
—-1
—0
—+1

Randomness is found everywhere in cryp-
tography: in the generation of secret keys, in

encryption schemes, and even in the attacks
on cryptosystems. Without randomness, cryptog-

raphy would be impossible because all operations would
become predictable, and therefore insecure.

This chapter introduces the concept of randomness in the context
of cryptography and its applications. We discuss pseudorandom number
generators and how operating systems can produce reliable randomness,
and we conclude with real examples showing how flawed randomness can
impact security.

Random or Non-random?
You’ve probably heard the phrase random bits before, but strictly speaking,
there is no such thing as a series of random bits. What is random is the

2
R A N D O M N E S S

hn hk io il sy SY ek eh fi fl ffi ffl Th

hn hk io il sy SY ek eh fi fl ffi ffl Th

hn hk io il sy SY ek eh fi fl ffi ffl Th

hn hk io il sy SY ek eh fi fl ffi ffl Th

335-129505_samp.indd 1335-129505_samp.indd 1 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

-1—
0—

+1—
2 Chapter 2

algorithm, or process, that produces a series of random bits; therefore,
when we say “random bits,” we actually mean randomly generated bits.

What do random bits look like? For example, the 8-bit string 11010110
might look more random than 00000000, although both have the same
chance of being generated (namely, 1/256). The value 11010110 looks more
random than 00000000 because it has the signs typical of a randomly gen-
erated value. That is, 11010110 has no obvious pattern.

When we see the string 11010110, our brain registers that it has three
zeros and five ones, just like 55 other 8-bit strings (11111000, 11110100,
11110010, and so on), but only one 8-bit string has eight zeros. Because the
pattern three-zeros-and-five-ones is more likely to occur than the pattern
eight-zeros, we identify 11010110 as random and 00000000 as non-random,
even if they’re not.

This example illustrates two types of errors people often make when
identifying randomness:

Mistaking non-randomness for randomness ​  ​Thinking that an object
was randomly generated simply because it looks random

Mistaking randomness for non-randomness ​  ​Thinking that patterns
appearing by chance are there for a reason other than chance

The distinction between random-looking and actually random is
crucial. Indeed, in crypto, non-randomness is often synonymous with
insecurity.

The saying “it happened by chance” reflects the property that from a
complex system (in this case, our universe that obeys the laws of physics,
deterministic at the macroscopic level and truly random at the subatomic,
quantum level) can emerge specific patterns, such as the string 00000000.
By the law of large numbers, if many events occur, some won’t look
random—such as a series of sequential numbers in a lottery draw. Many
pseudosciences and belief systems are in fact cases of mistaking random-
ness for non-randomness.

Randomness as a Probability Distribution
Any randomized process is characterized by a probability distribution, which
gives all there is to know about the randomness of the process. A probabil-
ity distribution, or simply distribution, lists the outcomes of a randomized
process where each outcome is assigned a probability.

A probability measures the likelihood of an event occurring. It’s
expressed as a real number between 0 and 1 where a probability of 0 means
impossible and a probability of 1 means certain. For example, when tossing
a two-sided coin, each side has a 1/2 (or 0.5) probability of landing face up,
and the probability of a coin landing on its edge likely has a probability of 0.

A probability distribution must include all possible outcomes such that
the sum of all probabilities is 1. Specifically, if there are N possible events,
there are N probabilities p1, p2, . . . , pN with p1 + p2 + . . . + pN = 1. In the case

335-129505_samp.indd 2335-129505_samp.indd 2 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 3

of the coin toss, the distribution is 1/2 for heads and 1/2 for tails. The sum
of both probabilities is equal to 1/2 + 1/2 = 1, because the coin will fall on
one of its two faces.

A uniform distribution occurs when all probabilities in the distribution
are equal, meaning that all outcomes are equally likely to occur. If there
are N events, then each event has probability 1/N. For example, if a
128-bit key is picked uniformly at random—that is, according to a uniform
distribution—then each of the 2128 possible keys should have a probability
of 1/2128.

In contrast, when a distribution is non-uniform, probabilities aren’t
all equal. A coin toss with a non-uniform distribution is said to be biased
and may yield heads with probability 1/4 and tails with probability 3/4, for
example.

N O T E 	 It’s possible to cheat with a loaded die, to prevent the probabilities of each of the six
faces to be 1/6 each; however, one can’t bias a coin. Only coin tosses can be biased if
“the coin is allowed to bounce or be spun rather than simply flipped in the air,” as
described in the article “You can load a die but you can’t bias a coin” (available at
https://www​.stat​.berkeley​.edu​/~nolan​/Papers​/dice​.pdf).

Entropy: A Measure of Uncertainty
Entropy is the measure of uncertainty, or disorder, in a system. The
higher the entropy, the less certainty found in the result of a randomized
process.

