THE

ART OF R
PROGRAMMING

A TOUR OF STATISTICAL SOFTWARE DESIGN

NORMAN MATLOFF

no starch

press l

MATRICES AND ARRAYS

A matrix 1s a vector with two additional
attributes: the number of rows and the
number of columns. Since matrices are vec-
tors, they also have modes, such as numeric and
character. (On the other hand, vectors are not one-
column or one-row matrices.)

Matrices are special cases of a more general R type of object: arrays.
Arrays can be multidimensional. For example, a three-dimensional array
would consist of rows, columns, and layers, not just rows and columns as
in the matrix case. Most of this chapter will concern matrices, but we will
briefly discuss higher-dimensional arrays in the final section.

Much of R’s power comes from the various operations you can perform
on matrices. We’ll cover these operations in this chapter, especially those
analogous to vector subsetting and vectorization.

Creating Matrices

Matrix row and column subscripts begin with 1. For example, the upper-left
corner of the matrix a is denoted a[1,1]. The internal storage of a matrix is
in column-magjor order, meaning that first all of column 1 is stored, then all of
column 2, and so on, as you saw in Section 2.1.3.

60

Chapter 3

One way to create a matrix is by using the matrix() function:

>y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

>y

(1] [»2]
(1,11 3
(2,]2 4

Here, we concatenate what we intend as the first column, the numbers
1 and 2, with what we intend as the second column, 3 and 4. So, our data is
(1,2,3,4). Next, we specify the number of rows and columns. The fact that R
uses column-major order then determines where these four numbers are put
within the matrix.

Since we specified the matrix entries in the preceding example, and
there were four of them, we did not need to specify both ncol and nrow; just
nrow or ncol would have been enough. Having four elements in all, in two
rows, implies two columns:

>y <- matrix(c(1,2,3,4),nrow=2)

>y

(1] [»2]
(1,]1 3
(2,12 4

Note that when we then print out y, R shows us its notation for rows and
columns. For instance, [,2] means the entirety of column 2, as can be seen
in this check:

> y[,2]
[1] 3 4

Another way to build y is to specify elements individually:

> y <- matrix(nrow=2,ncol=2)
> y[1,1] <- 1
> y[2,1] <- 2
> y[1,2] <- 3
> y[2,2] <- 4
>y
[,1] [,2]
[1,]1 3
[2,] 2 4

Note that we do need to warn R ahead of time that y will be a matrix and
give the number of rows and columns.

Though internal storage of a matrix is in column-major order, you can
set the byrow argument in matrix() to true to indicate that the data is coming
in row-major order. Here’s an example of using byrow:

> m <- matrix(c(1,2,3,4,5,6),nrow=2,byrow=T)
>m
[,1] [,2] [,3]
[,] 1 2 3
[2,] 4 5 6

Note that the matrix is still stored in column-major order. The byrow
argument enabled only our input to come in row-major form. This may be
more convenient if you are reading from a data file organized that way, for
example.

3.2 General Matrix Operations

Now that we’ve covered the basics of creating a matrix, we’ll look at some
common operations performed with matrices. These include performing
linear algebra operations, matrix indexing, and matrix filtering.

3.2.1 Performing Linear Algebra Operations on Matrices

You can perform various linear algebra operations on matrices, such as
matrix multiplication, matrix scalar multiplication, and matrix addition.
Using y from the preceding example, here is how to perform those three
operations:

>y %%y # mathematical matrix multiplication
(1] [,2]

[1,] 7 15

[2,]10 22

> 3+y # mathematical multiplication of matrix by scalar
(1] [,2]

(1,13 9

[2,] 6 12

> y+y # mathematical matrix addition

(1] [,2]

2 6

4

(1,]
(2,] 8

For more on linear algebra operations on matrices, see Section 8.4.

Matrices and Arrays 61

3.2.2 Matrix Indexing

The same operations we discussed for vectors in Section 2.4.2 apply to matri-
ces as well. Here’s an example:

—
-
N
—
-
w

o O r B —
O r O R —

—_—

C O R RSN H»WN P —
— W
<
[N]

o r O R —

Here, we requested the submatrix of z consisting of all elements with col-
umn numbers 2 and 3 and any row number. This extracts the second and
third columns.

Here’s an example of extracting rows instead of columns:

>y

[>1] [,2]
[1,J12 12
[2,]22 22
[3,]31 32
> yl2:3,]

[>1] [,2]
[1,]22 22
[2,131 32
> y[2:3,2]
[1] 22 32

You can also assign values to submatrices:

(3]

62 Chapter 3

Here, we assigned new values to the first and third rows of y.
And here’s another example of assignment to submatrices:

> X <- matrix(nrow=3,ncol=3)
>y <- matrix(c(4,5,2,3),nrow=2)

>y

[,1] [,2]
[1,] 4 2
[2,] 5 3
> x[2:3,2:3] <- y
> X

Negative subscripts, used with vectors to exclude certain elements, work
the same way with matrices:

In the second command, we requested all rows of y except the second.

