
Let’s jump into Rust by working through
a hands-on project together! This chap-

ter introduces you to a few common Rust
concepts by showing you how to use them in a

real program. You’ll learn about let, match, methods,
associated functions, external crates, and more! In
the following chapters, we’ll explore these ideas in
more detail. In this chapter, you’ll just practice the
fundamentals.

We’ll implement a classic beginner programming problem: a guessing
game. Here’s how it works: the program will generate a random integer
between 1 and 100. It will then prompt the player to enter a guess. After a

2
P R O G R A M M I N G A
G U E S S I N G G A M E

503106book.indb 13503106book.indb 13 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

14 Chapter 2

guess is entered, the program will indicate whether the guess is too low or
too high. If the guess is correct, the game will print a congratulatory mes-
sage and exit.

Setting Up a New Project
To set up a new project, go to the projects directory that you created in
Chapter 1 and make a new project using Cargo, like so:

$ cargo new guessing_game
$ cd guessing_game

The first command, cargo new, takes the name of the project (guessing
_game) as the first argument. The second command changes to the new
project’s directory.

Look at the generated Cargo.toml file:

Cargo.toml [package]
name = "guessing_game"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo
/reference/manifest.html

[dependencies]

As you saw in Chapter 1, cargo new generates a “Hello, world!” program
for you. Check out the src/main.rs file:

src/main.rs fn main() {
 println!("Hello, world!");
}

Now let’s compile this “Hello, world!” program and run it in the same
step using the cargo run command:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 1.50s
 Running `target/debug/guessing_game`
Hello, world!

The run command comes in handy when you need to rapidly iterate on
a project, as we’ll do in this game, quickly testing each iteration before mov-
ing on to the next one.

Reopen the src/main.rs file. You’ll be writing all the code in this file.

503106book.indb 14503106book.indb 14 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 15

Processing a Guess
The first part of the guessing game program will ask for user input, process
that input, and check that the input is in the expected form. To start, we’ll
allow the player to input a guess. Enter the code in Listing 2-1 into src/main.rs.

src/main.rs use std::io;

fn main() {
 println!("Guess the number!");

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 println!("You guessed: {guess}");
}

Listing 2-1: Code that gets a guess from the user and prints it

This code contains a lot of information, so let’s go over it line by line.
To obtain user input and then print the result as output, we need to bring
the io input/output library into scope. The io library comes from the stan-
dard library, known as std:

use std::io;

By default, Rust has a set of items defined in the standard library that
it brings into the scope of every program. This set is called the prelude, and
you can see everything in it at https://doc.rust-lang.org/std/prelude/index.html.

If a type you want to use isn’t in the prelude, you have to bring that type
into scope explicitly with a use statement. Using the std::io library provides you
with a number of useful features, including the ability to accept user input.

As you saw in Chapter 1, the main function is the entry point into the
program:

fn main() {

The fn syntax declares a new function; the parentheses, (), indicate
there are no parameters; and the curly bracket, {, starts the body of the
function.

As you also learned in Chapter 1, println! is a macro that prints a string
to the screen:

println!("Guess the number!");

println!("Please input your guess.");

503106book.indb 15503106book.indb 15 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

16 Chapter 2

This code is printing a prompt stating what the game is and requesting
input from the user.

Storing Values with Variables
Next, we’ll create a variable to store the user input, like this:

let mut guess = String::new();

Now the program is getting interesting! There’s a lot going on in this
little line. We use the let statement to create the variable. Here’s another
example:

let apples = 5;

This line creates a new variable named apples and binds it to the value 5.
In Rust, variables are immutable by default, meaning once we give the vari-
able a value, the value won’t change. We’ll be discussing this concept in
detail in “Variables and Mutability” on page 32. To make a variable muta-
ble, we add mut before the variable name:

let apples = 5; // immutable
let mut bananas = 5; // mutable

N O T E 	 The // syntax starts a comment that continues until the end of the line. Rust ignores
everything in comments. We’ll discuss comments in more detail in Chapter 3.

