
6
U n i t T e s t i n g

Many find unit testing to be arduous
and time-consuming, and some people

and projects have no testing policy. This
chapter assumes that you see the wisdom of

unit testing! Writing code that is not tested is fun-
damentally useless, as there’s no way to conclusively
prove that it works. If you need convincing, I suggest
you start by reading about the benefits of test-driven
development.

In this chapter you’ll learn about the Python tools you can use to con-
struct a comprehensive suite of tests that will make testing simpler and
more automated. We’ll talk about how you can use tools to make your
software rock solid and regression-free. We’ll cover creating reusable test
objects, running tests in parallel, revealing untested code, and using virtual
environments to make sure your tests are clean, as well as some other good-
practice methods and ideas.

76 Chapter 6

The Basics of Testing
Writing and running unit tests is uncomplicated in Python. The process is
not intrusive or disruptive, and unit testing will greatly help you and other
developers in maintaining your software. Here I’ll discuss some of the abso-
lute basics of testing that will make things easier for you.

Some Simple Tests
First, you should store tests inside a tests submodule of the application or
library they apply to. Doing so will allow you to ship the tests as part of your
module so that they can be run or reused by anyone—even after your soft-
ware is installed—without necessarily using the source package. Making
the tests a submodule of your main module also prevents them from being
installed by mistake in a top-level tests module.

Using a hierarchy in your test tree that mimics the hierarchy of your
module tree will make the tests more manageable. This means that the
tests covering the code of mylib/foobar.py should be stored inside mylib/
tests/test_foobar.py. Consistent nomenclature makes things simpler when
you’re looking for the tests related to a particular file. Listing 6-1 shows
the simplest unit test you can write.

def test_true():
 assert True

Listing 6-1: A really simple test in test_true.py

This will simply assert that the behavior of the program is what you
expect. To run this test, you need to load the test_true.py file and run the
test_true() function defined within.

However, writing and running an individual test for each of your test
files and functions would be a pain. For small projects with simple usage,
the pytest package comes to the rescue—once installed via pip, pytest pro-
vides the pytest command, which loads every file whose name starts with
test_ and then executes all functions within that start with test_.

With just the test_true.py file in our source tree, running pytest gives us
the following output:

 $ pytest -v test_true.py
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 --
/usr/local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 1 item

test_true.py::test_true PASSED [100%]

======================== 1 passed in 0.01 seconds ========================

https://nose.readthedocs.org/

Unit Testing 77

The -v option tells pytest to be verbose and print the name of each
test run on a separate line. If a test fails, the output changes to indicate
the failure, accompanied by the whole traceback.

Let’s add a failing test this time, as shown in Listing 6-2.

def test_false():
 assert False

Listing 6-2: A failing test in test_true.py

If we run the test file again, here’s what happens:

 $ pytest -v test_true.py
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 2 items

test_true.py::test_true PASSED [50%]
test_true.py::test_false FAILED [100%]

================================ FAILURES ================================
_______________________________ test_false _______________________________

 def test_false():
> assert False
E assert False

test_true.py:5: AssertionError
=================== 1 failed, 1 passed in 0.07 seconds ===================

A test fails as soon as an AssertionError exception is raised; our assert
test will raise an AssertionError when its argument is evaluated to something
false (False, None, 0, etc.). If any other exception is raised, the test also
errors out.

Simple, isn’t it? While simplistic, a lot of small projects use this approach
and it works very well. Those projects require no tools or libraries other than
pytest and thus can rely on simple assert tests.

As you start to write more sophisticated tests, pytest will help you under-
stand what’s wrong in your failing tests. Imagine the following test:

def test_key():
 a = ['a', 'b']
 b = ['b']
 assert a == b

When pytest is run, it gives the following output:

 $ pytest test_true.py
========================== test session starts ===========================

78 Chapter 6

platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0
rootdir: /Users/jd/Source/python-book/examples, inifile:
plugins: celery-4.1.0
collected 1 item

test_true.py F [100%]

================================ FAILURES ================================
________________________________ test_key ________________________________

 def test_key():
 a = ['a', 'b']
 b = ['b']
> assert a == b
E AssertionError: assert ['a', 'b'] == ['b']
E At index 0 diff: 'a' != 'b'
E Left contains more items, first extra item: 'b'
E Use -v to get the full diff

test_true.py:10: AssertionError
======================== 1 failed in 0.07 seconds ========================

This tells us that a and b are different and that this test does not pass.
It also tells us exactly how they are different, making it easy to fix the test
or code.