3.2.3 Extended Example: Image Manipulation

Image files are inherently matrices, since the pixels are arranged in rows and
columns. If we have a grayscale image, for each pixel, we store the intensity—
the brightness—of the image at that pixel. So, the intensity of a pixel in, say,
row 28 and column 88 of the image is stored in row 28, column 88 of the
matrix. For a color image, three matrices are stored, with intensities for red,
green, and blue components, but we’ll stick to grayscale here.

For our example, let’s consider an image of the Mount Rushmore
National Memorial in the United States. Let’s read it in, using the pixmap
library. (Appendix B describes how to download and install libraries.)

> library(pixmap)
> mtrushl <- read.pnm("mtrushi.pgm")
> mtrushi
Pixmap image
Type : pixmapGrey

Matrices and Arrays 63

64

Chapter 3

Size : 194x259

Resolution ToIx1

Bounding box : 0 0 259 194
> plot(mtrush1)

We read in the file named mitrushl.pgm, returning an object of class
pixmap. We then plot it, as seen in Figure 3-1.

Figure 3-1: Reading in Mount Rushmore

Now, let’s see what this class consists of:

> str(mtrushi1)
Formal class 'pixmapGrey' [package "pixmap"] with 6 slots

..@ grey : num [1:194, 1:259] 0.278 0.263 0.239 0.212 0.192 .
..@ channels: chr "grey"
..@ size :int [1:2] 194 259

The class here is of the S4 type, whose components are designated by @,
rather than $. S3 and S4 classes will be discussed in Chapter 9, but the key
item here is the intensity matrix, mtrushi@grey. In the example, this matrix
has 194 rows and 259 columns.

The intensities in this class are stored as numbers ranging from 0.0
(black) to 1.0 (white), with intermediate values literally being shades of
gray. For instance, the pixel at row 28, column 88 is pretty bright.

> mtrushi@grey|[28,88]
[1] 0.7960784

To demonstrate matrix operations, let’s blot out President Roosevelt.
(Sorry, Teddy, nothing personal.) To determine the relevant rows and col-
umns, you can use R’s locator() function. When you call this function, it

waits for the user to click a point within a graph and returns the exact
coordinates of that point. In this manner, I found that Roosevelt’s portion
of the picture is in rows 84 through 163 and columns 135 through 177.
(Note that row numbers in pixmap objects increase from the top of the pic-
ture to the bottom, the opposite of the numbering used by locator().) So,
to blot out that part of the image, we set all the pixels in that range to 1.0.

> mtrush2 <- mtrushi
> mtrush2@grey[84:163,135:177] <- 1
> plot(mtrush2)

The result is shown in Figure 3-2.

Figure 3-2: Mount Rushmore, with President Roosevelt removed

What if we merely wanted to disguise President Roosevelt’s identity? We
could do this by adding random noise to the picture. Here’s code to do that:

adds random noise to img, at the range rows,cols of img; img and the
return value are both objects of class pixmap; the parameter q
controls the weight of the noise, with the result being 1-q times the
original image plus q times the random noise
blurpart <- function(img,rows,cols,q) {
lrows <- length(rows)
lcols <- length(cols)
newimg <- img
randomnoise <- matrix(nrow=lrows, ncol=ncols,runif(lrows*lcols))
newimg@grey <- (1-q) * img@grey + q * randomnoise
return(newimg)

Matrices and Arrays 65

66

Chapter 3

As the comments indicate, we generate random noise and then take a
weighted average of the target pixels and the noise. The parameter q controls
the weight of the noise, with larger q values producing more blurring. The
random noise itself is a sample from U(0,1), the uniform distribution on the
interval (0,1). Note that the following is a matrix operation:

newimg@grey <- (1-q) * img@grey + q * randomnoise

So, let’s give it a try:

> mtrush3 <- blurpart(mtrushi,84:163,135:177,0.65)
> plot(mtrush3)

The result is shown in Figure 3-3.

Figure 3-3: Mount Rushmore, with President Roosevelt blurred

3.2.4 Filtering on Matrices

Filtering can be done with matrices, just as with vectors. You must be careful
with the syntax, though. Let’s start with a simple example:

Again, let’s dissect this, just as we did when we first looked at filtering in
Chapter 2:

> j <= x[,2] >=3
>]
[1] FALSE TRUE TRUE

Here, we look at the vector x[,2], which is the second column of x, and
determine which of its elements are greater than or equal to 3. The result,
assigned to j, is a Boolean vector.