We can compute the entropy of a probability distribution. If your distri-
bution consists of probabilities p1, p2, . . . , pN, then its entropy is the nega-
tive sum of all probabilities multiplied by their logarithm, as shown in this
expression:

− − −p p p p p pN N1 1 2 2× () × () × ()log log log. . .

Here the function log is the binary logarithm, or logarithm in base two.
Unlike the natural logarithm, the binary logarithm expresses the informa-
tion in bits and yields integer values when probabilities are powers of two. For
example, log(1/2) = –1, log(1/4) = –2, and more generally log(1/2n) = –n. (We
actually take the negative sum to end up with a positive number.) Random
128-bit keys produced using a uniform distribution therefore have the fol-
lowing entropy:

2 2 2 2128 128 128 128× × ()() = () =− −− − −log log 128 bits

If you replace 128 with any integer n, the entropy of a uniformly distrib-
uted n-bit string will be n bits.

Entropy is maximized when the distribution is uniform because a uni-
form distribution maximizes uncertainty: no outcome is more likely than
the others. Therefore, n-bit values can’t have more than n bits of entropy.

335-129505_samp.indd 3335-129505_samp.indd 3 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

https://www.stat.berkeley.edu/~nolan/Papers/dice.pdf

-1—
0—

+1—
4 Chapter 2

By the same token, when the distribution is not uniform, entropy is
lower. Consider the coin toss example. The entropy of a fair toss is the
following:

− −1 2 1 2 1 2 1 2 1 2 1 2() × () () × () = + =log log 1 bit

What if one side of the coin has a higher probability of landing face up
than the other? Say heads has a probability of 1/4 and tails 3/4. (Remember
that the sum of all probabilities should be 1.)

The entropy of such a biased toss is this:

− − − − − −3 4 3 4 1 4 1 4 3 4 0 415 1 4 2() × () () × () ≈ () × .() () × () ≈log log 0.81 biit

The fact that 0.81 is less than the 1-bit entropy of a fair toss tells us
that the more biased the coin, the less uniform the distribution and the
lower the entropy. Taking this example further, if heads has a probability
of 1/10, the entropy is 0.469; if the probability drops to 1/100, the entropy
drops to 0.081.

N O T E 	 Entropy can also be viewed as a measure of information. For example, the result of
a fair coin toss gives you exactly one bit of information—heads or tails—and you’re
unable to predict the result of the toss in advance. In the case of the unfair coin toss,
you know in advance that tails is more probable, so you can predict the outcome. The
result of the unfair coin toss gives you the information needed to predict the result
with certainty.

Random and Pseudorandom Number Generators
Cryptosystems need randomness to be secure and therefore need a compo-
nent from which to get their randomness. The job of this component is to
return random bits when requested to do so. To perform this randomness
generation, you’ll need two things:

•	 A source of entropy, provided by random number generators.

•	 A cryptographic algorithm to produce high-quality random bits
from the source of entropy. This is found in pseudorandom number
generators.

Using both random and pseudorandom number generators is the key
to making cryptography practical and secure. Let’s briefly look at how ran-
dom number generators work before exploring pseudorandom number
generators in depth.

Randomness comes from the environment, which is analog, chaotic,
uncertain, and hence unpredictable. Randomness can’t be generated
by computer-based algorithms alone. In cryptography, randomness usu-
ally comes from random number generators (RNGs), which are software or
hardware components that leverage entropy in the analog world to pro-
duce unpredictable bits in a digital system. For example, an RNG might
directly sample bits from measurements of temperature, acoustic noise, air

335-129505_samp.indd 4335-129505_samp.indd 4 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 5

turbulence, or electrical static. Unfortunately, such analog entropy sources
aren’t always available, and their entropy is often difficult to estimate.

RNGs can also harvest the entropy in a running operating system by
drawing from attached sensors, I/O devices, network or disk activity, system
logs, running processes, and user activities such as key presses and mouse
movement. Such system- and human-generated activities can be a good
source of entropy, but they can be fragile and manipulated by an attacker.
Also, they’re slow to yield random bits.

N O T E 	 Quantum random number generators (QRNGs) are a type of RNG that rely on
the randomness arising from quantum mechanical phenomena, such as radioactive
decay, photons’ polarization, or thermal noise. These phenomena, not being charac-
terized by equations that determine the future state from the current state, are random
in the absolute sense. In practice, however, the raw bits extracted from a QRNG may
be biased and tend to be slow to produce. Like the previously cited entropy sources,
they require postprocessing to generate reliable bits at high speed.

Pseudorandom number generators (PRNGs) address the challenge in
generating randomness by reliably producing many artificial random
bits from a few true random bits. For example, an RNG that translates
mouse movements to random bits would stop working if you stop mov-
ing the mouse, whereas a PRNG always returns pseudorandom bits when
requested to do so.