Skipping Tests
If a test cannot be run, you will probably want to skip that test—for example,
you may wish to run a test conditionally based on the presence or absence
of a particular library. To that end, you can use the pytest.skip() func-
tion, which will mark the test as skipped and move on to the next one. The
pytest.mark.skip decorator skips the decorated test function unconditionally,
so you’ll use it when a test always needs to be skipped. Listing 6-3 shows how
to skip a test using these methods.

import pytest

try:
 import mylib
except ImportError:
 mylib = None

@pytest.mark.skip("Do not run this")
def test_fail():
 assert False

@pytest.mark.skipif(mylib is None, reason="mylib is not available")
def test_mylib():
 assert mylib.foobar() == 42

Unit Testing 79

def test_skip_at_runtime():
 if True:
 pytest.skip("Finally I don't want to run it")

Listing 6-3: Skipping tests

When executed, this test file will output the following:

 $ pytest -v examples/test_skip.py
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 3 items

examples/test_skip.py::test_fail SKIPPED
[33%]
examples/test_skip.py::test_mylib SKIPPED
[66%]
examples/test_skip.py::test_skip_at_runtime SKIPPED
[100%]

================= 3 skipped in 0.01 seconds =================

The output of the test run in Listing 6-3 indicates that, in this case,
all the tests have been skipped. This information allows you to ensure you
didn’t accidentally skip a test you expected to run.

Running Particular Tests
When using pytest, you often want to run only a particular subset of your
tests. You can select which tests you want to run by passing their directory or
files as an argument to the pytest command line. For example, calling pytest
test_one.py will only run the test_one.py test. Pytest also accepts a directory as
argument, and in that case, it will recursively scan the directory and run any
file that matches the test_*.py pattern.

You can also add a filter with the -k argument on the command line in
order to execute only the test matching a name, as shown in Listing 6-4.

$ pytest -v examples/test_skip.py -k test_fail
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 3 items

examples/test_skip.py::test_fail SKIPPED
[100%]

80 Chapter 6

=== 2 tests deselected ===
=== 1 skipped, 2 deselected in 0.04 seconds ===

Listing 6-4: Filtering tests run by name

Names are not always the best way to filter which tests will run. Commonly,
a developer would group tests by functionalities or types instead. Pytest
provides a dynamic marking system that allows you to mark tests with a key-
word that can be used as a filter. To mark tests in this way, use the -m option.
If we set up a couple of tests like this:

import pytest

@pytest.mark.dicttest
def test_something():
 a = ['a', 'b']
 assert a == a

def test_something_else():
 assert False

we can use the -m argument with pytest to run only one of those tests:

$ pytest -v test_mark.py -m dicttest
=== test session starts ===
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 2 items

test_mark.py::test_something PASSED
[100%]

=== 1 tests deselected ===
=== 1 passed, 1 deselected in 0.01 seconds ===

The -m marker accepts more complex queries, so we can also run all
tests that are not marked:

$ pytest test_mark.py -m 'not dicttest'
=== test session starts ===
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0
rootdir: examples, inifile:
collected 2 items

test_mark.py F
[100%]

=== FAILURES ===
test_something_else

Unit Testing 81

 def test_something_else():
> assert False
E assert False

test_mark.py:10: AssertionError
=== 1 tests deselected ===
=== 1 failed, 1 deselected in 0.07 seconds ===

Here pytest executed every test that was not marked as dicttest—in this
case, the test_something_else test, which failed. The remaining marked test,
test_something, was not executed and so is listed as deselected.

Pytest accepts complex expressions composed of the or, and, and not key-
words, allowing you to do more advanced filtering.

Running Tests in Parallel
Test suites can take a long time to run. It’s not uncommon for a full suite
of unit tests to take tens of minutes to run in large software projects. By
default, pytest runs all tests serially, in an undefined order. Since most com-
puters have several CPUs, you can usually speed things up if you split the
list of tests and run them on multiple CPUs.

To handle this approach, pytest provides the plugin pytest-xdist, which
you can install with pip. This plugin extends the pytest command line with
the --numprocesses argument (shortened as -n), which accepts as its argu-
ment the number of CPUs to use. Running pytest -n 4 would run your test
suite using four parallel processes, balancing the load across the available
CPUs.

Because the number of CPUs can change from one computer to
another, the plugin also accepts the auto keyword as a value. In this case,
it will probe the machine to retrieve the number of CPUs available and
start this number of processes.

Creating Objects Used in Tests with Fixtures
In unit testing, you’ll often need to execute a set of common instructions
before and after running a test, and those instructions will use certain com-
ponents. For example, you might need an object that represents the con-
figuration state of your application, and you’ll likely want that object to be
initialized before each test, then reset to its default values when the test is
achieved. Similarly, if your test relies on the temporary creation of a file, the
file must be created before the test starts and deleted once the test is done.
These components, known as fixtures, are set up before a test and cleaned
up after the test has finished.

With pytest, fixtures are defined as simple functions. The fixture func-
tion should return the desired object(s) so that a test using that fixture can
use that object.