Now, use j in x:

> x[3,]
X

[1,] 23

[2,] 34

Here, we compute x[j,]—that is, the rows of x specified by the true ele-
ments of j—getting the rows corresponding to the elements in column 2
that were at least equal to 3. Hence, the behavior shown earlier when this
example was introduced:

For performance purposes, it’s worth noting again that the computa-
tion of j here is a completely vectorized operation, since all of the following
are true:

* The object x[,2] is a vector.
¢ The operator >= compares two vectors.
® The number 3 was recycled to a vector of 3s.
Also note that even though j was defined in terms of x and then was
used to extract from x, it did not need to be that way. The filtering criterion

can be based on a variable separate from the one to which the filtering will
be applied. Here’s an example with the same x as above:

> z <- ¢(5,12,13)
> x[z %% 2 == 1,]

1] [,2]

Matrices and Arrays 67

68

Chapter 3

Here, the expression z %% 2 == 1 tests each element of z for being an
odd number, thus yielding (TRUE,FALSE,TRUE). As a result, we extracted the
first and third rows of x.

Here is another example:

We’re using the same principle here, but with a slightly more complex
set of conditions for row extraction. (Column extraction, or more generally,
extraction of any submatrix, is similar.) First, the expression m[,1] > 1 com-
pares each element of the first column of m to 1 and returns (FALSE,TRUE, TRUE).
The second expression, m[,2] > 5, similarly returns (FALSE,FALSE,TRUE). We
then take the logical AND of (FALSE,TRUE, TRUE) and (FALSE,FALSE,TRUE), yield-
ing (FALSE,FALSE,TRUE). Using the latter in the row indices of m, we get the
third row of m.

Note that we needed to use &, the vector Boolean AND operator, rather
than the scalar one that we would use in an if statement, 8. A complete list
of such operators is given in Section 7.2.

The alert reader may have noticed an anomaly in the preceding exam-
ple. Our filtering should have given us a submatrix of size 1 by 2, but instead
it gave us a two-element vector. The elements were correct, but the data type
was not. This would cause trouble if we were to then input it to some other
matrix function. The solution is to use the drop argument, which tells R to
retain the two-dimensional nature of our data. We’ll discuss drop in detail in
Section 3.6 when we examine unintended dimension reduction.

Since matrices are vectors, you can also apply vector operations to them.
Here’s an example:

]
[1,] 5 -1
[2,] 2
[3,] 9 11
> which(m > 2)
[11 1356

R informed us here that, from a vector-indexing point of view, elements
1, 3, 5, and 6 of m are larger than 2. For example, element 5 is the element in
row 2, column 2 of m, which we see has the value 10, which is indeed greater
than 2.

3.2.5 Extended Example: Generating a Covariance Matrix

This example demonstrates R’s row() and col() functions, whose arguments
are matrices. For example, for a matrix a, row(a[2,8]) will return the row
number of that element of a, which is 2. Well, we knew row(a[2,8]) is in row
2, didn’t we? So why would this function be useful?

Let’s consider an example. When writing simulation code for multi-
variate normal distributions—for instance, using mvrnorm() from the MASS
library—we need to specify a covariance matrix. The key point for our pur-
poses here is that the matrix is symmetric; for example, the element in row
1, column 2 is equal to the element in row 2, column 1.

Suppose that we are working with an n-variate normal distribution. Our
matrix will have n rows and n columns, and we wish each of the n variables
to have variance 1, with correlation rho between pairs of variables. Forn = 3
and rho = 0.2, for example, the desired matrix is as follows:

1 02 02
0.2 1 0.2
0.2 0.2 1

Here is code to generate this kind of matrix:

makecov <- function(rho,n) {
m <- matrix(nrow=n,ncol=n)
m <- ifelse(row(m) == col(m),1,rho)
return(m)

Let’s see how this works. First, as you probably guessed, col() returns
the column number of its argument, just as row() does for the row num-
ber. Then the expression row(m) in line 3 returns a matrix of integer values,
each one showing the row number of the corresponding element of m. For
instance,

>z

[,1] [,2]
[1,] 3 6
[2,] 4 7
[3,] 5 8
> row(z)

[,1] [,2]
[1,] 1 1
[2,] 2 2
(3, 3 3

Matrices and Arrays 69

Thus the expression row(m) == col(m) in the same line returns a matrix
of TRUE and FALSE values, TRUE values on the diagonal of the matrix and FALSE
values elsewhere. Once again, keep in mind that binary operators—in this
case, ==—are functions. Of course, row() and col() are functions too, so this
expression:

row(m) == col(m)

applies that function to each element of the matrix m, and it returns a
TRUE/FALSE matrix of the same size as m. The ifelse() expression is another
function call.

ifelse(row(m) == col(m),1,rho)

In this case, with the argument being the TRUE/FALSE matrix just discussed,
the result is to place the values 1 and rho in the proper places in our output
matrix.