PRNGs rely on RNGs but behave differently: RNGs produce true ran-
dom bits relatively slowly from analog sources, in a nondeterministic way,
and with no guarantee of uniform distribution or of high entropy per bit.
In contrast, PRNGs produce random-looking bits quickly from digital
sources, in a deterministic way, uniformly distributed, and with an entropy
guaranteed to be high enough for cryptographic applications. Essentially,
PRNGs transform a few unreliable random bits into a long stream of reli-
able pseudorandom bits suitable for crypto applications, as Figure 2-1
shows.

RNG 100 . . . 01 PRNG 1011001 . . . 10110

Figure 2-1: RNGs produce few unreliable bits from analog sources,
whereas PRNGs expand those bits to a long stream of reliable bits.

How PRNGs Work
A PRNG receives random bits from an RNG at regular intervals and uses
them to update the contents of a large memory buffer, called the entropy
pool. The entropy pool is the PRNG’s source of entropy, just like the physical
environment is to an RNG. When the PRNG updates the entropy pool, it
mixes the pool’s bits together to help remove any statistical bias.

To generate pseudorandom bits, the PRNG runs a deterministic ran-
dom bit generator (DRBG) algorithm that expands some bits from the
entropy pool into a much longer sequence. As its name suggests, a DRBG

335-129505_samp.indd 5335-129505_samp.indd 5 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

-1—
0—

+1—
6 Chapter 2

is deterministic, not randomized: given one input, you will always get the
same output. The PRNG ensures that its DRBG never receives the same
input twice so it can generate unique pseudorandom sequences.

In the course of its work, the PRNG performs three operations:

init() ​  ​Initializes the entropy pool and the internal state of the PRNG

refresh(R) ​  ​Updates the entropy pool using some data, R, usually
sourced from an RNG

next(N) ​  ​Returns N pseudorandom bits and updates the entropy pool

The init operation resets the PRNG to a fresh state, reinitializes the
entropy pool to some default value, and initializes any variables or memory
buffers used by the PRNG to carry out the refresh and next operations.

The refresh operation is often called reseeding, and its argument R is
called a seed. When no RNG is available, seeds may be unique values hard-
coded in a system. The refresh operation is typically called by the operating
system, whereas next is typically called or requested by applications. The
next operation runs the DRBG and modifies the entropy pool to ensure that
the next call will yield different pseudorandom bits.

Security Concerns
Let’s talk briefly about how PRNGs address high-level security concerns.
Specifically, PRNGs should guarantee backtracking resistance and prediction
resistance. Backtracking resistance (also called forward secrecy) means that
previously generated bits are impossible to recover, whereas prediction
resistance (backward secrecy) means that future bits should be impossible to
predict.

To achieve backtracking resistance, the PRNG should ensure that the
transformations performed when updating the state through the refresh
and next operations are irreversible. This way, if an attacker compromises
the system and obtains the entropy pool’s value, they can’t determine the
previous values of the pool or the previously generated bits. To achieve
prediction resistance, the PRNG should call refresh regularly with R values
that are unknown to an attacker and are difficult to guess, thus preventing
an attacker from determining future values of the entropy pool, even if the
whole pool is compromised. (If the list of R values were known, you’d need
to know the order in which refresh and next calls were made to reconstruct
the pool.)

The PRNG Fortuna
Fortuna is a PRNG construction used in Windows originally designed in
2003 by Niels Ferguson and Bruce Schneier. Fortuna superseded Yarrow,
a 1998 design by John Kelsey and Bruce Schneier that was for a long time
used in the macOS and iOS operating systems and has been replaced by
Fortuna. I won’t provide the Fortuna specification here or show you how to
implement it, but I will try to explain how it works. You’ll find a complete

335-129505_samp.indd 6335-129505_samp.indd 6 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 7

description of Fortuna in Chapter 9 of Cryptography Engineering by Ferguson,
Schneier, and Kohno (Wiley, 2010).

Fortuna’s internal memory includes the following:

•	 Thirty-two entropy pools, P1, P2, . . . , P32, such that Pi is used every 2i
reseeds.

•	 A key, K, and a counter, C (both 16 bytes). These form the internal state
of Fortuna’s DRBG.

In simplest terms, Fortuna works like this:

•	 init() sets K and C to zero and empties the 32 entropy pools Pi, where
i = 1 . . . 32.

•	 refresh(R) appends the data, R, to one of the entropy pools. The system
chooses the RNGs used to produce R values, and it should call refresh
regularly.

•	 next(N) updates K using data from one or more entropy pools, where
the choice of the entropy pools depends mainly on how many updates
of K have already been done. The N bits requested are then produced
by encrypting C using K as a key. If encrypting C is not enough, Fortuna
encrypts C + 1, then C + 2, and so on, to get enough bits.

Although Fortuna’s operations look fairly simple, implementing them
correctly is hard. For one, you need to get all the details of the algorithm
right—how entropy pools are chosen, the type of cipher to be used in next,
how to behave when no entropy is received, and so on. Although the specs
define most of the details, they don’t include a comprehensive test suite to
check that an implementation is correct, which makes it difficult to ensure
that your implementation of Fortuna will behave as expected.