82 Chapter 6

Here’s a simple fixture:

import pytest

@pytest.fixture
def database():
 return <some database connection>

def test_insert(database):
 database.insert(123)

The database fixture is automatically used by any test that has database
in its argument list. The test_insert() function will receive the result of
the database() function as its first argument and use that result as it wants.
When we use a fixture this way, we don’t need to repeat the database initial-
ization code several times.

Another common feature of code testing is tearing down after a test
has used a fixture. For example, you may need to close a database connec-
tion. Implementing the fixture as a generator allows us to add teardown
functionality, as shown in Listing 6-5.

import pytest

@pytest.fixture
def database():
 db = <some database connection>
 yield db
 db.close()

def test_insert(database):
 database.insert(123)

Listing 6-5: Teardown functionality

Because we used the yield keyword and made database a generator, the
code after the yield statement runs when the test is done. That code will
close the database connection at the end of the test.

However, closing a database connection for each test might impose an
unnecessary runtime cost, as tests may be able to reuse that same connec-
tion. In that case, you can pass the scope argument to the fixture decorator,
specifying the scope of the fixture:

import pytest

@pytest.fixture(scope="module")
def database():
 db = <some database connection>
 yield db
 db.close()

def test_insert(database):
 database.insert(123)

Unit Testing 83

By specifying the scope="module" parameter, you initialize the fixture
once for the whole module, and the same database connection will be
passed to all test functions requesting a database connection.

Finally, you can run some common code before and after your tests by
marking fixtures as automatically used with the autouse keyword, rather than
specifying them as an argument for each of the test functions. Specifying
the autouse=True keyword argument to the pytest.fixture() function will
make sure the fixture is called before running any test in the module or
class it is defined in, as in this example:

import os

import pytest

@pytest.fixture(autouse=True)
def change_user_env():
 curuser = os.environ.get("USER")
 os.environ["USER"] = "foobar"
 yield
 os.environ["USER"] = curuser

def test_user():
 assert os.getenv("USER") == "foobar"

Such automatically enabled features are handy, but make sure not to
abuse fixtures: they are run before each and every test covered by their
scope, so they can slow down a test run significantly.

Running Test Scenarios
When unit testing, you may want to run the same error-handling test with
several different objects that trigger that error, or you may want to run an
entire test suite against different drivers.

We relied heavily on this latter approach when developing Gnocchi, a
time series database. Gnocchi provides an abstract class that we call the
storage API. Any Python class can implement this abstract base and regis-
ter itself to become a driver. The software loads the configured storage
driver when required and uses the implemented storage API to store or
retrieve data. In this case, we need a class of unit tests that runs against
each driver—thus running against each implementation of this storage
API—to be sure all drivers conform to what the callers expect.

An easy way to achieve this is by using parameterized fixtures, which will
run all the tests that use them several times, once for each of the defined
parameters. Listing 6-6 shows an example of using parameterized fixtures
to run a single test twice with different parameters: once for mysql and once
for postgresql.

import pytest
import myapp

http://gnocchi.xyz/

84 Chapter 6

@pytest.fixture(params=["mysql", "postgresql"])
def database(request):
 d = myapp.driver(request.param)
 d.start()
 yield d
 d.stop()

def test_insert(database):
 database.insert("somedata")

Listing 6-6: Running a test using parameterized fixtures

In Listing 6-6, the driver fixture is parameterized with two different
values, each the name of a database driver that is supported by the applica-
tion. When test_insert is run, it is actually run twice: once with a MySQL
database connection and once with a PostgreSQL database connection.
This allows us to easily reuse the same test with different scenarios, without
adding many lines of code.

Controlled Tests Using Mocking
Mock objects are simulated objects that mimic the behavior of real appli-
cation objects, but in particular and controlled ways. These are especially
useful in creating environments that describe precisely the conditions for
which you would like to test code. You can replace all objects but one with
mock objects to isolate the behavior of your focus object and create an envi-
roment for testing your code.

One use case is in writing an HTTP client, since it is likely impossible
(or at least extremely complicated) to spawn the HTTP server and test it
through all scenarios to return every possible value. HTTP clients are espe-
cially difficult to test for all failure scenarios.

The standard library for creating mock objects in Python is mock. Starting
with Python 3.3, mock has been merged into the Python Standard Library as
unittest.mock. You can, therefore, use a snippet like the following to maintain
backward compatibility between Python 3.3 and earlier versions:

try:
 from unittest import mock
except ImportError:
 import mock

The mock library is pretty simple to use. Any attribute accessed on a
mock.Mock object is dynamically created at runtime. Any value can be set to
such an attribute. Listing 6-7 shows mock being used to create a fake object
with a fake attribute.

