
R is the world’s most popular language for developing
statistical software: Archaeologists use it to track the
spread of ancient civilizations, drug companies use it
to discover which medications are safe and effective,
and actuaries use it to assess financial risks and keep
markets running smoothly.

The Art of R Programming takes you on a guided tour
of software development with R, from basic types
and data structures to advanced topics like closures,
recursion, and anonymous functions. No statistical
knowledge is required, and your programming skills
can range from hobbyist to pro.

Along the way, you’ll learn about functional and object-
oriented programming, running mathematical simulations,
and rearranging complex data into simpler, more useful
formats. You’ll also learn to:

• Create artful graphs to visualize complex data sets
and functions

• Write more efficient code using parallel R and
vectorization

T A M E Y O U R D A T AT A M E Y O U R D A T A

• Interface R with C/C++ and Python for increased
speed or functionality

• Find new packages for text analysis, image manipula-
tion, and thousands more

• Squash annoying bugs with advanced debugging
techniques

Whether you’re designing aircraft, forecasting the
weather, or you just need to tame your data, The Art of
R Programming is your guide to harnessing the power
of statistical computing.

A B O U T T H E A U T H O R

Norman Matloff is a professor of computer science
(and a former professor of statistics) at the University
of California, Davis. His research interests include
parallel processing and statistical regression, and
he is the author of several widely used web tutorials
on software development. He has written articles for
the New York Times, the Washington Post, Forbes
Magazine, and the Los Angeles Times, and he is the
co-author of The Art of Debugging (No Starch Press).

SHELVE IN
:

COM
PUTERS/M

ATHEM
ATICAL &

STATISTICAL SOFTW
ARE

$39.95 ($41.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

FSC LOGO

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

A T O U R O F S T A T I S T I C A L S O F T W A R E D E S I G N

N O R M A N M A T L O F F

T H E

A R T O F R
P R O G R A M M I N G

T H E

A R T O F R
P R O G R A M M I N G

T
H

E
 A

R
T

 O
F

 R
 P

R
O

G
R

A
M

M
IN

G
T

H
E

 A
R

T
 O

F
 R

 P
R

O
G

R
A

M
M

IN
G

M
A

T
L

O
F

F

I N D E X

Special Characters

: (colon operator), 32–33
== operator, 54–55
> operator, 40
.libpaths() function, 356–357
.Rdata file, 20
.Rhistory file, 20
.Rprofile file, 19
<<- (superassignment operator), 9

simplifying code, 174
writing to nonlocals with, 161–162

+ operator, 31
"%mut%"() function, 218

A

abalone data set
recoding, 51–54
using lapply() function, 99

abline() graphics function, 150
abs() math function, 189
accessing

data frames, 102–104
files on remote machines via

URLs, 243
Internet, 246–250

implementing parallel R exam-
ple, 248–250

sockets, 247–248
TCP/IP, 247

keyboard and monitor, 232–235
using print() function, 234–235
using readline() function, 234
using scan() function, 232–234

list components and values, 93–95
actual argument, 9
adding

legends to graphs with legend()
function, 270

lines with abline() function, 263–264
list elements, 88–90
matrix rows and columns, 73–78
points to graphs with points() func-

tion, 269–270
text to graphs with text() function,

270–271
addmargins() function, 131
adjacency matrix, 333
aggregate() function, 136
all() function, 35–39
analogous operations, resizing

matrices, 74
anonymous functions, 99, 187–188
antibugging, 287
any() function, 35–39
application-specific functions, 165
apply() function

applying functions to matrix rows
and columns, 70–72

matrix-like operations, 107
obtaining variable marginal

values, 131
arguments. See also specific argument

by name
actual, 9
default, 9–10
default values for, 146–147
formal, 9

arithmetic operations, 30–31, 145–146
array() function, 134
arrays

higher-dimensional arrays, 82–83
as vectors, 28

as.matrix() function, 81
aspell() function, 211
assign() function

variables, 109
writing nonlocals with, 163

360 INDEX

atomic pragma, 343
atomic vectors, 85–86
attr() function, 212

B

batch mode, 1
help feature, 24
running R in, 3

Bernoulli sequence, 204
biglm package, 321
bigmemory package, 321
binary files, 237
binary search tree, 177–182
body() function, 149, 151
Boolean operators, 145–146
braces, 144
brackets, 87–88
Bravington, Mark, 300
breakpoints, setting, 289–290

calling browser() function directly,
289–290

using setbreakpoint() function, 290
breaks component, hist() function, 14
break statement, 141
browser commands, 289
browser() function

