced
in C# v9.0 and v10.0, respectively).

It’s important to recognize that the behavior of these types relies heav-
ily on whether they are reference types or value types. Let’s look briefly at
each kind of user-defined type with these differences in mind.

Structs and Classes
Listing 2-1 defines a simple struct to represent colors.

public readonly struct Color
{
	 public Color(int r, int g, int b)
		 => (Red, Green, Blue) = (r, g, b);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

Listing 2-1: Defining a simple struct

The Color struct is marked readonly to indicate that instances of Color
are immutable—that is, they never change their value. Correspondingly,
none of the three properties (Red, Green, and Blue) has a set accessor, so their
values can’t be changed after they’ve been given initial values using the
constructor.

The constructor in this example uses the expression body syntax (=>),
which you saw in Chapter 1, instead of a body enclosed between braces
{...}. We make the expression body a single-line statement by using tuple
assignment, which assigns the tuple of three parameter values r, g, and b to
the tuple of three properties. The compiler translates this syntax into an
efficient assignment from the parameter values directly to the respective
backing fields for the Red, Green, and Blue properties.

The readonly keyword in the struct’s definition is not mandatory but
reinforces that instances of Color are immutable. Immutable value types

Value and Reference Types 33

make our code easier to comprehend and may allow some optimizations by
the compiler.

By contrast, if we define a Color class instead of a struct, we can’t use the
readonly keyword in its definition, although we can make it immutable by
not providing set accessors for the properties. The only other difference in
defining Color as a class is the use of the class keyword in the definition:

public class Color
{
--snip--

The definition of Color is otherwise identical to that in Listing 2-1.
The principal difference between these two types is that a class is a ref-

erence type, and a struct is a value type. Before we analyze the implications
of this difference, let’s look at record and record struct types.

Records and Record Structs
As of C# v9.0, we can define a record type with the record keyword. Records
introduce a new syntax for compactly defining a type. Listing 2-2 creates a
record type named Color.

public record Color(int Red, int Green, int Blue);

Listing 2-2: Defining a record

This example shows a positional record; the Color type has no body, but
the type definition has its own positional parameters that are used by the
compiler to generate a complete type. Behind the scenes, the compiler
translates the record into a class definition, meaning that records are refer-
ence types. The compiler also translates the parameter names Red, Green,
and Blue into public properties of the same name, along with a public con-
structor with matching parameters to initialize the property values. The
positional parameters are also used by the compiler to generate other meth-
ods, including Equals, GetHashCode, and ToString, which are overrides of their
counterparts in the object base class.

Listing 2-3 creates a new instance of the Color record and uses its prop-
erties exactly as if it were a class or a struct.

var tomato = new Color(Red: 255, Green: 99, Blue: 71);

Assert.That(tomato.Red, Is.EqualTo(255));
Assert.That(tomato.Green, Is.EqualTo(99));
Assert.That(tomato.Blue, Is.EqualTo(71));

Listing 2-3: Creating an instance of Color

Here, we use named arguments when constructing the tomato variable
of type Color to emphasize the names given by the compiler to the construc-
tor parameters. Note that the property names used in the assertions are

34 Chapter 2

identical to the names used in the constructor, and that both match the
names used in the record definition.

N O T E 	 One important difference between records and structs or classes relates to handling
equality comparisons between two instances, a topic we’ll examine in more detail in
“Identity Equality vs. Value Equality” on page 47.

Very closely related to records are record structs, introduced in
C# v10.0. In contrast to records, which are compiled as classes, record
structs are translated by the compiler into struct definitions, making them
value types. Otherwise, they’re the same as records. Record structs are
denoted by the record struct keywords, as shown here:

public readonly record struct Color(int Red, int Green, int Blue);

This record struct, much like the struct in Listing 2-1, is marked readonly.
If we left out the readonly keyword, the properties generated by the compiler
would be read-write properties, with both get and set accessors. Using the
readonly keyword makes Color an immutable record struct.

Inheritance
One common way of representing relationships between classes and between
records is to use inheritance, or deriving one type from another. However,
we can’t apply inheritance to structs or record structs; it’s available only to
reference types.

Another restriction of inheritance is that a record can inherit from
another record but not explicitly from a class. Similarly, classes can’t inherit
from records. In every other respect, records follow the same rules and
have the same characteristics as classes as far as inheritance is concerned.
Classes and records can define virtual methods and properties, allowing a
more derived type to provide its own behavior by overriding the method or
property, and we can choose to ignore, override, or hide any virtual meth-
ods in a derived type.

In contrast, structs and record structs are implicitly sealed, meaning that
inheriting from them is prohibited. If we attempt to derive from a struct or
record struct, we get a compile-time error. Structs and record structs can’t
inherit from another user-defined type either.

Another restriction for a class or record is that it can inherit from only
one base type. Any attempt at multiple inheritance results in a compiler
error. If no base type is explicitly specified, object becomes the implied base
class. As you’ll see in “The Common Type System” on page 45, every type
ultimately inherits from object, either directly or indirectly. For example,
the Command class in Listing 2-4 implicitly derives from object, while the
DummyCommand class derives explicitly from Command, implicitly inheriting from
object via the Command base class.

Value and Reference Types 35

public class Command
{
	 public virtual IEnumerable<Result> RunQuery(string query)
	 {
		 using var transaction = connection.BeginTransaction();
		 return connection.Execute(transaction, query);
	 }

	 private readonly DatabaseConnection connection;
}

public class DummyCommand : Command
{
	 public override IEnumerable<Result> RunQuery(string query)
	 {
		 return new List<Result>();
	 }
}

Listing 2-4: Inheritance syntax

This Command base class defines a virtual RunQuery method, which is over-
ridden in the derived DummyCommand class to alter the method’s behavior.
A stub implementation like DummyCommand might be used during testing to
avoid having the test code depend on the underlying data store’s contents.

Any type may implement multiple interfaces, but it’s important to under-
stand that inheritance is quite different from interface implementation.
When we implement an interface, the implementing method is, by default,
not virtual. A class or record implementing a method from an interface can
choose to make its implementation of the method virtual, but a struct or
record struct cannot.

We can explicitly designate any member of a class or record as protected,
as opposed to public, private, or internal. A protected member is accessible
within the class declaring it and to any types that inherit from that class,
but it’s not visible to any other code. Since value types are sealed, it makes
no sense for them to have virtual or protected members. If we try to make a
method virtual in a value type definition or to define any protected fields,
properties, or methods, we’re rewarded with a compiler error.

We can choose to declare a class or record type as sealed so that it can’t be
used for further inheritance. Sealing a class does not affect what it can inherit,
only what can inherit from it. It’s common to seal classes that have value-like
characteristics, such as string, or when we wish to restrict a class’s behavior to
that defined in our own implementation. If a class is intended to be immu-
table, whether or not it’s intended to have value-like characteristics, sealing it
ensures that its immutability can’t be subverted by a mutable derived class.

Records are specifically intended to be value-like types and have value-
like behavior defined for them by the compiler. This means we should seal
record types unless we have a compelling reason not to do so. We’ll look in
detail at the meaning of value-like and why such types should be sealed in
Chapters 6 and 7.

36 Chapter 2

A BS T R AC T BA SE T Y PES

An abstract type is one that can be used only as a base type for inheritance; it
can’t be instantiated directly with new. One implication is that while classes and
records can be abstract, structs and record structs can’t. It would make no sense:
we can’t inherit from a value type, so it could never be instantiated.

In an abstract type, we can designate methods and properties as abstract,
meaning they have no implementation. Their purpose is simply to define the
operations that a concrete type must support. An abstract method or property
is implicitly virtual, but providing an implementation for one prompts a com-
piler error. Abstract types don’t have to define any abstract members, but only
abstract classes or records can have abstract methods and properties. Any
abstract methods or properties remain abstract unless they’re explicitly overrid-
den in a derived class. Providing an implementation for an abstract method in a
derived type makes that method concrete.

We can inherit one abstract type from another and choose to either pro-
vide implementations for the base type’s abstract methods or leave them as
abstract. We can only directly create an instance of a class or record that is
fully concrete; that is, any and all abstract methods have been overridden.

If we inherit from an abstract class, we can’t then inherit from any other
class because that would be a form of multiple inheritance, which is prohibited.

It can be tempting to think of C# interfaces and their members as being
abstract (especially for users familiar with C++, where interfaces are commonly
implemented as classes with all pure-virtual methods), but that’s not the case.
An interface contains only signatures of methods and properties; they are nei-
ther abstract nor virtual.