>>> from unittest import mock
>>> m = mock.Mock()
>>> m.some_attribute = "hello world"

https://pypi.python.org/pypi/mock/1.0.1

Unit Testing 85

>>> m.some_attribute
"hello world"

Listing 6-7: Accessing the mock.Mock attribute

You can also dynamically create a method on a malleable object, as
in Listing 6-8 where we create a fake method that always returns 42 and
accepts anything as an argument.

>>> from unittest import mock
>>> m = mock.Mock()
>>> m.some_method.return_value = 42
>>> m.some_method()
42
>>> m.some_method("with", "arguments")
42

Listing 6-8: Creating methods on a mock.Mock object

In just a few lines, your mock.Mock object now has a some_method() method
that returns 42. It accepts any kind of argument, and there is no check on
what the values are—yet.

Dynamically created methods can also have (intentional) side effects.
Rather than being boilerplate methods that just return a value, they can be
defined to execute useful code.

Listing 6-9 creates a fake method that has the side effect of printing the
"hello world" string.

>>> from unittest import mock
>>> m = mock.Mock()
>>> def print_hello():
... print("hello world!")
... return 43
...

 >>> m.some_method.side_effect = print_hello
>>> m.some_method()
hello world!
43

 >>> m.some_method.call_count
1

Listing 6-9: Creating methods on a mock.Mock object with side effects

We assign an entire function to the some_method attribute . This tech-
nique allows us to implement more complex scenarios in a test because we
can plug any code needed for testing into a mock object. We then just need
to pass this mock object to whichever function expects it.

The call_count attribute  is a simple way of checking the number of
times a method has been called.

86 Chapter 6

The mock library uses the action/assertion pattern: this means that once
your test has run, it’s up to you to check that the actions you are mocking
were correctly executed. Listing 6-10 applies the assert() method to our
mock objects to perform these checks.

>>> from unittest import mock
>>> m = mock.Mock()

 >>> m.some_method('foo', 'bar')
<Mock name='mock.some_method()' id='26144272'>

 >>> m.some_method.assert_called_once_with('foo', 'bar')
>>> m.some_method.assert_called_once_with('foo', wmock.ANY)
>>> m.some_method.assert_called_once_with('foo', 'baz')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in assert_called_
once_with
 return self.assert_called_with(*args, **kwargs)
 File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in assert_called_
with
 raise AssertionError(msg)
AssertionError: Expected call: some_method('foo', 'baz')
Actual call: some_method('foo', 'bar')

Listing 6-10: Checking method calls

We create a method with the arguments foo and bar to stand in as our
tests by calling the method . The usual way to check calls to a mock object
is to use the assert_called() methods, such as assert_called_once_with() .
To these methods, you need to pass the values that you expect callers to use
when calling your mock method. If the values passed are not the ones being
used, then mock raises an AssertionError. If you don’t know what arguments
may be passed, you can use mock.ANY as a value ; that will match any argu-
ment passed to your mock method.

Th mock library can also be used to patch some function, method, or
object from an external module. In Listing 6-11, we replace the os.unlink()
function with a fake function we provide.

>>> from unittest import mock
>>> import os
>>> def fake_os_unlink(path):
... raise IOError("Testing!")
...
>>> with mock.patch('os.unlink', fake_os_unlink):
... os.unlink('foobar')
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
 File "<stdin>", line 2, in fake_os_unlink
IOError: Testing!

Listing 6-11: Using mock.patch

Unit Testing 87

When used as a context manager, mock.patch() replaces the target func-
tion with the function we provide so the code executed inside the context
uses that patched method. With the mock.patch() method, it’s possible to
change any part of an external piece of code, making it behave in a way
that lets you test all conditions in your application, as shown in Listing 6-12.

from unittest import mock

import pytest
import requests

class WhereIsPythonError(Exception):
 pass

 def is_python_still_a_programming_language():
 try:
 r = requests.get("http://python.org")
 except IOError:
 pass
 else:
 if r.status_code == 200:
 return 'Python is a programming language' in r.content
 raise WhereIsPythonError("Something bad happened")

def get_fake_get(status_code, content):
 m = mock.Mock()
 m.status_code = status_code
 m.content = content

 def fake_get(url):
 return m

 return fake_get

def raise_get(url):
 raise IOError("Unable to fetch url %s" % url)

 @mock.patch('requests.get', get_fake_get(
 200, 'Python is a programming language for sure'))
def test_python_is():
 assert is_python_still_a_programming_language() is True

@mock.patch('requests.get', get_fake_get(
 200, 'Python is no more a programming language'))
def test_python_is_not():
 assert is_python_still_a_programming_language() is False

@mock.patch('requests.get', get_fake_get(404, 'Whatever'))
def test_bad_status_code():
 with pytest.raises(WhereIsPythonError):
 is_python_still_a_programming_language()

@mock.patch('requests.get', raise_get)
def test_ioerror():

88 Chapter 6

 with pytest.raises(WhereIsPythonError):
 is_python_still_a_programming_language()

Listing 6-12: Using mock.patch() to test a set of behaviors

Listing 6-12 implements a test suite that searches for all instances of the
string “Python is a programming language” on the http://python.org/ web
page . There is no way to test negative scenarios (where this sentence is not
on the web page) without modifying the page itself—something we’re not
able to do, obviously. In this case, we’re using mock to cheat and change the
behavior of the request so it returns a mocked reply with a fake page that
doesn’t contain that string. This allows us to test the negative scenario in
which http://python.org/ does not contain this sentence, making sure the pro-
gram handles that case correctly.