setting breakpoints, 289–290
single-stepping through code, 288

by() function, 126–127
byrow argument, matrix() function,

61, 236
byte code compilation, 320

C

c %in% y set operation, 202
cache, 346
calculus, 192–193
categorical variables, 121
cbind() function, 12, 74–75, 106–107
c browser command, 289
cdf (cumulative distribution

function), 193
ceiling() math function, 190
cell counts, changing to

proportions, 130
cex option, changing graph character

sizes with, 272–273
c() function, 56–57
Chambers, John, 226

character strings, 251–259
defined, 11
regular expressions, 254–257

forming filenames example,
256–257

testing filename for given suffix
example, 255–256

string-manipulation functions,
251–254

gregexpr(), 254
grep(), 252
nchar(), 252
paste(), 252–253
regexpr(), 253–254
sprintf(), 253
strsplit(), 253
substr(), 253

use of string utilities in edtdbg debug-
ging tool, 257–259

child nodes, binary search tree, 177
Chinese dialects, aids for learning,

115–120
chi-square distribution, 193–194
chol() linear algebra function, 197
choose() set operation, 202
chunking memory, 320–321
class() function, 212
cleaner code, 172
client/server model, 247
closures, 151, 174–175
cloud() function, 282–283
cluster, snow package, 335
clusterApply() function, snow package,

72, 337, 339–340
code files, 3
code safety, 41
col() function, 69–70
colon operator (:), 32–33
color images, 63
column-major order, matrix storage,

59, 61
combinatorial simulation, 205–206
combn() function, 203
comdat$countabsamecomm component, 206
comdat$numabchosen component, 206
comdat$whosleft component, 206
comma-separated value (CSV) files, 103
comments, 3
complete.cases() function, 105–106
Comprehensive R Archive Network

(CRAN), 24, 193, 353

INDEX 361

computed mean, saving in variable, 5
concatenating, vectors, 4
connections, 237–238
constructors, 217
contingency tables, 128, 229
control statements, 139–144

if-else function, 143–144
looping over nonvector sets, 143
loops, 140–142

copy-on-change policy, 314–315
cos() math function, 190
counter() function, 175
counts component

hist() function, 14
mapsound() function, 116

covariance matrix, generating, 69–70
CRAN (Comprehensive R Archive Net-

work), 24, 193, 353
critical section, OpenMP, 344
crossprod() function, 196
cross-validation, 219, 222
C-style looping, 140
CSV (comma-separated value) files, 103
ct.dat file, 128
cumprod() math function, 190, 191
cumsum() math function, 39, 190–191
cumulative distribution function

(cdf), 193
cumulative sums and products, 191
curve() function, 277–278
customizing graphs, 272–280

adding polygons with polygon() func-
tion, 275–276

changing character sizes with cex
option, 272–273

changing ranges of axes with xlim
and ylim options, 273–275

graphing explicit functions, 276–277
magnifying portions of curve

example, 277–280
smoothing points with lowess() and

loess() functions, 276
cut() function, 136–137

D

data argument, array() function, 134
data frames, 14–15, 101–102

accessing, 102–104
applying functions to, 112–120

aids for learning Chinese dialects
example, 115–120

applying logistic regression
models example, 113–115

using lapply() and sapply() on
data frames, 112–113

matrix-like operations, 104–109
apply() function, 107
extracting subdata frames,

104–105
NA values, 105–106
rbind() and cbind() functions,

106–107
salary study example, 108–109

merging, 109–112
employee database example,

111–112
reading from files, 236
regression analysis of exam grades

example, 103–104
data structures, 10–16

character strings, 11
classes, 15–16
data frames, 14–15
lists, 12–14
matrices, 11–12
vectors, 10

debug() function, 288
debugger() function, performing checks

after crash with, 291–292
debugging, 285–304

ensuring consistency in debugging
simulation code, 302

facilities, 288–300
browser commands, 289
debug() and browser()

functions, 288
debugging sessions, 292–300
setting breakpoints, 289–290
traceback() and debugger()

functions, 291–292
trace() function, 291

global variables and, 173
parallel R, 351
principles of, 285–287

antibugging, 287
confirmation, 285–286
modular, top-down manner, 286
starting small, 286

running GDB on R, 303–304
syntax and runtime errors, 303
tools, 287–288, 300–302

debug package, 300–301
declarations, 28–29

362 INDEX

default arguments, 9–10
deleting

list elements, 88–90
matrix rows and columns, 73–78
a node from binary search tree, 181