Inheritance is a central feature of object-oriented code, but it applies
exclusively to reference types. Inheritance—as well as the features that sup-
port it, such as virtual methods—is not appropriate for value types, in part
because of the way value type instances use memory.

Type Instance Lifetimes
Value types and reference types differ in the way each uses memory and,
more specifically, in the lifetime of their instances. Value type instances are
short-lived, and their lifetime is bound to the lifetime of the variables that
represent them. For value types, the variable is the instance; when we create
a new instance of a value type, the target variable effectively contains the
instance data—that is, the value of each field of the type.

In many cases, the lifetime of a variable is defined by a block, such as
a method body or a foreach loop. Any local variables within the block cease
to exist when the block ends. Alternatively, a variable might be contained
in another object, in which case the variable’s lifetime is defined by the
lifetime of the enclosing object. Whenever we copy a value type variable by

Value and Reference Types 37

assigning it to another variable or passing it as an argument to a method,
the copy is a whole new instance of the type in a different variable.

Reference type instances, on the other hand, are generally long-lived
and can be referred to by many variables. When we create a new instance
of a reference type, we’re given a reference to that instance in memory.
Whenever we copy that reference, we’re not also copying the instance. The
original reference and the copy both refer to the same instance. References
are stored in reference variables.

All reference type instances are allocated on the heap. Their lifetime
is managed by automatic garbage collection, which releases their memory
when they’re no longer needed by the program. An object is considered
unused when the garbage collector determines that no other live references
to that instance exist. While reference type instances are not subject to
their scope, reference variables are subject to scope, so when one goes out of
scope, it’s no longer a live reference to an instance. The lifetime of a refer-
ence type instance, then, is determined by the lifetimes of all the references
to that instance.

A cost is associated with being allocated on the heap, because the gar-
bage collection process takes time while the program is running. Ensuring
that unused heap memory is properly cleaned up is a complex operation
and may interrupt a program’s normal execution for a short time, so an
overhead is associated with reference types.

Value types don’t require the overhead associated with garbage col-
lection. The memory used by a value type instance can be freed when the
lifetime of its variable ends. To understand lifetime a little better, let’s look
more closely at what we mean by variable in different contexts.

Variables
A variable is simply a named area of memory. We use this name—or identifier—
to manipulate a memory location during the variable’s lifetime. C# has five
main kinds of variables:

Local variables

These are block-scope variables, where a block might be a method with
a statement body, the body of a loop, or any section of code delimited
by matching braces, {}. When control leaves a block at the closing
brace, any variables that are local to the block go out of scope. When
an exception is thrown in a block, the control flow also leaves that
scope and any containing scope until the exception is caught or the
program exits.

Instance fields

These are normal data members, known as fields, of structs and non-
static classes. Each instance of a type has its own copies of any instance
fields. The lifetime of an instance field is defined by the lifetime of the
object to which it belongs.

38 Chapter 2

Static fields

These fields are associated with a type, rather than individual instances
of the type. The lifetime of a static field is normally tied to an applica-
tion, so the instances associated with static fields are usually released
when an application exits.

Array elements

Individual elements in an array are all variables. We can access a partic-
ular element by its index and alter the element instance if it is mutable.

Method parameters

The parameters in a method definition are technically called formal
parameters but are commonly known as just parameters. A parameter’s
scope is the body of the method, exactly as if the parameter were declared
as a local variable within the method’s body. In code that calls a method,
we pass actual parameters, better known as arguments, that correspond to
the method’s parameters.

Regardless of its kind, a variable always has an associated type. This
might be an explicitly declared type, as in the declaration int size, or, for
local variables, the type might be implied with the var keyword. If the vari-
able’s type is a reference type, the variable’s value is a reference. A non-null
reference is a handle to an instance somewhere on the heap. If the vari-
able’s type is a value type, the variable’s value is an instance of the type.

Variables vs. Values
It’s not always easy to intuit what counts as a variable and what counts as a
value, but the distinction is important:

•	 Variables can be assigned to, although a readonly field variable can be
assigned only within a constructor of the type of which it is a member,
or using field initialization (which we’ll discuss in “Field Initializers”
on page 58).

•	 Values are the results of expressions—such as the result of calling new,
the return value from a method, or a constant expression such as a
literal number or string literal. Values can’t be assigned to, but we use
them to initialize variables by using assignment or passing them as
arguments to method parameters.

Variables, for the most part, have names. Strictly speaking, individual
array elements don’t have their own names, but for an array variable arr,
the expression arr[ index] is essentially the element’s identifier. A value can
have a name but doesn’t require one: the expression 2 + 2 produces a new
value, but it is anonymous unless we assign that value to a variable.

The type of a value defines what an instance looks like. Among other
things, the type might have multiple fields that need space allocated in
memory when an instance of the type is created. The type of a variable
defines the sort of value it can contain.

Value and Reference Types 39

A value is just a pattern of bits. The type is a formal specification for
interpreting that bit pattern to give it meaning in a program. Two values
with identical bit patterns may be interpreted differently if they are differ-
ent types. A pattern of bits that are all 0 means one thing if the type is long,
but something else entirely if the type is DateTime.

A variable of value type directly contains its data, whereas a variable
of reference type contains a reference to its data. More precisely, reference
variables have a value that is a reference to an object somewhere on the
heap. Put simply, a reference refers to an instance of a reference type; the
value of a reference type variable is a reference.

The relationship between variables and values is that all variables have a
value, although the value can’t be accessed until the variable has been defi-
nitely assigned.

Definite Assignment
We can’t read the value of a variable unless the compiler is satisfied that
the variable has definitely been given an initial value. More formally, a
variable can be read only after a value has been definitely assigned to it.
The C# Language Specification precisely defines what constitutes definite
assignment, but the essence is that a variable must have been assigned or
initialized with a value at least once before its value is read.

If we try to obtain the value of any variable that hasn’t been definitely
assigned, the compiler raises an error to tell us that this isn’t allowed. For
example, when we declare a local variable within a method, it is uninitial-
ized unless or until we assign a value to it. Such variables are initially con-
sidered unassigned. Conceptually, at least, an unassigned variable doesn’t
have a value.

When we assign something to a variable, we give that variable a new
value. When we read from a variable, we obtain its value. Variables and val-
ues are both expressions, meaning we can evaluate them to produce a value,
as long as they have been definitely assigned.

To reiterate, attempting to read a value from any variable that hasn’t
yet been definitely assigned is an error. When we use a var declaration
for a local variable, we must provide an initial value where the variable is
declared, because the type of the variable is inferred from the type of the
value being assigned to it.

Instances and Storage
Now that we’ve clearly defined variables and values, we can explore how
they relate to type instances. Whether an instance is a value type or a refer-
ence type affects where it is allocated and managed in memory; as a result,
value type variables have some peculiarities that don’t apply to references.

Value types do not always live on the stack, despite common misconcep-
tions. Values for local variables are most often tied to the block scope of a
method, and so might be associated with a stack frame for the method, but

40 Chapter 2

values can also be contained within another object as a member or an ele-
ment in an array. Let’s examine this more closely by looking at some exam-
ples of how variables are embedded in objects.

Embedded Values
If a variable is a field embedded within an instance of another type, its value
is allocated within the memory for its enclosing object. This is especially
important for value type variables that directly contain the instance of their
type. Consider the Color struct in Listing 2-5.

public readonly struct Color
{
	 public Color(int r, int g, int b)
		 => (Red, Green, Blue) = (r, g, b);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

Listing 2-5: Defining a Color struct with multiple fields

The Color struct has three properties representing the components of
an RGB color. When a Color value is used as a field or property in a class, an
instance of that class will wholly contain a Color value on the heap. Take, for
example, the Brush class in Listing 2-6, which has several fields, one of which
is a Color type.

public class Brush
{
--snip--
	 public enum BrushStyle { Solid, Gradient, Texture }

	 private readonly int width;
	 private readonly Color color;
	 private readonly BrushStyle style;
}

Listing 2-6: A Color value embedded within the Brush class

The Brush type is a class and therefore a reference type. When we cre-
ate an instance of any reference type, it’s allocated on the heap. The Brush
class has three fields, one of which is a Color instance, which itself has three
fields (Red, Green, and Blue). An instance of Brush might look roughly like
Figure 2-1 in memory.

Value and Reference Types 41

w
idt

h

R
ed

Gr
ee

n

B
lue

st
yl
e

Brush instance

color field (a Color instance)

Brush reference

Figure 2-1: A Color value embedded in a Brush instance on the heap

When we create a new Brush, the instance is created on the heap and
we’re given a reference to it. The color field occupies memory directly within
the memory space for the Brush instance. If we implemented Color as a
record struct instead of a struct, the outcome would be the same. Record
structs are value types in exactly the same way as structs and are allocated
directly within the memory space of any enclosing object.