Returning to the guessing game program, you now know that let mut
guess will introduce a mutable variable named guess. The equal sign (=)
tells Rust we want to bind something to the variable now. On the right of
the equal sign is the value that guess is bound to, which is the result of call-
ing String::new, a function that returns a new instance of a String. String
is a string type provided by the standard library that is a growable, UTF-8
encoded bit of text.

The :: syntax in the ::new line indicates that new is an associated func-
tion of the String type. An associated function is a function that’s implemented
on a type, in this case String. This new function creates a new, empty string.
You’ll find a new function on many types because it’s a common name for a
function that makes a new value of some kind.

In full, the let mut guess = String::new(); line has created a mutable
variable that is currently bound to a new, empty instance of a String. Whew!

Receiving User Input
Recall that we included the input/output functionality from the standard
library with use std::io; on the first line of the program. Now we’ll call the
stdin function from the io module, which will allow us to handle user input:

io::stdin()
 .read_line(&mut guess)

503106book.indb 16503106book.indb 16 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 17

If we hadn’t imported the io library with use std::io; at the beginning
of the program, we could still use the function by writing this function call
as std::io::stdin. The stdin function returns an instance of std::io::Stdin,
which is a type that represents a handle to the standard input for your
terminal.

Next, the line .read_line(&mut guess) calls the read_line method on the
standard input handle to get input from the user. We’re also passing &mut
guess as the argument to read_line to tell it what string to store the user
input in. The full job of read_line is to take whatever the user types into
standard input and append that into a string (without overwriting its con-
tents), so we therefore pass that string as an argument. The string argument
needs to be mutable so the method can change the string’s content.

The & indicates that this argument is a reference, which gives you a way
to let multiple parts of your code access one piece of data without needing
to copy that data into memory multiple times. References are a complex
feature, and one of Rust’s major advantages is how safe and easy it is to use
references. You don’t need to know a lot of those details to finish this pro-
gram. For now, all you need to know is that, like variables, references are
immutable by default. Hence, you need to write &mut guess rather than &guess
to make it mutable. (Chapter 4 will explain references more thoroughly.)

Handling Potential Failure with Result
We’re still working on this line of code. We’re now discussing a third line of
text, but note that it’s still part of a single logical line of code. The next part
is this method:

.expect("Failed to read line");

We could have written this code as:

io::stdin().read_line(&mut guess).expect("Failed to read line");

However, one long line is difficult to read, so it’s best to divide it. It’s
often wise to introduce a newline and other whitespace to help break up
long lines when you call a method with the .method_name() syntax. Now let’s
discuss what this line does.

As mentioned earlier, read_line puts whatever the user enters into the
string we pass to it, but it also returns a Result value. Result is an enumeration,
often called an enum, which is a type that can be in one of multiple possible
states. We call each possible state a variant.

Chapter 6 will cover enums in more detail. The purpose of these Result
types is to encode error-handling information.

Result’s variants are Ok and Err. The Ok variant indicates the operation
was successful, and inside Ok is the successfully generated value. The Err
variant means the operation failed, and Err contains information about how
or why the operation failed.

Values of the Result type, like values of any type, have methods defined
on them. An instance of Result has an expect method that you can call. If

503106book.indb 17503106book.indb 17 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

18 Chapter 2

this instance of Result is an Err value, expect will cause the program to crash
and display the message that you passed as an argument to expect. If the
read_line method returns an Err, it would likely be the result of an error
coming from the underlying operating system. If this instance of Result is
an Ok value, expect will take the return value that Ok is holding and return
just that value to you so you can use it. In this case, that value is the number
of bytes in the user’s input.

If you don’t call expect, the program will compile, but you’ll get a
warning:

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
warning: unused `Result` that must be used
 --> src/main.rs:10:5
 |
10 | io::stdin().read_line(&mut guess);
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: `#[warn(unused_must_use)]` on by default
 = note: this `Result` may be an `Err` variant, which should be handled

warning: `guessing_game` (bin "guessing_game") generated 1 warning
 Finished dev [unoptimized + debuginfo] target(s) in 0.59s

Rust warns that you haven’t used the Result value returned from read
_line, indicating that the program hasn’t handled a possible error.

The right way to suppress the warning is to actually write error-handling
code, but in our case we just want to crash this program when a problem
occurs, so we can use expect. You’ll learn about recovering from errors in
Chapter 9.