This example uses the decorator version of mock.patch() . Using the
decorator does not change the mocking behavior, but it is simpler when you
need to use mocking within the context of an entire test function.

Using mocking, we can simulate any problem, such as a web server
returning a 404 error, an I/O error, or a network latency issue. We can
make sure code returns the correct values or raises the correct exception
in every case, ensuring our code always behaves as expected.

Revealing Untested Code with coverage
A great complement to unit testing, the coverage tool identifies whether any
of your code has been missed during testing. It uses code analysis tools and
tracing hooks to determine which lines of your code have been executed;
when used during a unit test run, it can show you which parts of your code-
base have been crossed over and which parts have not. Writing tests is use-
ful, but having a way to know what part of your code you may have missed
during the testing process is the cherry on the cake.

Install the coverage Python module on your system via pip to have access
to the coverage program command from your shell.

N o t e 	 The command may also be named python-coverage, if you install coverage through
your operating system installation software. This is the case on Debian, for example.

Using coverage in stand-alone mode is straightforward. It can show you
parts of your programs that are never run and which code might be “dead
code,” that is, code that could be removed without modifying the normal
workflow of the program. All the test tools we’ve talked about so far in this
chapter are integrated with coverage.

https://pypi.python.org/pypi/coverage

Unit Testing 89

When using pytest, just install the pytest-cov plugin via pip install
pytest-pycov and add a few option switches to generate a detailed code
coverage output, as shown in Listing 6-13.

$ pytest --cov=gnocchiclient gnocchiclient/tests/unit
---------- coverage: platform darwin, python 3.6.4-final-0 -----------
Name Stmts Miss Branch BrPart Cover

gnocchiclient/__init__.py 0 0 0 0 100%
gnocchiclient/auth.py 51 23 6 0 49%
gnocchiclient/benchmark.py 175 175 36 0 0%
--snip--

TOTAL 2040 1868 424 6 8%

=== passed in 5.00 seconds ===

Listing 6-13: Using coverage with pytest

The --cov option enables the coverage report at the end of the test run.
You need to pass the package name as an argument for the plugin to filter
the coverage report properly. The output includes the lines of code that
were not run and therefore have no tests. All you need to do now is spawn
your favorite text editor and start writing tests for that code.

However, coverage goes one better, allowing you to generate clear
HTML reports. Simply add the --cov-report=html flag, and the htmlcov
directory from which you ran the command will be populated with
HTML pages. Each page will show you which parts of your source code
were or were not run.

If you want to be that person, you can use the option --cover-fail
-under=COVER_MIN_PERCENTAGE, which will make the test suite fail if a mini-
mum percentage of the code is not executed when the test suite is run.
While having a good coverage percentage is a decent goal, and while the
tool is useful to gain insight into the state of your test coverage, defining
an arbitrary percentage value does not provide much insight. Figure 6-1
shows an example of a coverage report with the percentage at the top.

For example, a code coverage score of 100 percent is a respectable goal,
but it does not necessarily mean the code is entirely tested and you can rest.
It only proves that your whole code path has been run; there is no indica-
tion that every possible condition has been tested.

You should use coverage information to consolidate your test suite and
add tests for any code that is currently not being run. This facilitates later
project maintenance and increases your code’s overall quality.

90 Chapter 6

Figure 6-1: Coverage of ceilometer.publisher

Virtual Environments
Earlier we mentioned the danger that your tests may not capture the
absence of dependencies. Any application of significant size inevitably
depends on external libraries to provide features the application needs,
but there are many ways external libraries might cause issues on your
operating system. Here are a few:

•	 Your system does not have the library you need packaged.

•	 Your system does not have the right version of the library you need
packaged.

•	 You need two different versions of the same library for two different
applications.

These problems can happen when you first deploy your application or
later on, while it’s running. Upgrading a Python library installed via your

Unit Testing 91

system manager might break your application in a snap without warning,
for reasons as simple as an API change in the library being used by the
application.

The solution is for each application to use a library directory that con-
tains all the application’s dependencies. This directory is then used to load
the needed Python modules rather than the system-installed ones.

Such a directory is known as a virtual environment.