Value type instances are not individually garbage collected, but if a
value type instance is embedded in another object that has been allocated
on the heap, the memory used by the value type instance will be reclaimed
during garbage collection of the enclosing object.

The lifetime of the Color instance represented by the color field is tied
to the lifetime of the Brush instance. When the garbage collector determines
that the Brush instance is no longer used, it will free up the memory for that
instance, including the embedded Color value.

Array Elements

When a value type instance is an element in an array, it isn’t (strictly speak-
ing) a field of the array object, but the value is still embedded within the
memory for the array. Arrays are always allocated on the heap, regardless of
the type of their elements. When we create an array, we’re given a reference
to it. To illustrate, consider this array of Color values, where Color is a struct:

var colors = new Color[3];

The colors variable here is a reference to an array of three Color
instances on the heap. The memory layout of the colors array might look
like Figure 2-2.

R
ed

Gr
ee

n

B
lue R
ed

Gr
ee

n

B
lue R
ed

Gr
ee

n

B
lue

colors[0] colors[1] colors[2]colors
(an array
reference)

Figure 2-2: An array of Color structs in memory

42 Chapter 2

In the colors array, each element is large enough to store the three int
backing fields. If the element type had more fields, each element would
require more space on the heap. If the Color type were a record struct
rather than a struct, the layout would be identical; recall that the compiler
translates record structs into structs.

Reference variables, by contrast, are all the same size, regardless of the
number of fields declared in the type definition. The memory required for
an array of references is determined only by the number of elements, not
the size of each instance.

Whether the elements of an array are references or value type instances,
the array is always on the heap, and the array variable refers to its elements.
If the garbage collector determines that the array is no longer in use—that
is, no live reference variables to it exist—then the memory for all of its
elements is freed in one go.

Embedded References

Reference fields are also embedded in their enclosing type, but their instances
are not. If we had implemented Color as a reference type in Listing 2-5,
rather than a value type, the layout of a Brush instance would be somewhat
different. The color field of the Brush class would be a reference, as illus-
trated in Figure 2-3.

Color
reference

w
idt

h

co
lo
r

st
yl
e

R
ed

Gr
ee

n

B
lue

Brush
reference

Brush instance

Color instance

Figure 2-3: A color reference field embedded in a Brush instance

Instead of containing the entire instance of Color within its own mem-
ory, the Brush type’s color field refers to a separate Color instance somewhere
else on the heap. Reference type instances are always allocated on the heap
and are independent of one another. This applies to any reference type, so
it would be true if we implemented Color as either a class or a record.

The lifetime of the Color instance here is independent of the Brush instance.
When the Brush instance is no longer used and its memory is released, the

Value and Reference Types 43

Color instance will remain in memory until the garbage collector determines
that it’s no longer needed.

Field and Property Layout

All user-defined types can contain instance fields and properties. However,
structs and record structs have one restriction that does not apply to classes
or records: a value type definition can’t embed a field of its own type.

You’ve already seen how value type instances directly contain their
fields. If a type has a field that is itself a value type, that field also directly
contains its data. If the type of that field is the same as its containing type,
the compiler is unable to determine how to create it. Consider the simple
struct in Listing 2-7 that embeds an instance of itself as a field.

struct Node
{
	 Node p;
}

Listing 2-7: A struct containing an instance of itself

This example will not compile. The compiler can’t know how to lay out
the contained field named p, because p’s type isn’t fully defined at the point
where it is declared. The same is true of properties, because even automatic
properties require a backing field, though that field is hidden from us.

The same reasoning applies to an indirect dependency, illustrated in
Listing 2-8.

struct Tree
{
	 Node root;
}
struct Node
{
	 Tree leftChild, rightChild;
}

Listing 2-8: A struct with a cyclic dependency

Neither the Tree type nor the Node type can be created here because
the layout of each depends on the other. This might sound draconian, but
in practice it’s rarely a problem, and we have an easy workaround: if we
change the definition of either Tree or Node to make it a reference type, the
compiler will accept this code. The rule applies only to value types because,
as mentioned previously, references are always the same size regardless of
the type to which they refer. This means the compiler doesn’t need to know
the layout of a class or record to establish a reference to it.

44 Chapter 2

Boxed Values
References can refer only to objects on the heap and can’t refer to individ-
ual value type instances, even those enclosed within a reference type object.
The only way for a reference variable to individually refer to a value type
instance is to make a copy of the value, put that copy on the heap, and refer
to the copy with a new reference. The process of creating a copy and storing
it on the heap, known as boxing, is automatic when the type of the variable is
a reference type. A boxed value can always be converted back to its original
value type, a process called unboxing, where the value contained in the box
is copied into the target variable.

Boxing happens automatically when we refer to a value using a refer-
ence variable such as object, or when we pass a value as an argument to a
method that takes a reference type parameter. Unboxing is always explicit:
we need to cast the boxed variable back to its correct value type, as shown
in Listing 2-9.

public readonly struct Color
{
	 public Color(int r, int g, int b)
		 => (Red, Green, Blue) = (r, g, b);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

var red = new Color(0xFF, 0, 0);
var green = new Color(0, 0xFF, 0);

1 object copy = green;
Assert.That(object.Equals(2 red, copy), Is.False);

var copyGreen = 3 (Color)copy;

Listing 2-9: Boxing and unboxing

The type of the copy variable is object, and is therefore a reference, so
the value of green gets boxed into copy 1. Similarly, calling the object.Equals
method boxes the value of red, because the method takes two object param-
eters 2. We don’t need to explicitly cast the value to the object type; it’s
boxed implicitly. We do require an explicit cast to unbox the value stored in
copy into a new variable 3.

As you’ll see shortly when we cover the Common Type System, object
is the base class of every type, meaning we can always use object to refer to
any other variable, including value type instances. A struct can also imple-
ment one or more interfaces. Interfaces are reference types, so if we use
either object or an interface type to refer to a value, that value is automati-
cally boxed onto the heap.

A boxed value can be unboxed only to its original type. We can’t, for
instance, unbox an int value into a double, even though an implicit built-in

Value and Reference Types 45

conversion exists from int to double. If we attempt to unbox a value to
anything other than its original type, we’ll get an InvalidCastException at
run time.

Boxed values are copied to the heap, which means the box is no longer
subject to the scope of its variable and may exist beyond the lifespan of its
original value. It’s up to the garbage collector to clean up boxed values.
Chapter 4 discusses boxing in more detail.

Semantics and Type
Value types have semantic implications that go beyond being an instance of
a struct or record struct. Choosing a value type instead of a reference type
when we define our own types requires much more than a consideration of
possible optimizations. Records, in particular, differ from classes, because
even though records are compiled into classes and are therefore reference
types, they share some important behavioral characteristics with value types.

Before delving into the behavior of record and record struct types, we
need to better understand how structs differ from classes.

The Common Type System
C# has a hierarchical type system, known as the Common Type System, in
which all types derive from object, a keyword alias for the System.Object
type. This is why we can always use object to refer to any other variable—
although, as you just saw, in the case of value types, the instances are boxed
so they can be referred to by object references.

Even the built-in types, such as int and float, inherit from object. In
fact, all built-in types are aliases for types in the System namespace. The
System types that underlie the numeric types are all structs and therefore
value types. For example, int is an alias for the System type public readonly
struct Int32.

Enumeration types created with the enum keyword are not aliases to
System types, although they all derive from the System.Enum class. The indi-
vidual values of an enum declaration have an underlying numeric type, which
by default is int. We could specify a different numeric type—for example, if
we wanted to allow the enum elements to have values larger or smaller than is
permitted for an int.

The non-numeric built-ins string and object are aliases to classes in the
System namespace, so they’re both reference types.

When we use the class or record keyword to define our own refer-
ence type, our new type derives directly from the object base class unless
it explicitly inherits from another type. The object base class is neither an
interface nor abstract. It has a mix of virtual, nonvirtual, and static mem-
bers, which provide the default implementations common to all objects.

All struct types (including record structs) and the System.Enum type
implicitly derive from System.ValueType (for which there’s no keyword alias),
which in turn derives from the object base class, so all struct types derive

46 Chapter 2

indirectly from object. Value types, unlike reference types, have an interme-
diate base class defined by the language.

N O T E 	 ValueType itself is not a struct, which is sometimes overlooked. All structs implicitly
inherit from ValueType, so ValueType itself must be a class. Moreover, ValueType is an
abstract class, meaning we can create an instance of object but not of ValueType.