Even if Fortuna is correctly implemented, security failures may occur
for reasons other than the use of an incorrect algorithm. For example,
Fortuna might not notice if the RNGs fail to produce enough random bits,
and as a result Fortuna will produce lower-quality pseudorandom bits, or it
may stop delivering pseudorandom bits altogether.

Another risk inherent in Fortuna implementations lies in the possibility
of exposing associated seed files to attackers. The data in Fortuna seed files
is used to feed entropy to Fortuna through refresh calls when an RNG is not
immediately available—for example, immediately after a system reboot and
before the system’s RNGs have recorded any unpredictable events. However,
if an identical seed file is used twice, Fortuna will produce the same bit
sequence twice. Seed files should therefore be erased after use to ensure
they aren’t reused.

Finally, if two Fortuna instances are in the same state because they’re
sharing a seed file (meaning the same data in the entropy pools, includ-
ing C and K), then the next operation will return the same bits in both
instances.

335-129505_samp.indd 7335-129505_samp.indd 7 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

-1—
0—

+1—
8 Chapter 2

Cryptographic vs. Non-cryptographic PRNGs
There are cryptographic and non-cryptographic PRNGs. Non-crypto
PRNGs are designed to produce uniform distributions for applications such
as scientific simulations or video games. However, you should never use
non-crypto PRNGs in crypto applications, because they’re insecure; they’re
concerned only with the quality of the bits’ probability distribution and not
with their predictability. Crypto PRNGs, on the other hand, are unpredict-
able, because they’re also concerned with the strength of the underlying
operations used to deliver well-distributed bits.

Unfortunately, most PRNGs exposed by programming languages—
such as libc’s rand and drand48, PHP’s rand and mt_rand, Python’s random mod-
ule, and Java’s java.util.Random class—are non-cryptographic. Defaulting to
a non-crypto PRNG is a recipe for disaster because it often ends up being
used in crypto applications, so be sure to use only crypto PRNGs when gen-
erating randomness related to cryptographic or security applications.

A Popular Non-crypto PRNG: Mersenne Twister

The Mersenne Twister (MT) algorithm is a non-cryptographic PRNG used (at
the time of this writing) in PHP, Python, R, Ruby, and many other systems.
It’s even been used (unfortunately) in blockchain wallet key generators. MT
generates uniformly distributed random bits without statistical bias, but it’s
predictable: given a few bits produced by MT, one can guess which bits will
follow.

Let’s look under the hood to see what makes the Mersenne Twister
insecure. The MT algorithm is much simpler than that of crypto PRNGs:
its internal state is an array, S, consisting of 624 32-bit words. This array is
initially set to S1, S2, . . . , S624 and evolves to S2, . . . , S625, then S3, . . . , S626,
and so on, according to this equation:

S S S Sk k k
x 7fffffff+ + += ⊕ ∧() ∨ ∧(624 397 10 80000000 0A x))k

Here, ⊕ denotes the bitwise XOR (̂ in the C programming language),
∧ denotes the bitwise AND (& in C), ∨ denotes the bitwise OR (| in C), and
A is a function that transforms some 32-bit word, x, to (x >> 1) if x’s most
significant bit is 0, or to (x >> 1) ⊕ 0x9908b0df otherwise.

In this equation, bits of S interact with each other only through XORs.
The operators ∧ and ∨ never combine two bits of S together but instead
combine bits of S with bits from the constants 0x80000000 and 0x7fffffff.
This way, any bit from S625 can be expressed as an XOR of bits from S398,
S1, and S2, and any bit from any future state can be expressed as an XOR
combination of bits from the initial state S1, . . . , S624. (When you express,
say, S228 + 624 = S852 as a function of S625, S228, and S229, you can in turn replace
S625 by its expression in terms of S398, S1, and S2.)

Because there are exactly 624 × 32 = 19,968 bits in the initial state (or
624 32-bit words), any output bit can be expressed as an equation with at
most 19,969 terms (19,968 bits plus one constant bit). That’s about 2.5KB of

335-129505_samp.indd 8335-129505_samp.indd 8 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 9

data. The converse is also true: bits from the initial state can be expressed
as an XOR of output bits.

Linearity Insecurity

We call an XOR combination of bits a linear combination. For example, if
X, Y, and Z are bits, then the expression X ⊕ Y ⊕ Z is a linear combination,
whereas (X ∧ Y) ⊕ Z is not because there’s an AND (∧). If you flip a bit of
X  in X ⊕ Y ⊕ Z, then the result changes as well, regardless of Y’s and Z’s
values. In contrast, if you flip a bit of X in (X ∧ Y) ⊕ Z, the result changes
only if Y’s bit at the same position is 1. The upshot is that linear combina-
tions are predictable, because you don’t need to know the value of the bits
in order to predict how a change in their value will affect the result.