density estimates, same graph, 264–266
DES (discrete-event simulation),

writing, 164–171
det() linear algebra function, 197
dev.off() function, 3
df parameter, mapsound() function, 116
dgbsendeditcmd() function, 257–258
diag() linear algebra function, 197–198
diff() function, 50–51
dim argument, array() function, 134
dim attribute, matrix class, 79
dimcode argument, apply() function, 70
dimension reduction, avoiding, 80–81
dim() function, 79
dimnames argument, array() function, 134
dimnames() function, 131
dir() function, 245
discrete-event simulation (DES),

writing, 164–171
discrete-valued time series, predicting,

37–39
do.call() function, 133
dosim() function, 165
double brackets, 87–88
drop argument, 68, 81
dtdbg debugging tool, use of string utili-

ties in, 257–259
dual-core machines, 341
duplicate() function, 315
dynamic task assignment, 348–350

E

each argument, rep() function, 34
edit() function, 150, 186–187
edtdbg package, 300–302
eigen() function, 197, 201
eigenvalues, 201
eigenvectors, 201
elements

list, adding and deleting, 88–90
vectors

adding and deleting, 26
naming, 56

embarrassingly parallel applications
defined, 347–348
turning general problems into, 350

employee database example, 111–112
encapsulation, 207
end of file (EOF), 238
envir argument

get() function, 159
ls() function, 155

environment and scope, 151–159
functions have (almost) no side

effects, 156–157
function to display contents of call

frame example, 157–159
ls() function, 155–156
scope hierarchy, 152–155
top-level environment, 152

EOF (end of file), 238
ess-tracebug package, 300
event list, DES, 164
event-oriented paradigm, 164
example() function, 21–22
exists() function, 230
expandut() function, 218
explicit functions, graphing, 276–277
exp() math function, 189
extracting

subdata frames, 104–105
subtables, 131–134

F

factorial() math function, 190
factors, 121

functions, 123, 136
aggregate(), 136
by(), 126–127
cut(), 136–137
split(), 124–126
tapply(), 123–124

levels and, 121–122
fangyan, 115
fargs argument, apply() function, 70
f argument, apply() function, 70
Fedora, installing R on, 353–354
file.exists() function, 245
file.info() function, 245, 246
filetype criterion, Google, 24
filter() function, 328
filtering, 45–48

defined, 25
generating filtering indices, 45–47
matrices, 66–69
with subset() function, 47
with which() selection function, 47–48

INDEX 363

findud() function, 50
findwords() function, 90–91
first-class objects, 149
floor() math function, 190
for loop, 306–313

achieving better speed in Monte
Carlo simulation example,
308–311

generating powers matrix example,
312–313

vectorization for speedup, 306–308
formal parameters

mapsound() function, 116
oddcount() function, 9

formals() function, 149, 151
forming filenames, 256–257
four-element vector, adding

element to, 26
fromcol parameter, mapsound()

function, 116
functional programming, xxi–xxii,

314–316
avoiding memory copy example,

315–316
copy-on-change issues, 314–315
vector assignment issues, 314

functions, 7–10. See also math functions;
string-manipulation functions

anonymous, 187–188
applying to data frames, 112–120

aids for learning Chinese dialects
example, 115–120

applying logistic regression
models example, 113–115

using lapply() and sapply()
functions, 112–113

applying to lists, 95–99
abalone data example, 99
lapply() and sapply() functions, 95
text concordance example, 95–98

applying to matrix rows and columns,
70–73

apply() function, 70–72
finding outliers example, 72–73

default arguments, 9–10
listing in packages, 358
as objects, 149–151
replacement, 182–186
for statistical distributions, 193–194
transcendental, 40
variable scope, 9
vector, 35–39, 311

G

GCC, 325
GDB (GNU debugger), 288, 327
general-purpose editors, 186
generating

covariance matrices, 69–70
filtering indices, 45–47
powers matrices, 312–313

generic functions, xxi
classes, 15
implementing on S4 classes, 225–226

getAnywhere() function, 211
get() function, 159

looping over nonvector sets, 142
getnextevnt() function, 165
getwd() function, 245
global variables, 9, 171–174
GNU debugger (GDB), 288, 327
GNU S language, xix
GPU programming, 171, 345
GPUs (graphics processing units), 345
gputools package, 345–346
granularity, 348
graphical user interfaces (GUIs), xx
graphics processing units (GPUs), 345
graphs, 261–283

customizing, 272–280
adding legends with legend()

function, 270
adding lines with abline()

function, 263–264
adding points with points()

function, 269–270
adding polygons with polygon()

function, 275–276
adding text with text() function,

270–271
changing character sizes with cex

option, 272–273
changing ranges of axes with xlim

and ylim options, 273–275
graphing explicit functions,

276–277
magnifying portions of curve

example, 277–280
smoothing points with lowess()

and loess() functions, 276
pinpointing locations with locator()

function, 271–272
plot() function, 262

364 INDEX

graphs (continued)
plots

restoring, 272
three-dimensional, 282–283

polynomial regression example,
266–269

saving to files, 280–281
starting new graph while keeping

old, 264
two density estimates on same graph

example, 264–266
grayscale images, 63
gregexpr() function, 254
grep() function, 109, 252
GUIs (graphical user interfaces), xx