The ValueType class overrides all the virtual methods defined in the
object base class—Equals, GetHashCode, and ToString—and customizes their
implementations to provide behavior tailored for value types. The ValueType
implementations for Equals and GetHashCode are extremely important because
they provide the value-based definition of equality that distinguishes value
types from reference types. The difference between these implementations
has to do with the way values are copied.

Copy Semantics
The difference between where reference types and value types store their
instance data has important implications when we copy variables, because
copying a reference does not copy the instance. Listing 2-10 shows a simple
example to illustrate the difference.

var thing = new Thing { Host = "Palmer" };
1 var copy = thing;
2 copy.Host = "Bennings";
Assert.That(thing.Host, Is.EqualTo("Palmer"));

Listing 2-10: Copying a variable

Here we’re copying the value of the thing variable into a new variable
called copy 1. Then we assign a new value to the Host property of copy 2.
The test checks that the properties of the original variable haven’t changed.
The success of the test assertion depends on whether Thing is a value type or
a reference type.

As noted earlier, all variables have a value that we may copy to a new
variable. If Thing is a value type, any copy we make is a new instance of the
type, so if we modify any fields of that copy, those changes have no effect
on the fields of the original value. Therefore, if Thing is a struct or a record
struct, the test will pass.

If Thing is a reference type, on the other hand, the thing variable’s value
is a reference. When we copy a reference, only the value of the reference is
copied, and it refers to the same instance as the original variable’s value.
This means if we modify the instance using one reference, that change is
reflected in all the references to it. Thus, if Thing is a class or a record, the
test will fail.

Locks and Reference Semantics

Some situations require the behavior of reference type variables, and using
a value type instance would be incorrect or even disallowed. For example,

Value and Reference Types 47

we can’t use a value type in a lock statement to prevent a section of code
from being executed concurrently by multiple threads. The compiler for-
bids it because the variable used as a lock needs to be a reference to an
object on the heap. The purpose of locking an object is to allow only a
single thread to execute the code it protects at any given time. The object
instance identifies the lock and can then have multiple references to it
from different threads.

The underlying mechanism for the lock statement is the System
.Threading.Monitor class. The lock statement translates to the Enter method
of Monitor, which takes object as its parameter. Any instance of a value type
passed to Monitor.Enter as an argument will automatically be boxed. Each
thread calling Monitor.Enter will box the value separately, and the acquisi-
tion of the lock would never fail, rendering it pointless.

When we’ve finished with the lock, we need to call Monitor.Exit and
pass the same reference used to acquire the lock with Monitor.Enter.
The compiler inserts the code to call Monitor.Exit at the closing brace
of a lock block. If we use a value type, the call to Exit will result in a new
boxed value on the heap, and so will be a different reference to that used
in the call to Enter. The result is that releasing the lock will fail with a
SynchronizationLockException error.

This is one situation actively requiring reference semantics, because
passing a reference to the Enter method doesn’t copy the instance. The
monitor and the code using the lock both have a reference to the same
instance.

Identity Equality vs. Value Equality

When we say we’re comparing variables to see whether they’re equal, what
we really mean is that we’re comparing the variables’ values. If two vari-
ables have the same value, they’re considered equal. The type of each value
plays an important role: the values being compared must be the same type,
although one or both values may have resulted from an implicit conversion.

If we compare the values of two variables of the same reference type,
their respective values are references, which compare equal by default if
they both refer to the same object in memory. This is known as an identity
comparison. We can override the default identity comparison behavior in
our own reference types (a topic we’ll examine in detail in Chapter 5), but
two references to separate instances that have identical field values compare
unequal according to the default identity comparison because they refer to
different objects.

By contrast, two value type instances compare equal—again by default,
because we can modify this behavior—if all the fields of one compare equal
with their counterparts on the other. The difference in equality compari-
son behavior between value type instances and reference type instances is
directly related to their respective copy semantics. Since a copy of a value
type instance is a new independent instance with identical state, an identity
comparison makes no sense. The two concepts of copying and equality are
therefore intimately related.

48 Chapter 2

The ability to compare two values to see whether they are equal is often
underappreciated. Even if we rarely need to compare variables in our own
code, commonly used classes such as List< T >, Dictionary< T >, and the LINQ
methods that work on collections may be making those comparisons out of
sight. Equals is a virtual method defined by the object base class, which is a
clue to how fundamental it really is, because it means we can call the Equals
method on any value to compare it with any other.

However, the object.Equals implementation always performs an identity
comparison, which, again, is pointless for value types. For this reason, all
structs implicitly inherit the ValueType class. ValueType overrides the Equals
method to perform a value-based comparison.

The difference between what equality means for reference types and value
types affects the way our code behaves at run time. Consider Listing 2-11, where
the Thing type has not yet been allocated as a reference type or value type
and does not explicitly override the Equals method. Here, we create two
instances of Thing with the same value for their Host property. What happens
when we call Equals depends entirely on whether Thing is a class, record,
struct, or record struct.

public ??? Thing
{
	 public string Host { get; set; }
}

var thing = new Thing { Host = "Palmer" };
var clone = new Thing { Host = "Palmer" };

Assert.That(clone.Equals(thing), Is.True);

Listing 2-11: Comparing equality of two independent variables

This assertion will fail if Thing is a class, because the object.Equals
method will return true only if both clone and thing are references to the
same instance, and they’re not. The assertion will pass if Thing is a struct,
because the ValueType implementation of Equals returns true if both clone
and thing have the same value; that is, all their fields compare equal.

The clone and thing variables also compare equal if Thing is either a
record or a record struct because they also use a value-based comparison
for equality.

Records, Structs, and Value Semantics
Records are reference types but have value-like behavior when it comes to
comparing two record variables for equality. When a record type is com-
piled, the compiler generates a class definition with an overridden imple-
mentation of the Equals method unless we define one ourselves. The Equals
method generated for records compares two instances to determine if they
have the same state, rather than just comparing two references to deter-
mine if they refer to the same instance.

Value and Reference Types 49

In a struct, on the other hand, if we don’t override Equals, the equality
comparison relies on the implementation of Equals provided by the ValueType
base class. Records, as reference types, don’t inherit from ValueType. Record
structs do inherit from ValueType, but, as with records, Equals is overridden
by a compiler-generated implementation, because ValueType.Equals might
not be the optimal implementation.

The ValueType implementation is necessarily general; it must work for
any struct type, regardless of the types of the struct’s fields. If a field of the
type has a custom implementation of Equals, instances of the containing
type must use that field’s implementation for comparisons; a simple struc-
tural or bitwise comparison of the instances may not always be correct. The
implementation of Equals provided by ValueType relies on reflection at run
time to determine how to compare the fields and will use an overridden
implementation of Equals to compare a field if the type of that field has one.

If we want to avoid the overhead of reflection in a struct, we must
override Equals with our own implementation to compare each field and
property with its corresponding field or property in the instance being
compared. If each field and property value compares equal, using its Equals
method where required, then the two instances are equal. This is essen-
tially the implementation provided by the compiler for records and record
structs.

To reiterate, structs, records, and record structs all employ a value-
based comparison of their state to implement the Equals method, but for
records and record structs, the implementation is generated automatically
by the compiler, freeing us from the responsibility of providing our own
custom implementation.

The variables we use for records—but not record structs—are refer-
ences, and when we assign one record reference to another variable, we still
get two references to the same record instance, just as we do if the type is
a class. Records therefore have reference semantics for copying and value
semantics for equality comparison.

The different comparison and copy semantics for value types and ref-
erence types have important consequences for the way instances of those
types behave at run time. However, important differences also exist in the
way those instances are created in the first place. In the next section, we’ll
look at how construction and initialization differ depending on whether the
type of the instance is a value type or reference type.

Construction and Initialization
Creating a new object is superficially a simple operation, but behind the
scenes the compiler goes to a great deal of trouble to make the process as
efficient as possible. In principle, creating an object involves allocating the
memory for an instance of a type and then calling a constructor whose job
is to initialize the instance’s fields. The syntax is identical for both value
types and reference types, but new treats them differently and hides some
complexity around how and where different types are allocated in memory.

50 Chapter 2

In other words, the new expression is an abstraction that shields us from the
implementation details of how memory is allocated and used.