For comparison, if the MT algorithm were cryptographically strong,
its equations would be nonlinear and would involve not only single
bits but also AND-combinations (products) of bits, such as S1S15S182 or
S17S256S257S354S498S601. Although linear combinations of those bits include at
most 624 variables, nonlinear combinations allow for up to 2624 variables. It
would be impossible to solve, let alone write down, the whole of these equa-
tions. (Note that 2305, a much smaller number, is the estimated information
capacity of the observable universe.)

The key here is that linear transformations lead to short equations
(comparable in size to the number of variables), which are easy to solve,
whereas nonlinear transformations give rise to equations of exponential
size, which are practically unsolvable. The game of cryptographers is thus
to design PRNG algorithms that emulate such complex nonlinear transfor-
mations using only a small number of simple operations.

N O T E 	 Linearity is just one of many security criteria. Although necessary, nonlinearity alone
does not make a PRNG cryptographically secure.

The Uselessness of Statistical Tests
Statistical test suites like TestU01, Diehard, or the National Institute of
Standards and Technology (NIST) test suite are one way to test the quality
of pseudorandom bits. These tests take a sample of pseudorandom bits pro-
duced by a PRNG (say, 1MB worth), compute some statistics on the distribu-
tion of certain patterns in the bits, and compare the results with the typical
results obtained for a perfect, uniform distribution. For example, some tests
count the number of 1 bits versus the number of 0 bits, or the distribution
of 8-bit patterns. But statistical tests are largely irrelevant to cryptographic
security, and it’s possible to design a cryptographically weak PRNG that
fools any statistical test.

When you run statistical tests on randomly generated data, you will
usually see a bunch of statistical indicators as a result. These are typically
p -values, a common statistical indicator. These results aren’t always easy
to interpret, because they’re rarely as simple as passed or failed. If your
first results seem abnormal, don’t worry: they may be the result of some
accidental deviation, or you may be testing too few samples. To ensure

335-129505_samp.indd 9335-129505_samp.indd 9 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

-1—
0—

+1—
10 Chapter 2

that the results you see are normal, compare them with those obtained for
some reliable sample of identical size, for example, one generated with the
OpenSSL toolkit using the following command:

$ openssl rand <number of bytes> -out <output file>

Real-World PRNGs
Let’s turn our attention to implementing PRNGs in the real world. You’ll
find crypto PRNGs in the operating systems (OSs) of most platforms, from
desktops and laptops to embedded systems such as routers and set-top
boxes, as well as virtual machines, mobile phones, and so on. Most of these
PRNGs are software based, but those that are pure hardware are used by
applications running on the OS, and sometimes by other PRNGs running
on top of cryptographic libraries or applications.

Next, we’ll look at the most widely deployed PRNGs: for Linux,
Android, and many other Unix -based systems; in Windows ; and in recent
Intel microprocessors, which is hardware based.

Random Bits in Linux
The device file /dev/urandom is the userland interface to the crypto PRNG
in operating systems based on the Linux kernel. You’ll typically use it to
generate reliable random bits. Because it’s a device file, you request random
bits from /dev/urandom by reading it as a file. For example, the following
command uses /dev/urandom to write 10MB of random bits to a file:

$ dd if=/dev/urandom of=<output file> bs=1M count=10

The Wrong Way to Use /dev/urandom

You could write a naive and insecure C program like the one shown in
Listing 2-1 to read random bits and hope for the best, but that would be a
bad idea.

int random_bytes_insecure(void *buf, size_t len)
{
 int fd = open("/dev/urandom", O_RDONLY);
 read(fd, buf, len);
 close(fd);
 return 0;
}

Listing 2-1: An insecure use of /dev/urandom

This code is insecure; it doesn’t even check the return values of open()
and read(), which means your expected random buffer could end up filled
with zeros, or left unchanged.

335-129505_samp.indd 10335-129505_samp.indd 10 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 11

A Safer Way to Use /dev/urandom

Listing 2-2, copied from the LibreSSL library, shows a safer way to use /dev/
urandom.

int random_bytes_safer(void *buf, size_t len)
{
 struct stat st;
 size_t i;
 int fd, cnt, flags;
 int save_errno = errno;

start:
 flags = O_RDONLY;
#ifdef O_NOFOLLOW
 flags |= O_NOFOLLOW;
#endif
#ifdef O_CLOEXEC
 flags |= O_CLOEXEC;
#endif
 1 fd = open("/dev/urandom", flags, 0);
 if (fd == -1) {
 if (errno == EINTR)
 goto start;
 goto nodevrandom;
 }
#ifndef O_CLOEXEC
 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
#endif