H

hard drive, loading packages from, 356
help feature, 20–24

additional topics, 23–24
batch mode, 24
example() function, 21–22
help() function, 20–21
help.search() function, 22–23
online, 24

help() function, 20–21
help.search() function, 22–23
higher-dimensional arrays, 82–83
hist() function, 3, 13–14
hosts, 345
Huang, Min-Yu, 324

I

identical() function, 55
IDEs (integrated development environ-

ments), xx, 186
ifelse() function, 48–49

assessing statistical relation of two
variables example, 49–51

control statements, 143–144
recoding abalone data set example,

51–54
if statements, nested, 141–142
image manipulation, 63–66
images component, mapsound()

function, 116
immutable objects, 314
indexing

list, 87–88

matrices, 62–63
vector, 31–32

indices, filtering, 45–47
inheritance

defined, 207
S3 classes, 214

initglbls() function, 165
input/output (I/O). See I/O
installing packages. See packages
installing R, 353–354

downloading base package from
CRAN, 353

from Linux package manager,
353–354

from source, 354
install_packages() function, 356
integrated development environments

(IDEs), xx, 186
intensity, pixel, 63–64
interactive mode, 2–3
interfacing R to other languages, 323–332

using R from Python, 330–332
writing C/C++ functions to be called

from R, 323–330
compiling and running code, 325
debugging R/C code, 326–327
extracting subdiagonals from

square matrix example, 324–325
prediction of discrete-valued time

series example, 327–330
internal data sets, 5
internal storage, matrix, 59, 61
Internet, accessing, 246–250

implementing parallel R example,
248–250

sockets, 247–248
TCP/IP, 247

Internet Protocol (IP) address, 247
intersect() set operation, 202
intextract() function, 243
I/O (input/output), 231–250

accessing Internet, 246–250
implementing parallel R example,

248–250
sockets in R, 247–248
TCP/IP, 247

accessing keyboard and monitor,
232–235

using print() function, 234–235
using readline() function, 234
using scan() function, 232–234

INDEX 365

reading files, 235
accessing files on remote

machines via URLs, 243
connections, 237–238
reading data frame or matrix from

files, 236
reading PUMS census files

example, 239–243
reading text files, 237

writing files
getting files and directory

information, 245
sum contents of many files

example, 245–246
writing to files, 243–245

IP (Internet Protocol) address, 247

J

join operation, 109

K

keyboard, accessing, 232–235
printing to screen, 234–235
using readline() function, 234
using scan() function, 232–234

KMC (k-means clustering), 338–340

L

lag operations, vector, 50–51
lapply() function

applying functions to lists, 95
lists, 50
looping over nonvector sets, 142
using on data frames, 112–113

latency, 346
lazy evaluation principle, 52, 147
leaving-one-out method, 219, 222
legend() function, 270
length() function

obtaining length of vector, 27
vector indexing, 32

levels, factors and, 121–122
.libPaths() function, 356–357
library functions, 165
linear algebra operations, on vectors

and matrices, 61, 196–201
finding stationary distributions of

Markov chains example, 199–201
vector cross product example, 198–199

lines() function, 264
Linux package manager, installing R

from, 353–354
lists, 12–14, 85–100

accessing components and values,
93–95

applying functions to, 95–99
abalone data example, 99
lapply() and sapply() functions, 95
text concordance example, 95–98

general operations, 87–93
adding and deleting list elements,

88–90
getting size of list, 90
list indexing, 87–88
text concordance example, 90–93

recursive lists, 99–100
lm()function, 15, 208–210
load balance, 349–350
locator() function

determining relevant rows and col-
umns, 64–65

pinpointing locations with, 271–272
loess() function, 276
log10() math function, 189
logical operations, 30–31
logistic regression models, applying,