Specifically, the memory for reference type instances is allocated
dynamically. When a new instance of a class or record type is created, the
memory is allocated on the heap at run time. Instances of struct and record
struct types are allocated differently, depending on how the resulting
instance is used. Consider this code, which initializes a variable with a new
instance of a type named Thing:

var thing = new Thing();

This basic syntax for creating an object and assigning it to a variable is
the same whether Thing is a class, struct, record, or record struct. As you’ll
see over the coming sections, this code depends on Thing having an acces-
sible constructor that can be invoked with no arguments, which isn’t neces-
sarily the case when Thing is a reference type. For the time being, though,
let’s assume that Thing instances can be created this way. If Thing is a class
or a record, new causes memory to be allocated on the heap at run time
and returns a reference to the new object, which is assigned to the thing
variable.

If Thing is a struct or a record struct, the new instance is assigned to the
thing variable. However, this code may or may not allocate memory for a
new instance of Thing and may or may not call a constructor. The reason is
that construction and initialization are separate processes. Part of the dif-
ference is related to whether a Thing is a value type or reference type.

Default Initialization
Default initialization means that each of a type’s fields, including the backing
fields for properties, is given a default value, which is defined in the lan-
guage to mean one of the following:

•	 References are set to null.

•	 Built-in numeric value type variables are set to 0.

•	 All other value types are default-initialized.

Default-initialized reference type fields are a common cause of errors.
For example, the simple MusicTrack struct in Listing 2-12 relies on us manu-
ally initializing an instance by setting its properties. If we neglect to set suit-
able values for the properties of a MusicTrack instance, we may be rewarded
with an exception when we use the instance.

public struct MusicTrack
{
	 public string Artist { get; set; }
	 public string Name { get; set; }

	 public override string ToString()
		 => $"{Artist.ToUpper()}: {Name.ToUpper()}";
}

Value and Reference Types 51

var defaultTrack = new MusicTrack();

var print = defaultTrack.ToString();

Listing 2-12: Initializing reference type fields

The call to ToString causes a null reference exception because the
defaultTrack value has been default-initialized. The ToString method calls
ToUpper on its Artist and Name properties, whose default-initialized value
is null. We need to be alert to any uses of default-initialized references in
order to avoid such problems resulting from accessing a null reference. One
way to minimize the impact of default-initialized values is by providing our
own instance constructors.

Instance Constructors
An instance constructor, like a method, can have zero or more parameters.
Also like methods, constructors can be overloaded, so we can define several
constructors for a type, each with a different number of parameters, or
parameters of different types. Constructor definitions for classes, structs,
records, and record structs have many similarities, but several important
differences exist.

In Listing 2-13, we add a constructor for the MusicTrack struct and use
the parameter values to initialize the instance’s property values. We use the
null-coalescing operator ?? to assign an empty string for each property if its
corresponding parameter is null.

public readonly struct MusicTrack
{
	 public MusicTrack(string artist, string name)
	 => (Artist, Name) = (artist ?? string.Empty, name ?? string.Empty);

	 public string Artist { get; }
	 public string Name { get; }

	 public override string ToString()
		 => $"{Artist.ToUpper()}: {Name.ToUpper()}";
}

Listing 2-13: Adding an instance constructor with parameters

By adding a constructor, we no longer have to rely on MusicTrack users
setting the properties explicitly, since the initial values for those properties
are set in the constructor. We have made those properties get-only—that
is, they can be given a value only in the constructor—and made MusicTrack
a readonly struct. However, we must still be cautious of using the property
values inside the ToString method because instances of any value type can
always be default-initialized, regardless of the presence of a user-defined
constructor definition. Adding our own constructor for MusicTrack to give
meaningful values to the properties isn’t sufficient protection against

52 Chapter 2

exceptions that occur from calling methods using a null reference, because
MusicTrack is a struct type.

If the nullable reference type feature is enabled (see “Nullable Reference
Types” on page 64 for more), the constructor’s parameters will be non-nullable
variables, meaning that passing null for either argument would cause a
compiler warning. Using non-nullable parameters doesn’t mean that null
can’t be passed as an argument, but we may decide that the warning is
sufficient protection, potentially allowing us to omit the null-coalescing
assignments in the constructor. The nullable reference type feature doesn’t,
however, mean we can avoid verifying that the property values are not null
prior to using them in the ToString method. Fortunately, the null-conditional
operator makes the check straightforward and safe:

public override string ToString()
 => $"{Artist?.ToUpper()}: {Name?.ToUpper()}";

Here the presence of the null-conditional operator, a ? appended to
each property name, means that in each case the ToUpper method will be
called only if the property is a non-null value. If either property is null, the
result of the expression between the braces within the string is null, which
the string interpolation treats as an empty string.

If MusicTrack were a class or record, the presence of our own constructor
would mean we could no longer create an instance without passing argu-
ments like this:

var track = new MusicTrack();

If we attempt to create a default-constructed instance, we get the follow-
ing compiler error:

[CS7036] There is no argument given that corresponds to the required formal parameter 'artist'
of 'MusicTrack.MusicTrack(string, string)'

If we don’t provide any constructors for a class or record, the compiler
inserts a default constructor for us. If we define a constructor when we
define our own reference type, however, the compiler will not generate
the default constructor. The compiler doesn’t create a default constructor
for value types, but an instance of a struct or record struct can be default-
initialized whether or not we define our own constructor.

Default and Generated Constructors

The behavior of reference types and value types differs partly because
reference types are allocated on the heap, but value types might not be.
The compiler generates a default constructor for reference types because
instances of such types are allocated dynamically, and their instances are
initialized at run time. When a reference type instance is allocated on the
heap, the memory for it is set to zero, effectively default-initializing the
instance.

Value and Reference Types 53

Value types are treated differently because their memory isn’t neces-
sarily allocated at run time: for local value type variables, the compiler
may reserve memory for the instance data, and the program accesses that
memory directly. The underlying Common Intermediate Language (CIL)
has an efficient instruction for default-initializing value type instances that
effectively zeroes out the memory used by the instance, wherever its mem-
ory actually resides.

We can think of the default initialization of a struct or record struct as
being performed by a compiler-provided default constructor, because the
result is identical in any case. Default-initializing value types offers a minor
performance advantage because it doesn’t require a method call to a con-
structor, although it’s almost never the most significant optimization.

In a positional record or a positional record struct, the compiler gener-
ates a public constructor based on the parameters we use in the type defini-
tion, like this:

public sealed record Color(int Red, int Green, int Blue);

The parameters to Color in this example tell the compiler to create pub-
lic properties using those names and their types. The compiler also creates
a constructor with the same signature as the record’s parameter list, where
the properties are assigned their values. The constructor generated by the
compiler is the equivalent of this:

public Color(int Red, int Green, int Blue)
 => (this.Red, this.Green, this.Blue) = (Red, Green, Blue);

Although the constructor has been generated by the compiler, it’s still
considered a user-defined constructor and therefore still suppresses the
default constructor for the Color record.

Regardless of its type, an instance is always default-initialized when
it’s first created, whether its memory is being allocated on the heap or
elsewhere.

When we define our own constructor for a class, we can rely on all
the fields having been default-initialized prior to the constructor’s body; the
fields of a class are considered initially assigned within the constructor. In a
struct’s constructor, the fields are initially unassigned, so we must definitely
assign a value for every field of a struct or record struct, even if it’s simply to
replace the value with its default-initialized equivalent.

Overloaded Constructors

We can provide a constructor with parameters for any type, and we can
overload the constructor by defining several constructors that have differ-
ent numbers or types of parameters. This is useful when we want to support
different ways to construct our type. For instance, Listing 2-14 shows a struct
that has two constructors with differing signatures.

54 Chapter 2

public readonly struct Color
{
	 public Color(int red, int green, int blue)
		 => (Red, Green, Blue) = (red, green, blue);

	 public Color(uint rgb)
		 => (Red, Green, Blue) = Unpack(rgb);

	 public int Red { get; }
	 public int Green { get; }
	 public int Blue { get; }
}

Listing 2-14: Overloading constructors

The first constructor initializes the three properties from three separate
parameters (red, green, blue). The second constructor receives a numeric
representation of an RGB value and initializes the Red, Green, and Blue
properties by calling the Unpack method (not shown here) to unpack
the number into its component parts. We select the different overloads
when using the constructor by passing different arguments, as shown in
Listing 2-15.

var orange = new Color(0xFFA500);
var yellow = new Color(0xFF, 0xFF, 0);

Listing 2-15: Selecting the correct overload

Here, the orange variable is created using the constructor with a single
uint parameter (the second constructor in Listing 2-14), and the yellow vari-
able uses the constructor with three int parameters (the first constructor in
Listing 2-14).