 /* Lightly verify that the device node looks sane. */
 if (fstat(fd, &st) == -1 || !S_ISCHR(st.st_mode)) {
 close(fd);
 goto nodevrandom;
 }
 if (ioctl(fd, RNDGETENTCNT, &cnt) == -1) {
 close(fd);
 goto nodevrandom;
 }
 for (i = 0; i < len;) {
 size_t wanted = len - i;
 2 ssize_t ret = read(fd, (char *)buf + i, wanted);

 if (ret == -1) {
 if (errno == EAGAIN || errno == EINTR)
 continue;
 close(fd);
 goto nodevrandom;
 }
 i += ret;
 }
 close(fd);
 if (gotdata(buf, len) == 0) {
 errno = save_errno;

335-129505_samp.indd 11335-129505_samp.indd 11 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

-1—
0—

+1—
12 Chapter 2

 return 0; /* Satisfied */
 }
nodevrandom:
 errno = EIO;
 return -1;
}

Listing 2-2: A safe use of /dev/urandom

Unlike Listing 2-1, Listing 2-2 makes several sanity checks. Compare,
for example, the calls to open() 1 and to read() 2 with those in Listing 2-1:
the safer code checks the return values of those functions and upon failure
closes the file descriptor and returns –1.

Differences Between /dev/urandom and /dev/random, Before 2022

The Linux PRNG, defined in drivers/char/random.c in the Linux kernel,
underwent major changes in 2022 (since the kernel version 5.17).

First, the general structure of the PRNG, which is similar in the old
and new versions, is based on a collection of entropy from various sources
(including system activity, such as keyboard, mouse, and disk accesses),
as well as from an entropy pool that can be seen as a large array, which is
filled by hashing data collected from the entropy sources. Next, a DRBG is
responsible for producing the pseudorandom data streams returned when
/dev/random or /dev/urandom is read or when the getrandom() system call is
made.

Historically, prior to kernel version 5.17, the Linux PRNG behaved as
follows: unlike /dev/urandom, the /dev/random interface was blocking; if the
kernel estimated that the PRNG had an insufficient level of entropy, then
/dev/random would stop returning bytes (“block”) when it was read, until a
sufficient level of entropy was estimated by the kernel. This was not a good
idea. For one thing, entropy estimators are notoriously unreliable and can
be fooled by attackers (which is one reason why Fortuna ditched Yarrow’s
entropy estimation). Furthermore, /dev/random ran out of estimated entropy
pretty quickly, which could produce a denial-of-service condition, slowing
applications that were forced to wait for more entropy. The upshot is that
in practice, /dev/random was no better than /dev/urandom and created more
problems than it solved.

Differences Between /dev/urandom and /dev/random, Since 2022

In versions of the Linux kernel from 2022 (5.17 onward), several improve-
ments have been incorporated. First, the SHA-1 hash function has been
replaced by BLAKE2 when creating the contents of the pool. The biggest
change is the modification of the relative behavior of /dev/random and
/dev/urandom; it has even been proposed to eliminate their differences alto-
gether. At the time of writing, on most platforms both interfaces will detect
if there isn’t enough entropy, but /dev/urandom will resume producing pseu-
dorandom bits if the kernel fails to collect enough entropy, whereas
/dev/random will block.

335-129505_samp.indd 12335-129505_samp.indd 12 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 13

In addition, the kernel’s entropy estimation logic has been greatly
improved: instead of considering that entropy decreases when PRNG bits
are read (a cryptographic nonsense), the kernel just looks for the point
when enough uncertainty (that is, entropy) has been collected—for exam-
ple, at system start-up.

You can read the entropy value of a Linux system in the /proc/sys/kernel/
random/entropy_avail file. In older versions of the kernel, this value was a
maximum of 4,096 bits and decreased with the generation of PRNG bits.
In the new kernels, the value is capped at 256 bits and therefore no longer
decreases.

The CryptGenRandom() Function in Windows
In Windows, the legacy userland interface to the system’s PRNG is the
CryptGenRandom() function from the Cryptography application program-
ming interface (API). Recent Windows versions replace the CryptGenRandom()
function with the BcryptGenRandom() function in Cryptography API: Next
Generation (CNG). The Windows PRNG takes entropy from the kernel mode
driver cng.sys (formerly ksecdd.sys), whose entropy collector is loosely based on
Fortuna. As is usually the case in Windows, the process is complicated.

Listing 2-3 shows a typical C++ invocation of CryptGenRandom() with the
required checks.

int random_bytes(unsigned char *out, size_t outlen)
{
 static HCRYPTPROV handle = 0; /* Only freed when the program ends */
 if(!handle) {
 if(!CryptAcquireContext(&handle, 0, 0, PROV_RSA_FULL,
 CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) {
 return -1;
 }
 }
 while(outlen > 0) {
 const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
 if(!CryptGenRandom(handle, len, out)) {
 return -2;
 }
 out += len;
 outlen -= len;
 }
 return 0;
}

Listing 2-3: Using the Windows CryptGenRandom() PRNG interface

Prior to calling the actual PRNG, you need to declare a cryptographic
service provider (HCRYPTPROV) and then acquire a cryptographic context with
CryptAcquireContext(), which increases the likelihood that things will go
wrong. For instance, the final version of the TrueCrypt encryption software
was found to call CryptAcquireContext() in a way that could silently fail, lead-
ing to suboptimal randomness without notifying the user. Fortunately, the

335-129505_samp.indd 13335-129505_samp.indd 13 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

-1—
0—

+1—

newer and simpler BCryptGenRandom() interface for Windows doesn’t require
the code to explicitly open a handle (or at least makes it much easier to use
without a handle).