Printing Values with println! Placeholders
Aside from the closing curly bracket, there’s only one more line to discuss
in the code so far:

println!("You guessed: {guess}");

This line prints the string that now contains the user’s input. The {} set
of curly brackets is a placeholder: think of {} as little crab pincers that hold
a value in place. When printing the value of a variable, the variable name
can go inside the curly brackets. When printing the result of evaluating an
expression, place empty curly brackets in the format string, then follow the
format string with a comma-separated list of expressions to print in each
empty curly bracket placeholder in the same order. Printing a variable and
the result of an expression in one call to println! would look like this:

let x = 5;
let y = 10;

println!("x = {x} and y + 2 = {}", y + 2);

503106book.indb 18503106book.indb 18 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 19

This code would print x = 5 and y = 12.

Testing the First Part
Let’s test the first part of the guessing game. Run it using cargo run:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 6.44s
 Running `target/debug/guessing_game`
Guess the number!
Please input your guess.
6
You guessed: 6

At this point, the first part of the game is done: we’re getting input
from the keyboard and then printing it.

Generating a Secret Number
Next, we need to generate a secret number that the user will try to guess.
The secret number should be different every time so the game is fun to
play more than once. We’ll use a random number between 1 and 100 so
the game isn’t too difficult. Rust doesn’t yet include random number func-
tionality in its standard library. However, the Rust team does provide a rand
crate at https://crates.io/crates/rand with said functionality.

Using a Crate to Get More Functionality
Remember that a crate is a collection of Rust source code files. The project
we’ve been building is a binary crate, which is an executable. The rand crate is
a library crate, which contains code that is intended to be used in other pro-
grams and can’t be executed on its own.

Cargo’s coordination of external crates is where Cargo really shines.
Before we can write code that uses rand, we need to modify the Cargo.toml
file to include the rand crate as a dependency. Open that file now and
add the following line to the bottom, beneath the [dependencies] section
header that Cargo created for you. Be sure to specify rand exactly as we
have here, with this version number, or the code examples in this tutorial
may not work:

Cargo.toml [dependencies]
rand = "0.8.5"

In the Cargo.toml file, everything that follows a header is part of that
section that continues until another section starts. In [dependencies] you tell
Cargo which external crates your project depends on and which versions
of those crates you require. In this case, we specify the rand crate with the
semantic version specifier 0.8.5. Cargo understands Semantic Versioning
(sometimes called SemVer), which is a standard for writing version numbers.

503106book.indb 19503106book.indb 19 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

20 Chapter 2

The specifier 0.8.5 is actually shorthand for ^0.8.5, which means any version
that is at least 0.8.5 but below 0.9.0.

Cargo considers these versions to have public APIs compatible with ver-
sion 0.8.5, and this specification ensures you’ll get the latest patch release
that will still compile with the code in this chapter. Any version 0.9.0 or
greater is not guaranteed to have the same API as what the following
examples use.

Now, without changing any of the code, let’s build the project, as shown
in Listing 2-2.

$ cargo build
 Updating crates.io index
 Downloaded rand v0.8.5
 Downloaded libc v0.2.127
 Downloaded getrandom v0.2.7
 Downloaded cfg-if v1.0.0
 Downloaded ppv-lite86 v0.2.16
 Downloaded rand_chacha v0.3.1
 Downloaded rand_core v0.6.3
 Compiling rand_core v0.6.3
 Compiling libc v0.2.127
 Compiling getrandom v0.2.7
 Compiling cfg-if v1.0.0
 Compiling ppv-lite86 v0.2.16
 Compiling rand_chacha v0.3.1
 Compiling rand v0.8.5
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 2.53s

Listing 2-2: The output from running cargo build after adding the rand crate as a
dependency

You may see different version numbers (but they will all be compatible
with the code, thanks to SemVer!) and different lines (depending on the
operating system), and the lines may be in a different order.

When we include an external dependency, Cargo fetches the latest ver-
sions of everything that dependency needs from the registry, which is a copy
of data from Crates.io at https://crates.io. Crates.io is where people in the
Rust ecosystem post their open source Rust projects for others to use.