113–115
log() math function, 189
long-run state distribution, Markov

modeling, 200
loops, control statements, 140–142
lowess() function, 276
ls() function

environment and scope, 155–156
listing objects with, 226–227

M

magnifying portions of curve, 277–280
makerow() function, 241–242
managers, snow package, 335
managing objects, 226–230

determining object structure,
228–230

exists() function, 230
listing objects with ls() function,

226–227
removing specific objects with rm()

function, 227–228
saving collection of objects with

save() function, 228

366 INDEX

mapsound() function, 115–116
marginal values, variable, 131
m argument, apply() function, 70
Markov chains, 199–201
MASS package, 23, 356
math functions, 189–193

calculating probability example,
190–191

calculus, 192–193
cumulative sums and products, 191
minima and maxima, 191–192

matrices, 11–12, 59–83
adding and deleting rows and col-

umns, 73–78
finding closest pair of vertices in

graph example, 75–78
resizing matrix, 73–75

applying functions to rows and col-
umns, 70–73

apply() function, 70–72
finding outliers example, 72–73

avoiding unintended dimension
reduction, 80–81

linear algebra operations on, 196–201
naming rows and columns, 81–82
operations, 61–70

filtering, 66–69
generating covariance matrix

example, 69–70
image manipulation example,

63–66
linear algebra operations, 61
matrix indexing, 62–63

reading from files, 236
vector/matrix distinction, 78–79
as vectors, 28

matrix/array-like operations, 130–131
matrix class, 79
matrix() function, 60
matrix-inverse update method, 222
matrix-like operations, 104–109

apply() function, 107
extracting subdata frames, 104–105
NA values, 105–106
rbind() and cbind() functions,

106–107
salary study example, 108–109

matrix-multiplication operator, 12
maxima function, 191–192
max() math function, 190, 192
mean() function, 38

memory
chunking, 320–321
functional programming, 314–316

avoiding memory copy example,
315–316

copy-on-change issues, 314–315
vector assignment issues, 314

using R packages for memory
management, 321

merge() function, 109–110
merge sort method, numerical

sorting, 347
merging data frames, 109–112

employee database example,
111–112

metacharacters, 254
methods() function, 210
microdata, 239
minima function, 191–192
min() math function, 190, 191
M/M/1 queue, 165, 168
modes

batch, 1, 3, 24
defined, 26
interactive, 2–3

modulo operator, 44
monitor, accessing, 232–235

using print() function, 234–235
using readline() function, 234
using scan() function, 232–234

Monte Carlo simulation, achieving bet-
ter speed in, 308–311

multicore machines, 340–341
mutlinks() function, 336
mutual outlinks, 333–334, 341–342
mvrnorm() function, MASS package, 23, 356

N

named arguments, 146–147
names() function, 56
naming

matrix rows and columns, 81–82
vector elements, 56

NA values
matrix-like operations, 105–106
vectors, 43

n browser command, 289
nchar() function, 252
ncol() function, 79

INDEX 367

negative subscripts, 32, 63
network, defined, 247
Newton-Raphson method, 192
next statement, 141
Nile data set, 5
noise, adding to image, 65–66
nominal variables, 121
nonlocals

writing to with superassignment
operator, 161–162

writing with assign() function, 163
nonvector sets, looping control state-

ments over, 143
nonvisible functions, 211
nreps values, 205
nrow() function, 79
NULL values, 44

O

object-oriented programming. See OOP
objects. See also managing objects

first-class, 149
immutable, 314

oddcount() function, 7, 140
omp barrier pragma, OpenMP, 344
omp critical pragma, OpenMP, 344
omp single pragma, OpenMP, 344–345
OOP (object-oriented programming),

xxi, 207–230
managing objects. See managing

objects
S3 classes. See S3 classes
S4 classes, 222–226

implementing generic function
on, 225–226

vs. S3 classes, 226
writing, 223–225

OpenMP, 344–345
code analysis, 343
omp barrier pragma, 344
omp critical pragma, 344
omp single pragma, 344–345

operations
list, 87–93

adding and deleting list elements,
88–90

getting size of list, 90
list indexing, 87–88
text concordance example, 90–93

matrix, 61–70
filtering, 66–69
generating covariance matrix

example, 69–70
image manipulation example,

63–66
indexing, 62–63
linear algebra operations, 61

matrix/array-like, 130–131
vector, 30–34

arithmetic and logical operations,
30–31

colon operator (:), 32–33
generating vector sequences with

seq() function, 33–34
repeating vector constants with

rep() function, 34
vector in, matrix out, 42–43
vector in, vector out, 40–42
vector indexing, 31–32

operator precedence, 33
order() function, 97, 194–195
outliers, 49

P

packages, 355–358
installing

automatically, 356–357
manually, 357–358

listing functions in, 358
loading from hard drive, 356

parallel R, 333–351
debugging, 351

embarrassingly parallel applica-
tions, 347–348

turning general problems into, 350
implementing, 248–250
mutual outlinks, 333–334
resorting to C, 340–345