Parameterless Constructors

As noted earlier, defining our own constructor for a class type will inhibit
the compiler-generated default constructor, meaning that we can create
new instances of the type only by passing arguments to our own construc-
tor’s parameters. If we need to create instances of such a reference type
without arguments, we can define our own parameterless constructor, which
we might use to initialize reference type fields and properties to non-null
values. This is common when a class contains a collection that needs to be
initialized but can be empty, as demonstrated in Listing 2-16.

public sealed class Playlist
{
	 public Playlist(IEnumerable<MusicTrack> items)
		 1 => queue = new(items);

	 public Playlist()
		 2 => queue = new();

Value and Reference Types 55

	 public void Append(MusicTrack item)
		 => queue.Add(item);
--snip--

	 private Queue<MusicTrack> queue;
}

Listing 2-16: Defining a parameterless constructor

The two constructors defined here allow us to create a Playlist either by
passing a sequence of items to populate the queue 1 or by passing no argu-
ments 2. If we pass no arguments, the queue field is initialized as an empty
queue, ensuring that it isn’t null.

Both constructors initialize the queue field by using type inference,
a feature called target-typed new, introduced in C# v9.0. The compiler deduces
the type required by new from the type of the target variable being initialized—
in this example, a Queue< MusicTrack>. The queue field is guaranteed to be
non-null for any Playlist instance, so we don’t need to check for null in the
Playlist.Append method.

In a positional record, the compiler creates a constructor based on the
positional arguments for the record, so by default, instances of a positional
record can’t be created without arguments. We can define our own param-
eterless constructor for a positional record if we require that behavior.
A struct or positional record struct, on the other hand, can always be cre-
ated without arguments, whether or not we define our own constructors.

Structs and Default Values

As of C# v10.0, we can define our own parameterless constructors for value
types to help ensure that any reference fields are non-null. However, we
still need to check for null in a value type’s implementation because an
instance of a struct or record struct can always be default-initialized, effec-
tively bypassing any constructors we define. This is illustrated in Listing 2-17,
where we add a parameterless constructor for the MusicTrack struct that
explicitly initializes the two string properties.

public readonly struct MusicTrack
{
	 public MusicTrack()
		 => (Artist, Name) = (string.Empty, string.Empty);

	 public MusicTrack(string artist, string name)
		 => (Artist, Name) = (artist, name);

	 public string Artist { get; }
	 public string Name { get; }

	 public override string ToString()
		 => $"{Artist?.ToUpper()}: {Name?.ToUpper()}";
}

Listing 2-17: Adding a parameterless constructor for a struct

56 Chapter 2

The parameterless constructor sets both reference type properties to a
non-null value, so calling ToUpper on either property is safe when we’re using
a MusicTrack instance that was created using new MusicTrack. However, this
doesn’t mean we can omit the null-conditional checks in ToString. It’s still
possible for Artist or Name to be null if the instance is a default-initialized
MusicTrack—for example, when it’s an element in an array:

var favorites = new MusicTrack[3];

var print = favorites[0].ToString();

Without the checks for null in ToString, this code would cause ToString
to throw a NullReferenceException because the creation of the favorites array
doesn’t call our parameterless constructor on its elements. Each element is
default-initialized, leaving the Name and Artist properties with their default
value of null, so attempting to call the ToUpper method on a null reference
causes the exception.

Array elements are default-initialized without invoking any parameter-
less constructor we provide. The parameterless constructor is reserved for
when we create a new instance by using the new keyword.

Value Type Initialization

One quite subtle consequence of the way value type instances are allocated
in memory is that if a value type’s fields are all public, we can definitely
assign a value for each field outside the constructor (as long as they’re not
read-only), which results in the whole instance being fully assigned.

For example, Listing 2-18 assigns a value to each field of an uninitial-
ized struct variable.

public struct Color
{
	 public int red;
	 public int green;
	 public int blue;
}

Color background; // initially unassigned variable

background.red = 0xFF;
background.green = 0xA5;
background.blue = 0;

Assert.That(background.red, Is.EqualTo(0xFF));

Listing 2-18: Definitely assigning a struct

This code compiles, and the test passes. We can read the value of the
red field, even though we’ve never allocated the background variable with
new or invoked a constructor for it. The same would be true if Color were a
record struct instead.

Value and Reference Types 57

This example demonstrates that value type variables directly contain an
instance of their type. Assigning to each field means we don’t need to explicitly
construct an instance. However, relying on this behavior is likely to cause other
problems, not the least of which is that using public fields leaves the Color type
open to misuse, intended or not. In practice, a constructor is a much better way
to initialize a value type’s fields, which should all be private and read-only.

Note that if we alter the public fields to be publicly mutable properties,
this code will fail to compile. We can’t access a property of a value type in
any way until the instance itself has been fully, and definitely, assigned.
Every property has a backing field generated by the compiler, and that
backing field is always private.

Constructor Accessibility

Constructors with parameters can be made public or private in any type.
Private constructors are useful when we want to prevent users from creat-
ing instances with certain arguments. We used this technique in “Static
Creation Methods” in Chapter 1 to force users to call the static class factory
methods we defined in order to create certain values, rather than using
the new keyword directly. In a class or record, we can make the parameter-
less constructor private to prevent users from creating default-constructed
instances, shown for the Color record in Listing 2-19.

public sealed record Color
{
	 private Color() { }

	 public static Color Black { get; } = new Color();

--snip--
}

Listing 2-19: Making constructors private for reference types

Since the constructor for Color is marked private, we can use it to initial-
ize the static Black property value and any other static or instance members
of Color, but it’s inaccessible to code outside of the Color type. If users of Color
forget and attempt to create an instance with new, the compiler forbids it:

var black = new Color();

[CS0122] 'Color.Color()' is inaccessible due to its protection level

Classes and records can also use the protected keyword on a constructor,
making it available to inheriting types. Since structs and record structs can’t
be inherited, the compiler will prevent the use of protected in a value type.

In a struct or record struct, if we define our own parameterless con-
structor, it must be public. Struct and record struct instances can always be
default-initialized, whether or not we provide a parameterless constructor.

58 Chapter 2

Field Initializers
In a class or record definition, and in structs or record structs after
C# v10.0, we can assign initial values to fields inline by using field initializers.
We can do the same with automatic properties by using property initializ-
ers, which initialize the hidden backing field associated with the property.
Listing 2-20 uses a field initializer for the queue field of the Playlist class
from Listing 2-16 to assign an initial value and adds a Name property for
Playlist that we also assign an initial value by using a property initializer.

public sealed class Playlist
{
--snip--

	 public string Name { get; set; } = "_playlist";

	 private Queue<MusicTrack> queue = new();
}

Listing 2-20: Assigning initial values for fields and properties

Field and property initializers are part of object construction but are not
applied when a value type instance is being default-initialized. Conceptually,
initializers are applied just before the body of a constructor. As noted previ-
ously, the compiler creates a default constructor for class and record types
if no user-defined or positional constructors are present; however, the
compiler won’t synthesize a parameterless constructor for any value type.
Therefore, if we want to use field or property initializers for struct or record
struct types, we must also define at least one constructor of our own. This
can be a parameterless constructor or a constructor taking one or more
parameters.

Field initializers can’t reference any instance members. However, since
static fields are guaranteed to be definitely assigned before any instance
fields, a field initializer can reference a static value. Static fields can also
have initializers and can reference other static fields. However, we need to
take care when referencing one static field from another static field because
they’re initialized in the order in which they appear in the class.

Object Initializers
With object initializers, we set values for publicly mutable properties of a vari-
able at the point of creating a new instance, like this:

var fineBrush = new Brush { Width = 2 };

Classes, records, structs, and record structs accept this syntax, and
they all behave the same way. The initialization process is the same for
each: a constructor is invoked in the usual way to create an instance,
and then the value is assigned to the property of the instance. In this
example, a Brush is created using a parameterless constructor (or one with

Value and Reference Types 59

all-optional parameters), but we can call any constructor before the ini-
tialization expression inside the braces. In the special case of a construc-
tor that requires no arguments, we can leave out the parentheses for the
constructor.

Classes and records require an accessible parameterless constructor to
use this syntax. If the parameterless constructor of a class or record is hid-
den or nonpublic, we must invoke a valid constructor before the object ini-
tialization within the braces. We don’t have to worry about this for struct or
record struct types because they can always be default-initialized if the type
has no parameterless constructor.

init-Only Properties

As of C# v9.0, any property can be init-only, meaning it can be written to
only during the creation of a new instance. Prior to C# v9.0, object initial-
ization required properties to have a public set accessor, meaning object
initialization couldn’t be used with immutable properties. Object initializa-
tion requires the value of the property to be set after the constructor has
completed, which wasn’t permitted for properties without a public set
accessor. An init accessor allows a property to be set during object initial-
ization and then makes the property immutable after the initialization is
complete.