After updating the registry, Cargo checks the [dependencies] section
and downloads any crates listed that aren’t already downloaded. In this
case, although we only listed rand as a dependency, Cargo also grabbed
other crates that rand depends on to work. After downloading the crates,
Rust compiles them and then compiles the project with the dependencies
available.

If you immediately run cargo build again without making any changes,
you won’t get any output aside from the Finished line. Cargo knows it has
already downloaded and compiled the dependencies, and you haven’t
changed anything about them in your Cargo.toml file. Cargo also knows that
you haven’t changed anything about your code, so it doesn’t recompile that
either. With nothing to do, it simply exits.

503106book.indb 20503106book.indb 20 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 21

If you open the src/main.rs file, make a trivial change, and then save it
and build again, you’ll only see two lines of output:

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 2.53 secs

These lines show that Cargo only updates the build with your tiny change
to the src/main.rs file. Your dependencies haven’t changed, so Cargo knows it
can reuse what it has already downloaded and compiled for those.

Ensuring Reproducible Builds with the Cargo.lock File

Cargo has a mechanism that ensures you can rebuild the same artifact every
time you or anyone else builds your code: Cargo will use only the versions of
the dependencies you specified until you indicate otherwise. For example,
say that next week version 0.8.6 of the rand crate comes out, and that ver-
sion contains an important bug fix, but it also contains a regression that will
break your code. To handle this, Rust creates the Cargo.lock file the first time
you run cargo build, so we now have this in the guessing_game directory.

When you build a project for the first time, Cargo figures out all the
versions of the dependencies that fit the criteria and then writes them to
the Cargo.lock file. When you build your project in the future, Cargo will see
that the Cargo.lock file exists and will use the versions specified there rather
than doing all the work of figuring out versions again. This lets you have a
reproducible build automatically. In other words, your project will remain
at 0.8.5 until you explicitly upgrade, thanks to the Cargo.lock file. Because
the Cargo.lock file is important for reproducible builds, it’s often checked
into source control with the rest of the code in your project.

Updating a Crate to Get a New Version

When you do want to update a crate, Cargo provides the command update,
which will ignore the Cargo.lock file and figure out all the latest versions that
fit your specifications in Cargo.toml. Cargo will then write those versions to the
Cargo.lock file. Otherwise, by default, Cargo will only look for versions greater
than 0.8.5 and less than 0.9.0. If the rand crate has released the two new ver-
sions 0.8.6 and 0.9.0, you would see the following if you ran cargo update:

$ cargo update
 Updating crates.io index
 Updating rand v0.8.5 -> v0.8.6

Cargo ignores the 0.9.0 release. At this point, you would also notice a
change in your Cargo.lock file noting that the version of the rand crate you
are now using is 0.8.6. To use rand version 0.9.0 or any version in the 0.9.x
series, you’d have to update the Cargo.toml file to look like this instead:

[dependencies]
rand = "0.9.0"

503106book.indb 21503106book.indb 21 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

22 Chapter 2

The next time you run cargo build, Cargo will update the registry of
crates available and reevaluate your rand requirements according to the new
version you have specified.

There’s a lot more to say about Cargo and its ecosystem, which we’ll dis-
cuss in Chapter 14, but for now, that’s all you need to know. Cargo makes it
very easy to reuse libraries, so Rustaceans are able to write smaller projects
that are assembled from a number of packages.

Generating a Random Number
Let’s start using rand to generate a number to guess. The next step is to
update src/main.rs, as shown in Listing 2-3.

src/main.rs use std::io;
1 use rand::Rng;

fn main() {
 println!("Guess the number!");

 2 let secret_number = rand::thread_rng().gen_range(1..=100);

 3 println!("The secret number is: {secret_number}");

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 println!("You guessed: {guess}");
}

Listing 2-3: Adding code to generate a random number

First we add the line use rand::Rng; 1. The Rng trait defines methods
that random number generators implement, and this trait must be in scope
for us to use those methods. Chapter 10 will cover traits in detail.