A Hardware-Based PRNG: Intel Secure Key
We’ve discussed only software PRNGs so far, so let’s take a look at a hard-
ware one. The Intel Digital Random Number Generator, or Intel Secure Key, is a
hardware PRNG introduced in 2012 in Intel’s Ivy Bridge microarchitecture.
It’s based on NIST’s SP 800-90 guidelines with the Advanced Encryption
Standard (AES) in CTR_DRBG mode. Intel’s PRNG is accessed through
the RDRAND assembly instruction, which offers an interface independent of
the operating system and is in principle faster than software PRNGs.

Whereas software PRNGs try to collect entropy from unpredictable
sources, Intel Secure Key has a single entropy source that provides a serial
stream of entropy data as zeros and ones. In hardware engineering terms,
this entropy source is a dual differential jamb latch with feedback—
essentially, a small hardware circuit that jumps between two states (0 or 1)
depending on thermal noise fluctuations, at a frequency of 3 GHz. This is
usually pretty reliable.

The RDRAND assembly instruction takes as an argument a register of 16,
32, or 64 bits and then writes a random value. When invoked, RDRAND sets the
carry flag to 1 if the data set in the destination register is a valid random
value, and to 0 otherwise; be sure to check the CF flag if you write assembly
code directly. Note that the C intrinsics available in common compilers
don’t check the CF flag but do return its value.

N O T E 	 Intel’s PRNG framework provides an assembly instruction other than RDRAND: the
RDSEED assembly instruction returns random bits directly from the entropy source,
after some conditioning or cryptographic processing. It’s intended to be able to seed
other PRNGs.

Intel Secure Key is only partially documented, but it’s built on
known standards and has been audited by the well-regarded company
Cryptography Research (see its report titled “Analysis of Intel’s Ivy Bridge
Digital Random Number Generator”). Nonetheless, there have been some
concerns about its security, especially following Edward Snowden’s revela-
tions about cryptographic backdoors: PRNGs are indeed the perfect target
for sabotage. If you’re concerned but still want to use RDRAND or RDSEED, mix
them with other entropy sources. Doing so will prevent effective exploita-
tion of a hypothetical backdoor in Intel Secure Key’s hardware or in the
associated microcode in all but the most far-fetched scenarios.

How Things Can Go Wrong
To conclude, I’ll present a few examples of randomness failures. There are
countless examples to choose from, but I’ve chosen four that are simple
enough to understand and illustrate different problems.

335-129505_samp.indd 14335-129505_samp.indd 14 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

—-1
—0
—+1

Randomness 15

Poor Entropy Sources
In 1996, the SSL implementation of the Netscape browser was computing
128-bit PRNG seeds according to the pseudocode shown in Listing 2-4,
copied from Goldberg and Wagner’s page at https://www​.cs​.berkeley​.edu​/~daw​
/papers​/ddj​-netscape​.html.

global variable seed;

RNG_CreateContext()
 (seconds, microseconds) = time of day; /* Time elapsed since 1970 */
 pid = process ID; ppid = parent process ID;
 a = mklcpr(microseconds);
 1 b = mklcpr(pid + seconds + (ppid << 12));
 seed = MD5(a, b); /* Derivation of a 128-bit value using the hash MD5 */

mklcpr(x) /* Not cryptographically significant; shown for completeness */
 return ((0xDEECE66D * x + 0x2BBB62DC) >> 1);

MD5() /* A very good standard mixing function, source omitted */

Listing 2-4: Pseudocode of the Netscape browser’s generation of 128-bit PRNG seeds

The problem here is that the PIDs and microseconds are guessable
values. Assuming that you can guess the value of seconds, microseconds has
only 106 possible values and thus an entropy of log(106), or about 20 bits.
The process ID (PID) and parent process ID (PPID) are 15-bit values, so
you’d expect 15 + 15 = 30 additional entropy bits. But looking at how b is
computed 1 shows that the overlap of three bits yields an entropy of about
15 + 12 = 27 bits, for a total entropy of only 47 bits, whereas a 128-bit seed
should have 128 bits of entropy.

Insufficient Entropy at Boot Time
In 2012, researchers scanned the internet and harvested public keys from
TLS certificates and SSH hosts. They found that a handful of systems had
identical public keys, and in some cases very similar keys (namely, RSA keys
with shared prime factors)—in short, two numbers, n = pq and n′ = p′q′, with
p = p′, whereas normally all ps and qs should be different in distinct modulus
values.