GPU programming, 345
multicore machines, 340–341
mutual outlinks, 341–342
OpenMP code analysis, 343
OpenMP pragmas, 344–345
running OpenMP code, 342

snow package, 334–340
analyzing snow code, 336–337
k-means clustering (KMC), 338–340
running snow code, 335–336
speedup, 337–338

368 INDEX

snow package (continued)
sources of overhead, 346–347

networked systems of computers,
346–347

shared-memory machines, 346
static vs. dynamic task assignment,

348–350
parent.frame() function, 156
paste() function, 252–253, 257, 269
PDF devices, saving displayed

graphs, 281
pdf() function, 3
Pearson product-moment

correlation, 49
performance enhancement, 305–321

byte code compilation, 320
chunking, 320–321
functional programming, 314–316

avoiding memory copy example,
315–316

copy-on-change issues, 314–315
vector assignment issues, 314

for loop, 306–313
achieving better speed in a Monte

Carlo simulation example,
308–311

generating powers matrix exam-
ple, 312–313

vectorization for speedup, 306–308
using R packages for memory

management, 321
using Rprof() function to find slow

spots in code, 316–319
writing fast R code, 306

Perron-Frobenius theorem, 201
persp() function, 22, 282
pixel intensity, 63–64
plot() function, xxi, 16, 262
plots

restoring, 272
three-dimensional, 282–283

plyr package, 136
pmax() math function, 190, 192
pmf (probability mass function), 193
pmin() math function, 190, 191
pointers, 159–161
points() function, 269–270
polygon() function, 275–276
polymorphism

defined, xxi, 207
generic functions, 208

polynomial regression, 219–222, 266–269
port number, 247
powers matrix, generating, 312–313
pragmas, OpenMP, 343–345
preda() function, 38
principle of confirmation, debugging,

285–286
print() function, 18, 234–235
print.ut() function, 218
prntrslts() function, 165
probability, calculating, 190–191
probability mass function (pmf), 193
procpairs() function, 343
prod() math function, 190
programming structures. See R program-

ming structures
Public Use Microdata Samples (PUMS)

census files, reading, 239
Python, using R from, 330–332

Q

Q browser command, 289
qr() linear algebra function, 197
Quicksort implementation, 176–177

R

race condition, 343
random variate generators, 204–205
rank() function, 195–196
rbind() function, 12, 106–107

ordering events, 171
resizing matrices, 74–75

rbinom() function, 204
R console, 2
.Rdata file, 20
Rdsm package, implementing

parallel R, 249
reactevnt() function, 165
readBin() function, 248
read.csv() function, 108
reading files, 235

accessing files on remote machines
via URLs, 243

connections, 237–238
reading data frames or matrices from

files, 236
reading PUMS census files example,

239–243
reading text files, 237

INDEX 369

readline() function, 234
readLines() function, 248
reassigning matrices, 73–74
recursion, 176–182

binary search tree example, 177–182
Quicksort implementation, 176–177

recursive argument, concatenate
function, 100

recursive vectors, 86
recycling

defined, 25
vectors, 29–30

reference classes, 160
regexpr() function, 253–254
regression analysis of exam grades,

16–19, 103–104
regular expressions, character string

manipulation, 254–257
remote machines, accessing files

on, 243
repeat loop, 241–242
repeat statement, 141
rep() function, repeating vector con-

stants with, 34
replacement functions, 182–186

defined, 183–184
self-bookkeeping vector class

example, 184–186
reshape package, 136
resizing matrices, 73–75
return statement, 8
return values, 147–149

deciding whether to explicitly call
return() function, 148

returning complex objects, 148–149
REvolution Analytics, 300
rexp() function, 204
Rf_PrintValue(s) function, 304
rgamma() function, 204
.Rhistory file, 20
rm() function, 227–228
rnorm() function, 3, 204
round() function, 40–41, 190
routers, 247
row() function, 69–70
rownames() function, 82
R packages, for memory

management, 321
rpois() function, 204
Rprof() function, 316–319
.Rprofile file, 19