Next, we’re adding two lines in the middle. In the first line 2, we call
the rand::thread_rng function that gives us the particular random number
generator we’re going to use: one that is local to the current thread of exe-
cution and is seeded by the operating system. Then we call the gen_range
method on the random number generator. This method is defined by the
Rng trait that we brought into scope with the use rand::Rng; statement. The
gen_range method takes a range expression as an argument and generates a
random number in the range. The kind of range expression we’re using here
takes the form start..=end and is inclusive on the lower and upper bounds, so
we need to specify 1..=100 to request a number between 1 and 100.

503106book.indb 22503106book.indb 22 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 23

N O T E 	 You won’t just know which traits to use and which methods and functions to call
from a crate, so each crate has documentation with instructions for using it. Another
neat feature of Cargo is that running the cargo doc --open command will build doc-
umentation provided by all your dependencies locally and open it in your browser. If
you’re interested in other functionality in the rand crate, for example, run cargo doc
--open and click rand in the sidebar on the left.

The second new line 3 prints the secret number. This is useful while
we’re developing the program to be able to test it, but we’ll delete it from
the final version. It’s not much of a game if the program prints the answer
as soon as it starts!

Try running the program a few times:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 2.53s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.02s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 83
Please input your guess.
5
You guessed: 5

You should get different random numbers, and they should all be num-
bers between 1 and 100. Great job!

Comparing the Guess to the Secret Number
Now that we have user input and a random number, we can compare them.
That step is shown in Listing 2-4. Note that this code won’t compile just yet,
as we will explain.

src/main.rs use rand::Rng;
1 use std::cmp::Ordering;
use std::io;

fn main() {
 --snip--

 println!("You guessed: {guess}");

503106book.indb 23503106book.indb 23 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

24 Chapter 2

 2 match guess.3cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }
}

Listing 2-4: Handling the possible return values of comparing two numbers

First we add another use statement 1, bringing a type called std::cmp
::Ordering into scope from the standard library. The Ordering type is another
enum and has the variants Less, Greater, and Equal. These are the three out-
comes that are possible when you compare two values.

Then we add five new lines at the bottom that use the Ordering type. The
cmp method 3 compares two values and can be called on anything that can
be compared. It takes a reference to whatever you want to compare with:
here it’s comparing guess to secret_number. Then it returns a variant of the
Ordering enum we brought into scope with the use statement. We use a match
expression 2 to decide what to do next based on which variant of Ordering
was returned from the call to cmp with the values in guess and secret_number.

A match expression is made up of arms. An arm consists of a pattern to
match against, and the code that should be run if the value given to match
fits that arm’s pattern. Rust takes the value given to match and looks through
each arm’s pattern in turn. Patterns and the match construct are powerful
Rust features: they let you express a variety of situations your code might
encounter and they make sure you handle them all. These features will be
covered in detail in Chapter 6 and Chapter 18, respectively.

Let’s walk through an example with the match expression we use here.
Say that the user has guessed 50 and the randomly generated secret num-
ber this time is 38.

When the code compares 50 to 38, the cmp method will return Ordering
::Greater because 50 is greater than 38. The match expression gets the
Ordering::Greater value and starts checking each arm’s pattern. It looks at
the first arm’s pattern, Ordering::Less, and sees that the value Ordering
::Greater does not match Ordering::Less, so it ignores the code in that arm
and moves to the next arm. The next arm’s pattern is Ordering::Greater,
which does match Ordering::Greater! The associated code in that arm will
execute and print Too big! to the screen. The match expression ends after
the first successful match, so it won’t look at the last arm in this scenario.

However, the code in Listing 2-4 won’t compile yet. Let’s try it:

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
error[E0308]: mismatched types
 --> src/main.rs:22:21
 |
22 | match guess.cmp(&secret_number) {
 | ^^^^^^^^^^^^^^ expected struct `String`, found integer
 |
 = note: expected reference `&String`
 found reference `&{integer}`

503106book.indb 24503106book.indb 24 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 25

The core of the error states that there are mismatched types. Rust has
a strong, static type system. However, it also has type inference. When we
wrote let mut guess = String::new(), Rust was able to infer that guess should
be a String and didn’t make us write the type. The secret_number, on the
other hand, is a number type. A few of Rust’s number types can have a value
between 1 and 100: i32, a 32-bit number; u32, an unsigned 32-bit number;
i64, a 64-bit number; as well as others. Unless otherwise specified, Rust
defaults to an i32, which is the type of secret_number unless you add type
information elsewhere that would cause Rust to infer a different numerical
type. The reason for the error is that Rust cannot compare a string and a
number type.