Setting Up a Virtual Environment
The tool virtualenv handles virtual environments automatically for you.
Until Python 3.2, you’ll find it in the virtualenv package that you can install
using pip install virtualenv. If you use Python 3.3 or later, it’s available
directly via Python under the venv name.

To use the module, load it as the main program with a destination
directory as its argument, like so:

$ python3 -m venv myvenv
$ ls foobar
bin include lib pyvenv.cfg

Once run, venv creates a lib/pythonX.Y directory and uses it to install pip
into the virtual environment, which will be useful to install further Python
packages.

You can then activate the virtual environment by “sourcing” the activate
command. Use the following on Posix systems:

$ source myvenv/bin/activate

On Windows systems, use this code:

> \myvenv\Scripts\activate

Once you do that, your shell prompt should appear prefixed by the
name of your virtual environment. Executing python will call the version of
Python that has been copied into the virtual environment. You can check
that it’s working by reading the sys.path variable and checking that it has
your virtual environment directory as its first component.

You can stop and leave the virtual environment at any time by calling
the deactivate command:

$ deactivate

That’s it. Also note that you are not forced to run activate if you want to
use the Python installed in your virtual environment just once. Calling the
python binary will also work:

$ myvenv/bin/python

92 Chapter 6

Now, while we’re in our activated virtual environment, we do not have
access to any of the modules installed and available on the main system.
That is the point of using a virtual environment, but it does mean we prob-
ably need to install the packages we need. To do that, use the standard pip
command to install each package, and the packages will install in the right
place, without changing anything about your system:

$ source myvenv/bin/activate
(myvenv) $ pip install six
Downloading/unpacking six
 Downloading six-1.4.1.tar.gz
 Running setup.py egg_info for package six

Installing collected packages: six
 Running setup.py install for six

Successfully installed six
Cleaning up...

Voilà! We can install all the libraries we need and then run our applica-
tion from this virtual environment, without breaking our system. It’s easy to
see how we can script this to automate the installation of a virtual environ-
ment based on a list of dependencies, as in Listing 6-14.

virtualenv myappvenv
source myappvenv/bin/activate
pip install -r requirements.txt
deactivate

Listing 6-14: Automatic virtual environment creation

It can still be useful to have access to your system-installed packages,
so virtualenv allows you to enable them when creating your virtual environ-
ment by passing the --system-site-packages flag to the virtualenv command.

Inside myvenv, you will find a pyvenv.cfg, the configuration file for this
environment. It doesn’t have a lot of configuration options by default. You
should recognize include-system-site-package, whose purpose is the same as
the --system-site-packages of virtualenv that we described earlier.

As you might guess, virtual environments are incredibly useful for auto-
mated runs of unit test suites. Their use is so widespread that a particular
tool has been built to address it.

Using virtualenv with tox
One of the central uses of virtual environments is to provide a clean environ-
ment for running unit tests. It would be detrimental if you were under the
impression that your tests were working, when they were not, for example,
respecting the dependency list.

Unit Testing 93

One way to ensure you’re accounting for all the dependencies would be
to write a script to deploy a virtual environment, install setuptools, and then
install all of the dependencies required for both your application/library
runtime and unit tests. Luckily, this is such a popular use case that an appli-
cation dedicated to this task has already been built: tox.

The tox management tool aims to automate and standardize how tests
are run in Python. To that end, it provides everything needed to run an
entire test suite in a clean virtual environment, while also installing your
application to check that the installation works.

Before using tox, you need to provide a configuration file named tox.ini
that should be placed in the root directory of your project, beside your
setup.py file:

$ touch tox.ini

You can then run tox successfully:

% tox
GLOB sdist-make: /home/jd/project/setup.py
python create: /home/jd/project/.tox/python
python inst: /home/jd/project/.tox/dist/project-1.zip
____________________ summary _____________________
 python: commands succeeded
 congratulations :)

In this instance, tox creates a virtual environment in .tox/python using
the default Python version. It uses setup.py to create a distribution of your
package, which it then installs inside this virtual environment. No com-
mands are run, because we did not specify any in the configuration file.
This alone is not particularly useful.

We can change this default behavior by adding a command to run
inside our test environment. Edit tox.ini to include the following:

[testenv]
commands=pytest

Now tox runs the command pytest. However, since we do not have pytest
installed in the virtual environment, this command will likely fail. We need
to list pytest as a dependency to be installed:

[testenv]
deps=pytest
commands=pytest

When run now, tox re-creates the environment, installs the new depen-
dency, and runs the command pytest, which executes all of the unit tests.
To add more dependencies, you can either list them in the deps configura-
tion option, as is done here, or use the -rfile syntax to read from a file.

94 Chapter 6

Re-creating an Environment
Sometimes you’ll need to re-create an environment to, for example, ensure
things work as expected when a new developer clones the source code
repository and runs tox for the first time. For this, tox accepts a --recreate
option that will rebuild the virtual environment from scratch based on
parameters you lay out.