The Color struct in Listing 2-21 demonstrates how init-only properties
are used during object initialization.

public readonly struct Color
{
	 public int Red { get; init; }
	 public int Green { get; init; }
	 public int Blue { get; init; }
}
var orange = new Color { Red = 0xFF, Green = 0xA5 };

Assert.That(orange.Red, Is.EqualTo(0xFF));
Assert.That(orange.Green, Is.EqualTo(0xA5));
Assert.That(orange.Blue, Is.EqualTo(0));

Listing 2-21: Setting properties as init-only

When we create the orange variable, a new Color is first default-constructed,
giving each property its default value of 0. The object initializer between
the braces gives new values to the Red and Green properties, leaving the Blue
property with its default value. Note that Color is a readonly struct, which
requires that the struct has no mutable properties.

We can assign a value to an init-only property in an instance construc-
tor or by using object initialization, but we can’t assign a new value after
the instance has been created. An init-only property is immutable. The
init accessor syntax can be used for properties and indexers for any type,
although it was introduced in C# v9.0 to support a special initialization syn-
tax supported by records and known as non-destructive mutation.

60 Chapter 2

Non-destructive Mutation

Records and record structs support the non-destructive mutation syntax,
and as of C# v10.0, so do structs and anonymous types. Syntactically, non-
destructive mutation is similar to object initialization, except that it initial-
izes a new instance by copying an existing one and providing new values for
selected properties in that copy. Listing 2-22 demonstrates this syntax, using
the with keyword to copy the orange record variable to a new variable named
yellow, and then assigning a new value to one of the properties of the copy.

public sealed record Color(int Red, int Green, int Blue);
var orange = new Color(0xFF, 0xA5, 0);

var yellow = orange with { Green = 0xFF };

Assert.That(yellow.Red, Is.EqualTo(0xFF));
Assert.That(yellow.Green, Is.EqualTo(0xFF));

Assert.That(orange.Green, Is.EqualTo(0xA5)); // unchanged in orange
Assert.That(orange.Blue, Is.EqualTo(0));

Listing 2-22: Initializing a copy of a record with non-destructive mutation

The with expression we use when we create the yellow variable creates a
new instance of the Color record with property values identical to the origi-
nal orange instance. Those properties specified between the braces following
with are then assigned the values by using the same syntax as object initial-
ization. This approach is called non-destructive mutation because no changes
are made to the original record.

Constructors and initializers are both ways we can create new instances
with known values. However, sometimes we can’t provide an initial value for
a variable, but leaving it uninitialized is too restrictive: we can’t even test it
to see whether it has a value, owing to the rules governing definite assign-
ment. In the next section, we’ll examine the options open to us when we
need a variable with no value, and how value types and reference types dif-
fer here too.

null Values and Default Values
A plain value type variable can never be null. An instance of a value type
directly contains all of its fields, and there’s not necessarily a representation
of “no value.” A default-initialized instance of a value type is not the same
thing—it’s a complete instance of the type, just with the default-initialized
values for each of its fields.

We can employ a nullable value type, which can be assigned and com-
pared with the value null, as you’ll see shortly, but plain value type instances
are incompatible with null. The null constant expression is a reference
and therefore can be assigned only to reference variables. One of the

Value and Reference Types 61

implications of not being able to assign null to a value type variable is that
we can’t pass null as an argument to a value type method parameter.

Similarly, attempting to compare a value with null makes no sense. If we
do, as shown in Listing 2-23, the compiler rejects the code.

public readonly struct Speed
{
--snip--
}

var c = new Speed();

Assert.That(c == null, Is.False);

Listing 2-23: Comparing a value type variable with null

The error from the compiler is shown here:

[CS0019] Operator '==' cannot be applied to operands of type 'Speed' and '<null>'

We can, however, compare any reference type with null, and, as of C# v8.0,
we can use a constant pattern to make this comparison more direct by using
the is keyword:

Assert.That(someObject is null, Is.True);

Comparing any value type with null makes no sense, whatever method
we choose, because null is a reference and as such is represented differently
than a value type. That said, the rule against comparing value types with
null has one exception: generic types.

Generics and null
In a generic class or method, an unconstrained type parameter variable can
be compared with null. An unconstrained generic type can be either a value
type or a reference type. To illustrate, the simple example in Listing 2-24
compares an instance of a generic parameter type with null.

public static int Compare<T>(T left, T right)
{
	 if(left is null) return right is null ? 0 : -1;
--snip--
}

Listing 2-24: Comparing a generic type parameter instance with null

The Compare generic method has a type parameter named T that might
represent either a value type or a reference type, because it has no type con-
straints. In this instance, T is not known to be a value type, so the compiler
allows the syntax. If T’s type is determined at run time to be a value type,
the whole expression simply evaluates as false.

62 Chapter 2

The compiler still prevents us from assigning null to a variable of type T,
because if T were a value type, the assignment would fail at run time. Similarly,
we can’t return null through an unconstrained type parameter, demonstrated
in Listing 2-25.

public static T Consume<T>(IProducerConsumerCollection<T> collection)
	 => collection.TryTake(out var item) ? item : null;

Listing 2-25: Trying to return null as a generic parameter type

This gives the following error:

[CS0403] Cannot convert null to type parameter 'T' because it could be a non-nullable value
type. Consider using 'default(T)' instead.

In this example, the difficulty arises because T is unconstrained. It
might represent a struct or record struct type, for which null is not a valid
value. The error message gives us a clue that instead of returning null, we
can return a default value for T. Default values have other, more significant
use cases too, but also some limitations.

Generics and Default Values
The concept of a default value is closely related to a null value, especially
in the context of generic types and methods. At times, we—and the
compiler—must ensure that an instance of a generic parameter type T is
definitely assigned, even when T’s type is not known at compile time. We
can’t just use new to make a new instance of type T because the compiler
isn’t able to determine which constructors are available for T.

If T is a value type, we can always make a default instance by using
default initialization or by calling a parameterless constructor, but if T is a
reference type, it might not have an accessible default or parameterless con-
structor. We can use the new constraint on T, meaning that our generic type
or method will work only with types that have an accessible parameterless
constructor, but this might be too restrictive.

In a generic type, we can use the generic parameter to denote a field or
property of the generic parameter type. Generic value types must ensure
that all their fields are definitely assigned before control leaves the con-
structor. To make that possible, we use the default keyword to initialize a
default instance of T, as in the generic struct shown in Listing 2-26.

public readonly struct Node<T>
{
	 public Node(int index)
	 {
		 idx = index;
		 contained = default;
	 }

Value and Reference Types 63

	 private readonly int idx;
	 private readonly T contained;
}

Listing 2-26: Initializing a default instance of a type parameter

In the Node constructor, the contained field is assigned the default value
of its type by using the target-typed default literal (available since C# v7.1),
which is equivalent to the expression default(T). Where T is a class or record,
its default value is null, and where T is a struct or record struct, the default
value is a default-initialized instance. Note that initializing a value by using
default does not invoke a parameterless constructor, if we have defined one.
This code is valid because we can always create a default value for a variable
of type T: if T is a value type, the value is a default instance of T, and if T is a
reference type, a default T is null. The default keyword has many uses outside
of generic types and methods, but within generic code it’s indispensable.

Default values are useful, but they’re not sufficient to identify a par-
ticular value type instance as invalid. In other words, we can’t use a default
when what we really mean is no value present. The default value of a struct or
record struct is a default-initialized instance and might therefore be a valid
value. Consider Listing 2-27.

int x = default;
int y = 0;

Assert.That(x.Equals(y), Is.True);

Listing 2-27: Default values can be valid.

The default value for an int type is 0, which we may use to indicate an
invalid number in some circumstances but not all. Whether that matters,
especially for our own value types, depends on the context in which
instances of the type are used, but limiting valid integers to only nonzero
values would be very restrictive. Fortunately, we have an alternative.

Nullable Value Types
Nullable value types allow us to have a representation of a value type that
means no value present. A nullable value type is a wrapper around a value
type, and a nullable value type variable may or may not have a value. A
nullable value type variable can also be assigned the value null, demon-
strated by using a simple test in Listing 2-28.

int? x = null;
int y = 0;

Assert.That(x.Equals(y), Is.False);

Listing 2-28: Using nullable values

64 Chapter 2

The ? following the int type of the x variable is shorthand for saying that
x is a Nullable< int>. We can now represent an invalid value for x that’s distinct
from any valid values for int. We can use a nullable variable for any value
type, not just built-ins. The default value for a nullable is null, as shown here:

int? x = default;
int? y = null;

Assert.That(x.Equals(y), Is.True);

This test passes because x and y are both null. The declaration of x in
the first line doesn’t initialize a default int but rather a default Nullable< int>.
Equality comparison between nullable values compares the underlying
value if there is one. Two nullable values are equal if they both have no
value, or values that themselves compare equal. Nullable< T > is a struct and
overrides the Equals method to provide this behavior.