Ultimately, we want to convert the String the program reads as input
into a real number type so we can compare it numerically to the secret
number. We do so by adding this line to the main function body:

src/main.rs --snip--

let mut guess = String::new();

io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

let guess: u32 = guess
 .trim()
 .parse()
 .expect("Please type a number!");

println!("You guessed: {guess}");

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
}

We create a variable named guess. But wait, doesn’t the program already
have a variable named guess? It does, but helpfully Rust allows us to shadow
the previous value of guess with a new one. Shadowing lets us reuse the
guess variable name rather than forcing us to create two unique variables,
such as guess_str and guess, for example. We’ll cover this in more detail in
Chapter 3, but for now, know that this feature is often used when you want
to convert a value from one type to another type.

We bind this new variable to the expression guess.trim().parse(). The
guess in the expression refers to the original guess variable that contained
the input as a string. The trim method on a String instance will eliminate
any whitespace at the beginning and end, which we must do to be able to
compare the string to the u32, which can only contain numerical data. The
user must press ENTER to satisfy read_line and input their guess, which
adds a newline character to the string. For example, if the user types 5 and

503106book.indb 25503106book.indb 25 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

26 Chapter 2

presses ENTER, guess looks like this: 5\n. The \n represents “newline.” (On
Windows, pressing ENTER results in a carriage return and a newline, \r\n.)
The trim method eliminates \n or \r\n, resulting in just 5.

The parse method on strings converts a string to another type. Here,
we use it to convert from a string to a number. We need to tell Rust the
exact number type we want by using let guess: u32. The colon (:) after
guess tells Rust we’ll annotate the variable’s type. Rust has a few built-in
number types; the u32 seen here is an unsigned, 32-bit integer. It’s a good
default choice for a small positive number. You’ll learn about other num-
ber types in Chapter 3.

Additionally, the u32 annotation in this example program and the com-
parison with secret_number means Rust will infer that secret_number should
be a u32 as well. So now the comparison will be between two values of the
same type!

The parse method will only work on characters that can logically be
converted into numbers and so can easily cause errors. If, for example, the
string contained A👍 %, there would be no way to convert that to a number.
Because it might fail, the parse method returns a Result type, much as the
read_line method does (discussed earlier in “Handling Potential Failure
with Result” on page 17). We’ll treat this Result the same way by using
the expect method again. If parse returns an Err Result variant because it
couldn’t create a number from the string, the expect call will crash the
game and print the message we give it. If parse can successfully convert the
string to a number, it will return the Ok variant of Result, and expect will
return the number that we want from the Ok value.

Let’s run the program now:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 0.43s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 58
Please input your guess.
 76
You guessed: 76
Too big!

Nice! Even though spaces were added before the guess, the program still
figured out that the user guessed 76. Run the program a few times to verify
the different behavior with different kinds of input: guess the number cor-
rectly, guess a number that is too high, and guess a number that is too low.

We have most of the game working now, but the user can make only
one guess. Let’s change that by adding a loop!

Allowing Multiple Guesses with Looping
The loop keyword creates an infinite loop. We’ll add a loop to give users
more chances at guessing the number.

503106book.indb 26503106book.indb 26 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 27

src/main.rs --snip--

println!("The secret number is: {secret_number}");

loop {
 println!("Please input your guess.");

 --snip--

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }
}

As you can see, we’ve moved everything from the guess input prompt
onward into a loop. Be sure to indent the lines inside the loop another
four spaces each and run the program again. The program will now ask for
another guess forever, which actually introduces a new problem. It doesn’t
seem like the user can quit!