R programming structures, 139
anonymous functions, 187–188
arithmetic and Boolean operators

and values, 145–146
control statements, 139–144

if-else function, 143–144
looping over nonvector sets, 143
loops, 140–142

default values for arguments, 146–147
environment and scope issues,

151–159
function to display contents of call

frame example, 157–159
ls() function, 155–156
scope hierarchy, 152–155
side effects, 156–157
top-level environment, 152

functions as objects, 149–151
pointers, lack of, 159–161
recursion, 176–182

binary search tree example,
177–182

Quicksort implementation,
176–177

replacement functions, 182–186
return values, 147–149

deciding whether to explicitly call
return() function, 148

returning complex objects,
148–149

tools for composing function code,
186–187

edit() function, 186–187
text editors and IDEs, 186

writing, 161–175
binary operations, 187
closures, 174–175
discrete-event simulation (DES) in

R example, 164–171
when to use global variables,

171–174
writing to nonlocals with assign()

function, 163
writing to nonlocals with the super-

assignment operator, 161–162
RPy module

installing, 330
syntax, 330–332

runif() function, 204
running

GDB on R, 303–304
OpenMP code, 342

370 INDEX

running (continued)
R, 1–2

batch mode, 3
first session, 4–7
interactive mode, 2–3

snow code, 335–336
runs of consecutive ones, finding, 35–37
runtime errors, 303

S

S (programming language), xix
S3 classes, 208–222

class for storing upper-triangular
matrices example, 214–219

finding implementations of generic
methods, 210–212

generic functions, 208
OOP in lm() function example,

208–210
procedure for polynomial regression

example, 219–222
vs. S4 classes, 226
using inheritance, 214
writing, 212–213

S4 classes, 222–226
implementing generic function on,

225–226
vs. S3 classes, 226
writing, 223–225

salary study, 108–109
Salzman, Pete, 285
sapply() function, 42

applying functions to lists, 95
using on data frames, 112–113

save() function, saving collection of
objects with, 228

saving graphs to files, 280–281
scalars, 10

Boolean operators, 145
vectors, 26

scan() function, 142, 232–234
scatter/gather paradigm, 335–336
schedevnt() function, 165, 171
scope hierarchy, 152–155. See also envi-

ronment and scope
sepsoundtone() function, 119
seq() function, 21, 33–34
serialize() function, 248
setbreakpoint() function, 290
setClass() function, 223

setdiff() set operation, 202
setequal() set operation, 202
setMethod() function, 225
set operations, 202–203
set.seed() function, 302
setting breakpoints, 289–290

calling browser() function directly,
289–290

using setbreakpoint() function, 290
setwd() function, 245
S expression pointers (SEXPs), 304
shared-memory systems, 341, 346–347
shared-memory/threads model,

GPUs, 345
Sherman-Morrison-Woodbury

formula, 222
shortcuts

help() function, 20
help.search() function, 23

showframe() function, 158
sim global variable, 172–173
simplifying code, 172
simulation programming in R, 204–206

built-in random variate generators,
204–205

combinatorial simulation, 205–206
obtaining same random stream in

repeated runs, 205
single brackets, 87–88
single-server queuing system, 168
sink() function, 258
sin() math function, 190
slots, S4 class, 224
snow package, 334–335

implementing parallel R, 248–249
k-means clustering (KMC), 338–340
snow code

analyzing, 336–337
running, 335–336

speedup, 337–338
socketConnection() function, 248
sockets, 247–248
socketSelect() function, 248
solve() function, 197
sorting, numerical, 194–196
sos package, 24
source, installing R from, 354
sourceval parameter, mapsound()

function, 116
Spearman rank correlation, 49

INDEX 371

speed
byte code compilation, 320
finding slow spots in code, 316–319
for loop, 306–313

achieving better speed in Monte
Carlo simulation example,
308–311

generating powers matrix
example, 312–313

vectorization for speedup,
306–308

writing fast R code, 306
Spinu, Vitalie, 300
split() function, 124–126, 336
S-Plus (programming language), xix
sprintf() function, 253
sqrt() function, 42, 189
stack trace, 289
startup and shutdown, 19–20
static task assignment, 348–350
stationary distributions, Markov chains,