As a consequence of not being able to assign null to a plain value type
variable, we can’t use a plain value type on the right-hand side of an as
expression, like this:

object speed = new Speed();
var actual = speed as Speed;

If Speed is a struct or record struct, this code won’t compile, because
if the cast fails, the as operator will return null. As we know, null can’t
be assigned to a value. The solution is to use a nullable value type as the
source of the conversion, as shown here:

var actual = speed as Speed?;

The type of the actual variable is a nullable Speed in this example and
will have the value null if the conversion fails—that is, if the speed variable is
not in fact a Speed type.

Nullable Reference Types
C# v8.0 introduced nullable reference types, a feature that allows the compiler
to warn us when a reference is or might be null and we expect it to have a
real value. While reference variables have always been able to have a null
value, the nullable reference type feature allows us to express whether we
intend for them to. In other words, when we use a nullable reference type
variable, we’re being explicit about our intention that null is an expected
potential value for a variable.

Reference variables are non-nullable by default. In the declaration in
Listing 2-29, the brush variable is a non-nullable reference.

object brush = null;

Listing 2-29: Declaring a non-nullable reference variable

Value and Reference Types 65

The compiler performs static analysis that enables it to issue a warning
if a non-nullable reference can’t be guaranteed to be non-null. To state that
with fewer negatives, the compiler issues a warning if a value that may be
null is assigned to a non-nullable reference. In particular, assigning null to
a non-nullable reference, as we just did, provokes this warning:

[CS8600] Converting null literal or possible null value to non-nullable type

If we attempt to pass a possibly null value as an argument to a non-
nullable method parameter, we’ll get a warning from the compiler. Consider
the method in Listing 2-30, which capitalizes the first character of each
word in a string.

public static string ToTitleCase(string original)
{
	 var txtInfo = Thread.CurrentThread.CurrentCulture.TextInfo;
	 return txtInfo.ToTitleCase(original.Trim());
}

Listing 2-30: Defining the ToTitleCase method with a non-nullable reference parameter

Within the ToTitleCase method, we should be able to depend on the
original parameter having a real, non-null value, because it’s a non-nullable
string. That means we can avoid explicitly writing code to check that it isn’t
null. When we call ToTitleCase, if the compiler can’t guarantee that the
argument we pass isn’t null, it will give us a warning.

We might have a legitimate need for a null reference, however, in which
case we mark the type of a variable as nullable to suppress the compiler
warnings about possible null assignment. The syntax is the same as for
nullable value types: we append a ? to the type. Listing 2-31 shows a collec-
tion of nullable string elements designated by the string? type name.

var names = new List<string?>();
// Load names from somewhere, may contain null elements
--snip--
var properNames = names.Select(name => ToTitleCase(name));

Listing 2-31: Passing a possibly null argument for a non-nullable parameter

If we apply the ToTitleCase method from Listing 2-30 to this collection,
we get a similar compiler warning as with Listing 2-29, where we explicitly
assigned null to a non-nullable reference type variable:

[CS8604] Possible null reference argument for parameter 'original' in 'string
ToTitleCase(string original)'.

We’re given this warning because the compiler can’t guarantee that the
collection contains no null elements. The compiler assumes any of the ele-
ments may be null because the element type of the collection is a nullable
reference.

66 Chapter 2

If we explicitly check each element before making the call to ToTitleCase,
the compiler can determine that we’re not using a null reference as an argu-
ment to the method. To achieve that, we could unpack the Select expression
into a loop, such as the foreach loop in Listing 2-32.

foreach (var name in names)
{
	 if(name is not null)
		 properNames.Add(ToTitleCase(name));
}

Listing 2-32: Explicitly using a non-null reference

This code doesn’t prompt a warning about the argument in the call to
ToTitleCase because the compiler can perform enough analysis on the code
preceding the method call to guarantee that the name argument isn’t null.

However, sometimes the compiler needs our help to determine whether
it’s safe to assign a variable to a non-nullable reference or to call a method
with a non-nullable parameter. Listing 2-33 shows a slightly modified ver-
sion of Listing 2-31 calling ToTitleCase, where any null elements are filtered
out before the method is called.

var properNames = names
	 .Where(name => name is not null)
	 .Select(name => ToTitleCase(name));

Listing 2-33: Removing null elements before the method call

This code gives us the same warning as in Listing 2-31, however,
because the compiler can’t be certain ToTitleCase won’t be invoked with
a null argument. Although it looks as if the check for null is being made
inline, in fact we’re calling a lambda function to make that comparison,
and the compiler doesn’t attempt to analyze every possible code path to
make this safe. Fortunately, we have a workaround.

The Null-Forgiving Operator
We can use the null-forgiving operator to inform the compiler that we defi-
nitely know what we’re doing and that no null references are used as argu-
ments to a non-nullable parameter. The null-forgiving operator is an !
appended to the variable, which is why it’s also referred to as the dammit
operator, as in, “It’s definitely not null, dammit!” When we’ve filtered out all
the null elements from our collection, we apply the dammit operator to the
argument for ToTitleCase, as shown in Listing 2-34.

var properNames = names
	 .Where(name => name is not null)
	 .Select(name => ToTitleCase(name!));

Listing 2-34: Using the null-forgiving operator

Value and Reference Types 67

Using the null-forgiving operator with the argument to ToTitleCase
convinces the compiler that it is safe to call the method having a non-null
reference type parameter. If we were to inadvertently pass a null reference,
we’d (justifiably) get the dreaded Object reference not set to an instance of
an object exception. We must take care when using the null-forgiving opera-
tor that we really do know that the variable can’t be null.

Nullable reference types, while having the same syntax as nullable
value types, are just a device that indicates to the compiler that we’re mak-
ing certain assumptions about the variable. Unlike nullable value types,
which are underpinned by a distinct type with behavior injected by the
compiler, nullable reference types are a purely compile-time mechanism,
used for static analysis, and do not change the behavior of our code in any
way. At run time, nullable and non-nullable references are just references.
Nevertheless, distinguishing between them in code is useful for encoding
our assumptions about nullability.

Unexpected null reference exceptions are the curse of many programs
and a class of error that programmers everywhere go to great lengths to
try to avoid. The nullable reference type feature of modern C# is one that
shifts some of that responsibility away from the programmer and onto the
compiler.

Summary
My goal was to ensure that all use of references should be absolutely safe, with checking

performed automatically by the compiler. But I couldn’t resist the temptation to put in a null
reference, simply because it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a billion dollars of pain

and damage in the last forty years.
—Tony (C.A.R.) Hoare

The type system in C# is broadly similar to many other programming lan-
guages, including its support for user-defined types. C# differs in its distinc-
tion between reference types and value types. Although there are various
recommendations on when to choose to define a value type instead of a
reference type, including documentation from Microsoft, those guidelines
often take only part of the story into consideration.

The technical purpose of distinguishing value types from reference
types is to allow the compiler and Common Language Runtime to make
assumptions about values that may allow certain opportunities for optimiza-
tion. Some of the differences we’ve discussed result from the way reference
and value type instances are stored and managed in memory. That value
type variables are not independently subject to garbage collection can itself
be a big win. However, we can’t just turn our classes into structs or record
structs and expect that our programs will suddenly use less memory or
run more quickly. Value semantics involves much more than just declaring
something as a value type.

68 Chapter 2

Likewise, the copy-by-value behavior of value types is more than just
a side effect of the way values use memory. Copying by value gives rise to
many of the constraints that are imposed on value types and for which
reference types have no need. Using value types where they’re appropriate
can make our code clearer and simpler in subtle ways, like not having to
check for null values on every use of a value. The characteristics of copying
values also affect the behavior of the Equals method; although comparing
variables to see if they are equal may sound inconsequential, it’s an essential
aspect of working with variables.

The distinction between value types and reference types, then, is not just
a list of restrictions. Genuine semantic differences affect our programs’ behav-
ior and can bring tangible benefits. One advantage of value types is that
they can never be null. Constantly having to check references to ensure that
they’re valid can be tiresome and error-prone. Using the non-nullable refer-
ence type feature is one way we reduce the occurrence of unexpected errors
arising from dereferencing a null reference.

One of the great strengths of C# being a compiled and type-safe lan-
guage is that the compiler can identify many kinds of errors before our pro-
gram is ever run.