The user could always interrupt the program by using the keyboard
shortcut CTRL-C. But there’s another way to escape this insatiable mon-
ster, as mentioned in the parse discussion in “Comparing the Guess to the
Secret Number” on page 23: if the user enters a non-number answer, the
program will crash. We can take advantage of that to allow the user to
quit, as shown here:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 1.50s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 59
Please input your guess.
45
You guessed: 45
Too small!
Please input your guess.
60
You guessed: 60
Too big!
Please input your guess.
59
You guessed: 59
You win!
Please input your guess.
quit
thread 'main' panicked at 'Please type a number!: ParseIntError
{ kind: InvalidDigit }', src/main.rs:28:47
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

503106book.indb 27503106book.indb 27 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

28 Chapter 2

Typing quit will quit the game, but as you’ll notice, so will entering any
other non-number input. This is suboptimal, to say the least; we want the
game to also stop when the correct number is guessed.

Quitting After a Correct Guess
Let’s program the game to quit when the user wins by adding a break
statement:

src/main.rs --snip--

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => {
 println!("You win!");
 break;
 }
}

Adding the break line after You win! makes the program exit the loop
when the user guesses the secret number correctly. Exiting the loop also
means exiting the program, because the loop is the last part of main.

Handling Invalid Input
To further refine the game’s behavior, rather than crashing the program
when the user inputs a non-number, let’s make the game ignore a non-number
so the user can continue guessing. We can do that by altering the line where
guess is converted from a String to a u32, as shown in Listing 2-5.

src/main.rs --snip--

io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
};

println!("You guessed: {guess}");

--snip--

Listing 2-5: Ignoring a non-number guess and asking for another guess instead of crashing
the program

We switch from an expect call to a match expression to move from crash-
ing on an error to handling the error. Remember that parse returns a Result
type and Result is an enum that has the variants Ok and Err. We’re using a
match expression here, as we did with the Ordering result of the cmp method.

503106book.indb 28503106book.indb 28 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

Programming a Guessing Game 29

If parse is able to successfully turn the string into a number, it will
return an Ok value that contains the resultant number. That Ok value will
match the first arm’s pattern, and the match expression will just return the
num value that parse produced and put inside the Ok value. That number
will end up right where we want it in the new guess variable we’re creating.

If parse is not able to turn the string into a number, it will return an Err
value that contains more information about the error. The Err value does
not match the Ok(num) pattern in the first match arm, but it does match the
Err(_) pattern in the second arm. The underscore, _, is a catch-all value; in
this example, we’re saying we want to match all Err values, no matter what
information they have inside them. So the program will execute the second
arm’s code, continue, which tells the program to go to the next iteration of
the loop and ask for another guess. So, effectively, the program ignores all
errors that parse might encounter!

Now everything in the program should work as expected. Let’s try it:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 4.45s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 61
Please input your guess.
10
You guessed: 10
Too small!
Please input your guess.
99
You guessed: 99
Too big!
Please input your guess.
foo
Please input your guess.
61
You guessed: 61
You win!

Awesome! With one tiny final tweak, we will finish the guessing game.
Recall that the program is still printing the secret number. That worked
well for testing, but it ruins the game. Let’s delete the println! that outputs
the secret number. Listing 2-6 shows the final code.

src/main.rs use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
 println!("Guess the number!");

 let secret_number = rand::thread_rng().gen_range(1..=100);

503106book.indb 29503106book.indb 29 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

30 Chapter 2

 loop {
 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
 };

 println!("You guessed: {guess}");

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => {
 println!("You win!");
 break;
 }
 }
 }
}

Listing 2-6: Complete guessing game code

At this point, you’ve successfully built the guessing game. Congratulations!

Summary
This project was a hands-on way to introduce you to many new Rust con-
cepts: let, match, functions, the use of external crates, and more. In the next
few chapters, you’ll learn about these concepts in more detail. Chapter 3
covers concepts that most programming languages have, such as variables,
data types, and functions, and shows how to use them in Rust. Chapter 4
explores ownership, a feature that makes Rust different from other lan-
guages. Chapter 5 discusses structs and method syntax, and Chapter 6
explains how enums work.

503106book.indb 30503106book.indb 30 10/19/22 11:30 AM10/19/22 11:30 AM

The Rust Programming Language, 2nd Edition (Sample Chapter) © 10/19/22 by Steve Klabnik and Carol Nichols