199–201
statistical distributions, functions for,

193–194
str() function, 14
string-manipulation functions, 11,

251–254
gregexpr(), 254
grep(), 252
nchar(), 252
paste(), 252–253
regexpr(), 253–254
sprintf(), 253
strsplit(), 253
substr(), 253

stringsAsFactors argument, data.frame()
function, 102

string utilities, in edtdbg debugging tool,
257–259

strsplit() function, 253
subdeterminants, 199
submatrices, assigning values to, 62–63
subnames argument, subtable()

function, 132
subscripting operations, 183
subset() function, 47, 105
subsetting, vector, 4–5
substr() function, 253
subtable() function, 132
suffix, testing filename for given, 255–256
sum() function, 190, 337

summary() function, 15, 18
summaryRprof() function, 319
summing contents of many files, 245–246
superassignment operator (<<-), 9

simplifying code, 174
writing to nonlocals with, 161–162

sweep() linear algebra function, 197–198
symmetric matrix, 77
syntax errors, 303

T

tabdom() function, 134
tables, 127–130

extracting subtable example,
131–134

finding largest cells in, 134
functions, 136–137

aggregate(), 136
cut(), 136–137

matrix/array-like operations,
130–131

tags, 86
tapply() function

vs. by() function, 126–127
factors, 123–124
vs. split() function, 124

tbl argument, subtable() function, 132
tblarray array, 133
TCP/IP, 247
termination condition, 177
testing vector equality, 54–55
text, adding to graphs with text() func-

tion, 270–271
text concordance, 90–93, 95–98
text editors, 186
text files, reading, 237
text() function, adding text to graphs

with, 270–271
t() function, 71, 119, 197
threaded code, 171
threads, 341
three-dimensional tables, 129–130
Tierney, Luke, 334
tocol parameter, mapsound()

function, 116
tools

for composing function code,
186–187

edit() function, 186–187
text editors and IDEs, 186

debugging, 287–288, 300–302

372 INDEX

top-level environment, 152
traceback() function, 291–292
trace() function, 291
tracemem() function, 314–315
training set, 37
transcendental functions, 40
transition probability, 200
treelike data structures, 177

U

Ubuntu, installing R on, 353–354
unclass() function, 229
union() set operation, 202
unlist() function, 93
unname() function, 94
unserialize() function, 248
upn argument, showframe() function, 158
upper-triangular matrices, class for stor-

ing, 214–219
URLs, accessing files on remote

machines via, 243
u variable, 162

V

values
assigning to submatrices, 62–63
Boolean, 145–146
list, accessing, 93–95
NA, 43, 105–106
NULL, 44
return, 147–149

vanilla option, startup/shutdown, 20
variables

assessing statistical relation of two,
49–51

categorical, 121
global, 9, 171–174
nominal, 121

variable scope, 9
vector assignment issues, 314
vector cross product, 198–199
vector filtering, 307
vector-filtering capability, 176
vector functions, 311
vectorization

defined, 25
for speedup, 306–308

vectorized operations, 40
vector/matrix distinction, 78–79

vectors, 10, 25–57
all() and any() functions, 35–39

finding runs of consecutive ones
example, 35–37

predicting discrete-valued time
series example, 37–39

c() function, 56–57
common operations, 30–34

arithmetic and logical operations,
30–31

colon operator (:), 32–33
generating vector sequences with

seq() function, 33–34
repeating vector constants with

rep() function, 34
vector indexing, 31–32

computing inner product of two, 196
declarations, 28–29
defined, 4
elements

adding and deleting, 26
naming, 56

filtering, 45–48
generating indices for, 45–47
with subset() function, 47
with which() function, 47–48

ifelse() function, 48–54
assessing statistical relation of two

variables example, 49–51
recoding abalone data set

example, 51–54
linear algebra operations on,

196–201
matrices and arrays as, 28
NA value, 43
NULL value, 44
obtaining length of, 27
recycling, 29–30
scalars, 26
testing vector equality, 54–55
vectorized operations, 39–43

vector in, matrix out, 42–43
vector in, vector out, 40–42

vertices, graph, finding, 75–78

W

Web, downloading packages from,
356–358

installing automatically, 356–357
installing manually, 357–358

INDEX 373

where browser command, 289
which.max() function, 73, 190
which.min() function, 190
which() function, 47–48
whitespace, 233
Wickham, Hadley, 136
wireframe() function, 282–283
wmins matrix, 77
workers, snow package, 335
working directory, 19–20
writeBin() function, 248
writeLines() function, 248
write.table() function, 244
writing, 161

binary operations, 187
C/C++ functions to be called from R,

323–324
compiling and running code, 325
debugging R/C code, 326–327
extracting subdiagonals from

square matrix example, 324–325
prediction of discrete-valued time

series example, 327–330
closures, 174–175
discrete-event simulation in R

example, 164–171
getting files and directory

information, 245
to nonlocals

with assign() function, 163
with superassignment operator,

161–162
S3 classes, 212–213
S4 classes, 223–225
summing contents of many files

example, 245–246
when to use global variables, 171–174

X

xlim option, 273–275
x variable, 162

Y

ylim option, 273–275

Z

z variable, 162