You define the parameters for all virtual environments managed by tox
in the [testenv] section of tox.ini. And, as mentioned, tox can manage mul-
tiple Python virtual environments—indeed, it is possible to run our tests
under a Python version other than the default one by passing the -e flag to
tox, like so:

 % tox -e py26	
 GLOB sdist-make: /home/jd/project/setup.py
 py26 create: /home/jd/project/.tox/py26
 py26 installdeps: nose
 py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip
 py26 runtests: commands[0] | pytests
 --snip--
== test session starts ==
=== 5 passed in 4.87 seconds ====

By default, tox simulates any environment that matches an existing
Python version: py24, py25, py26, py27, py30, py31, py32, py33, py34, py35, py36,
py37, jython, and pypy! Furthermore, you can define your own environments.
You just need to add another section named [testenv:_envname_]. If you want
to run a particular command for just one of the environments, you can do
so easily by listing the following in the tox.ini file:

[testenv]
deps=pytest
commands=pytest

[testenv:py36-coverage]
deps={[testenv]deps}
 pytest-cov
commands=pytest --cov=myproject

By using pytest --cov=myproject under the py36-coverage section as shown
here, you override the commands for the py36-coverage environment, mean-
ing when you run tox -e py36-coverage, pytest is installed as part of the
dependencies, but the command pytest is actually run instead with the cov-
erage option. For that to work, the pytest-cov extension must be installed:
to this end, we replace the deps value with the deps from testenv and add the
pytest-cov dependency. Variable interpolation is also supported by tox, so
you can refer to any other field from the tox.ini file and use it as a variable,
the syntax being {[env_name]variable_name}. This allows us to avoid repeat-
ing the same things over and over again.

Unit Testing 95

Using Different Python Versions
We can also create a new environment with an unsupported version of
Python right away with the following in tox.ini:

[testenv]
deps=pytest
commands=pytest

[testenv:py21]
basepython=python2.1

When we run this, it will now (attempt to) use Python 2.1 to run the
test suite—although since it is very unlikely you have this ancient Python
version installed on your system, I doubt this would work for you!

It’s likely that you’ll want to support multiple Python versions, in which
case it would be useful to have tox run all the tests for all the Python ver-
sions you want to support by default. You can do this by specifying the envi-
ronment list you want to use when tox is run without arguments:

[tox]
envlist=py35,py36,pypy

[testenv]
deps=pytest
commands=pytest

When tox is launched without any further arguments, all four environ-
ments listed are created, populated with the dependencies and the applica-
tion, and then run with the command pytest.

Integrating Other Tests
We can also use tox to integrate tests like flake8, as discussed in Chapter 1.
The following tox.ini file provides a PEP 8 environment that will install flake8
and run it:

[tox]
envlist=py35,py36,pypy,pep8

[testenv]
deps=pytest
commands=pytest

[testenv:pep8]
deps=flake8
commands=flake8

In this case, the pep8 environment is run using the default version of
Python, which is probably fine, though you can still specify the basepython
option if you want to change that.

96 Chapter 6

When running tox, you’ll notice that all the environments are built
and run sequentially. This can make the process very long, but since virtual
environments are isolated, nothing prevents you from running tox com-
mands in parallel. This is exactly what the detox package does, by providing
a detox command that runs all of the default environments from envlist in
parallel. You should pip install it!

Testing Policy	
Embedding testing code in your project is an excellent idea, but how that
code is run is also extremely important. Too many projects have test code
lying around that fails to run for some reason or other. This topic is not
strictly limited to Python, but I consider it important enough to emphasize
here: you should have a zero-tolerance policy regarding untested code. No
code should be merged without a proper set of unit tests to cover it.

The minimum you should aim for is that each of the commits you push
passes all the tests. Automating this process is even better. For example,
OpenStack relies on a specific workflow based on Gerrit (a web-based code
review service) and Zuul (a continuous integration and delivery service). Each
commit pushed goes through the code review system provided by Gerrit, and
Zuul is in charge of running a set of testing jobs. Zuul runs the unit tests and
various higher-level functional tests for each project. This code review, which
is executed by a couple of developers, makes sure all code committed has
associated unit tests.