It turned out that many devices generated their public key early, at first
boot, before having collected enough entropy, despite using an otherwise
decent PRNG (typically /dev/urandom). PRNGs in different systems pro-
duced identical random bits due to having the same entropy source (for
example, a hardcoded seed).

At a high level, the presence of identical keys is due to key-generation
schemes like the following, in pseudocode:

prng.seed(seed)
p = prng.generate_random_prime()
q = prng.generate_random_prime()
n = p*q

335-129505_samp.indd 15335-129505_samp.indd 15 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

https://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
https://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

-1—
0—

+1—
16 Chapter 2

If two systems run this code given an identical seed, they’ll produce the
same p, the same q, and therefore the same n.

The presence of shared primes in different keys is due to key-
generation schemes where additional entropy is injected during the pro-
cess, as shown here:

prng.seed(seed)
p = prng.generate_random_prime()
prng.add_entropy()
q = prng.generate_random_prime()
n = p*q

If two systems run this code with the same seed, they’ll produce the
same p, but the injection of entropy through prng.add_entropy() will ensure
distinct qs.

The problem with shared prime factors is that given n = pq and n′ = pq′, it’s
trivial to recover the shared p by computing the greatest common divisor (GCD)
of n and n′. For details, see the paper “Mining Your Ps and Qs” by Heninger,
Durumeric, Wustrow, and Halderman, available at https://factorable​.net.

Non-cryptographic PRNG
Earlier we discussed the difference between crypto and non-crypto PRNGs
and why the latter should never be used for crypto applications. Alas, many
systems overlook that detail, so we’ll look at one such example.

The popular MediaWiki application runs on Wikipedia and many other
wikis. It uses randomness to generate things like security tokens and tempo-
rary passwords, which should be unpredictable. Unfortunately, a now obso-
lete version of MediaWiki used a non-crypto PRNG, the Mersenne Twister,
to generate these tokens and passwords. Here’s a snippet from the vulner-
able MediaWiki source code. Look for the function called to get a random
bit, and read the comments.

 /**
 * Generate a hex-y looking random token for various uses.
 * Could be made more cryptographically sure if someone cares.
 * @return string
 */
function generateToken($salt = '') {
 $token = dechex(mt_rand()).dechex(mt_rand());
 return md5($token . $salt);
}

Did you notice mt_rand() in the preceding code? Here, mt stands for
Mersenne Twister. In 2012, researchers showed how to exploit the predict-
ability of Mersenne Twister to predict future tokens and temporary pass-
words, given a couple of security tokens. MediaWiki was patched to use a
crypto PRNG.

335-129505_samp.indd 16335-129505_samp.indd 16 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

https://factorable.net

—-1
—0
—+1

Randomness 17

Sampling Bug with Strong Randomness
The next bug shows how even a strong crypto PRNG with sufficient entropy
can produce a biased distribution. The chat program Cryptocat was
designed to offer secure communication. It used a function that attempted
to create a uniformly distributed string of decimal digits—namely, numbers
in the range 0 through 9. However, just taking random bytes modulo 10
doesn’t yield a uniform distribution; when taking all numbers between
0 and 255 and reducing them modulo 10, you don’t get an equal number of
values in 0 to 9.

Cryptocat did the following to address that problem and obtain a uni-
form distribution:

Cryptocat.random = function() {
 var x, o = '';
 while (o.length < 16) {

x = state.getBytes(1);
if (x[0] <= 250) {

 o += x[0] % 10;
}

 }
 return parseFloat('0.' + o)
}

And that was almost perfect. By taking only the numbers up to a mul-
tiple of 10 and discarding others, you’d expect a uniform distribution of
the digits 0 through 9. Unfortunately, there was an off- by- one error in the
if condition. I’ll leave the details to you as an exercise. You should find that
there is a small statistical bias in favor of the index 0 (hint: <= should have
been <).

Further Reading
I’ve just scratched the surface of randomness in cryptography. There is
much more to learn about the theory of randomness, including different
entropy notions, randomness extractors, and even the power of random-
ization and derandomization in complexity theory. To learn more about
PRNGs and their security, read the classic 1998 paper “Cryptanalytic
Attacks on Pseudorandom Number Generators” by Kelsey, Schneier,
Wagner, and Hall. Then look at the implementation of PRNGs in your
favorite applications and try to find their weaknesses. (Search online for
“random generator bug” to find plenty of examples.)

We’re not done with randomness, though. We’ll encounter it multiple
times throughout this book, and you’ll discover the many ways it helps to
construct secure systems.

335-129505_samp.indd 17335-129505_samp.indd 17 22/04/24 5:47 PM22/04/24 5:47 PM

Serious Cryptography, 2nd edition (sample chapter) © 2024 by Jean-Philippe Aumasson