If you’re using the popular GitHub hosting service, Travis CI is a
tool that allows you to run tests after each push or merge or against pull
requests that are submitted. While it is unfortunate that this testing is done
post-push, it’s still a fantastic way to track regressions. Travis supports all
significant Python versions out of the box, and it can be customized signifi-
cantly. Once you’ve activated Travis on your project via the web interface
at https://www.travis-ci.org/, just add a .travis.yml file that will determine how
the tests are run. Listing 6-15 shows an example of a .travis.yml file.

language: python
python:
 - "2.7"
 - "3.6"
command to install dependencies
install: "pip install -r requirements.txt --use-mirrors"
command to run tests
script: pytest

Listing 6-15: A .travis.yml example file

With this file in place in your code repository and Travis enabled, the
latter will spawn a set of jobs to test your code with the associated unit tests.
It’s easy to see how you can customize this by simply adding dependencies
and tests. Travis is a paid service, but the good news is that for open source
projects, it’s entirely free!

https://travis-ci.org/

Unit Testing 97

The tox-travis package (https://pypi.python.org/pypi/tox-travis/) is also
worth looking into, as it will polish the integration between tox and Travis
by running the correct tox target depending on the Travis environment
being used. Listing 6-16 shows an example of a .travis.yml file that will
install tox-travis before running tox.

sudo: false
language: python
python:
 - "2.7"
 - "3.4"
install: pip install tox-travis
script: tox

Listing 6-16: A .travis.yml example file with tox-travis

Using tox-travis, you can simply call tox as the script on Travis, and
it will call tox with the environment you specify here in the .travis.yml file,
building the necessary virtual environment, installing the dependency, and
running the commands you specified in tox.ini. This makes it easy to use the
same workflow both on your local development machine and on the Travis
continuous integration platform.

These days, wherever your code is hosted, it is always possible to apply
some automatic testing of your software and to make sure your project is
moving forward, not being held back by the addition of bugs.

Robert Collins on Testing
Robert Collins is, among other things, the original author of the Bazaar dis-
tributed version control system. Today, he is a Distinguished Technologist
at HP Cloud Services, where he works on OpenStack. Robert is also the
author of many of the Python tools described in this book, such as fixtures,
testscenarios, testrepository, and even python-subunit—you may have used
one of his programs without knowing it!

What kind of testing policy would you advise using? Is it ever acceptable
not to test code?

I think testing is an engineering trade-off: you must consider the likeli-
hood of a failure slipping through to production undetected, the cost
and size of an undetected failure, and cohesion of the team doing
the work. Take OpenStack, which has 1,600 contributors: it’s difficult
to work with a nuanced policy with so many people with their own
opinions. Generally speaking, a project needs some automated testing
to check that the code will do what it is intended to do, and that what it
is intended to do is what is needed. Often that requires functional tests
that might be in different codebases. Unit tests are excellent for speed
and pinning down corner cases. I think it is okay to vary the balance
between styles of testing, as long as there is testing.

https://pypi.python.org/pypi/tox-travis
http://bazaar.canonical.com/
http://openstack.org/

98 Chapter 6

Where the cost of testing is very high and the returns are very low,
I think it’s fine to make an informed decision not to test, but that situa-
tion is relatively rare: most things can be tested reasonably cheaply, and
the benefit of catching errors early is usually quite high.

What are the best strategies when writing Python code to make testing
manageable and improve the quality of the code?

Separate out concerns and don’t do multiple things in one place; this
makes reuse natural, and that makes it easier to put test doubles in
place. Take a purely functional approach when possible; for example,
in a single method either calculate something or change some state,
but avoid doing both. That way you can test all of the calculating
behaviors without dealing with state changes, such as writing to a
database or talking to an HTTP server. The benefit works the other
way around too—you can replace the calculation logic for tests to pro-
voke corner case behavior and use mocks and test doubles to check
that the expected state propagation happens as desired. The most
heinous things to test are deeply layered stacks with complex cross-
layer behavioral dependencies. There you want to evolve the code so
that the contract between layers is simple, predictable, and—most use-
fully for testing—replaceable.

What’s the best way to organize unit tests in source code?
Have a clear hierarchy, like $ROOT/$PACKAGE/tests. I tend to do just
one hierarchy for a whole source tree, for example $ROOT/$PACKAGE/
$SUBPACKAGE/tests.

Within tests, I often mirror the structure of the rest of the source
tree: $ROOT/$PACKAGE/foo.py would be tested in $ROOT/$PACKAGE/
tests/test_foo.py.

The rest of the tree should not import from the tests tree, except
perhaps in the case of a test_suite/load_tests function in the top level
__init__. This permits you to easily detach the tests for small-footprint
installations.

What do you see as the future of unit-testing libraries and frameworks in
Python?

The significant challenges I see are these:

•	 The continued expansion of parallel capabilities in new machines, like
phones with four CPUs. Existing unit test internal APIs are not opti-
mized for parallel workloads. My work on the StreamResult Java class is
aimed directly at resolving this.

•	 More complex scheduling support—a less ugly solution for the problems
that class and module-scoped setup aim at.

•	 Finding some way to consolidate the vast variety of frameworks we have
today: for integration testing, it would be great to be able to get a con-
solidated view across multiple projects that have different test runners
in use.