3.3 Applying Functions to Matrix Rows and Columns

One of the most famous and most used features of R is the *apply() family of
functions, such as apply(), tapply(), and lapply(). Here, we’ll look at apply(),
which instructs R to call a user-specified function on each of the rows or
each of the columns of a matrix.

3.3.1 Using the apply() Function

This is the general form of apply for matrices:

apply(m,dimcode, f,fargs)

where the arguments are as follows:

® nmis the matrix.

® dimcode is the dimension, equal to 1 if the function applies to rows or 2
for columns.

e fis the function to be applied.
* fargs is an optional set of arguments to be supplied to f.

For example, here we apply the R function mean() to each column of a
matrix z:

70 Chapter 3

> apply(z,2,mean)
[1] 25

In this case, we could have used the colMeans() function, but this pro-
vides a simple example of using apply().

A function you write yourself is just as legitimate for use in apply() as any
R built-in function such as mean(). Here’s an example using our own func-
tion f:

>z

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> f <- function(x) x/c(2,8)
>y <- apply(z,1,f)
>y
1] [,2] [,3]
[1,] 0.5 1.000 1.50
[2,] 0.5 0.625 0.75

Our () function divides a two-element vector by the vector (2,8). (Recy-
cling would be used if x had a length longer than 2.) The call to apply() asks
R to call f() on each of the rows of z. The first such row is (1,4), so in the
call to f(), the actual argument corresponding to the formal argument x is
(1,4). Thus, R computes the value of (1,4)/(2,8), which in R’s element-wise
vector arithmetic is (0.5,0.5). The computations for the other two rows are
similar.

You may have been surprised that the size of the result here is 2 by 3
rather than 3 by 2. That first computation, (0.5,0.5), ends up at the first col-
umn in the output of apply(), not the first row. But this is the behavior of
apply(). If the function to be applied returns a vector of k components, then
the result of apply() will have k rows. You can use the matrix transpose func-
tion t() to change it if necessary, as follows:

> t(apply(z,1,f))
[1] [,2]
[1,] 0.5 0.500
[2,] 1.0 0.625
[3,] 1.5 0.750

If the function returns a scalar (which we know is just a one-element
vector), the final result will be a vector, not a matrix.

As you can see, the function to be applied needs to take at least one
argument. The formal argument here will correspond to an actual argu-
ment of one row or column in the matrix, as described previously. In some
cases, you will need additional arguments for this function, which you can
place following the function name in your call to apply().

Matrices and Arrays 71

72

Chapter 3

For instance, suppose we have a matrix of 1s and 0s and want to create
a vector as follows: For each row of the matrix, the corresponding element
of the vector will be either 1 or 0, depending on whether the majority of the
first d elements in that row is 1 or 0. Here, d will be a parameter that we may
wish to vary. We could do this:

> copymaj

function(rw,d) {
maj <- sum(xw[1:d]) / d
return(if(maj > 0.5) 1 else 0)

> X
[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 1 1 0
[2,] 1 1 1 1 0
[3,] 1 0 0 1 1
[4,] 0o 1 1 1 0
> apply(x,1,copymaj,3)
[1]1101
> apply(x,1,copymaj,2)
[1]o100

Here, the values 3 and 2 form the actual arguments for the formal
argument d in copymaj(). Let’s look at what happened in the case of row 1
of x. That row consisted of (1,0,1,1,0), the first d elements of which were
(1,0,1). A majority of those three elements were 1s, so copymaj() returned
a 1, and thus the first element of the output of apply() was a 1.

Contrary to common opinion, using apply() will generally not speed up
your code. The benefits are that it makes for very compact code, which may
be easier to read and modify, and you avoid possible bugs in writing code for
looping. Moreover, as R moves closer and closer to parallel processing, func-
tions like apply() will become more and more important. For example, the
clusterApply() function in the snow package gives R some parallel-processing
capability by distributing the submatrix data to various network nodes, with
each node basically applying the given function on its submatrix.

3.3.2 Extended Example: Finding Outliers

In statistics, outliers are data points that differ greatly from most of the other
observations. As such, they are treated either as suspect (they might be erro-
neous) or unrepresentative (such as Bill Gates’s income among the incomes
of the citizens of the state of Washington). Many methods have been devised
to identify outliers. We’ll build a very simple one here.

Say we have retail sales data in a matrix rs. Each row of data is for a dif-
ferent store, and observations within a row are daily sales figures. As a simple
(undoubtedly overly simple) approach, let’s write code to identify the most

deviant observation for each store. We’ll define that as the observation fur-
thest from the median value for that store. Here’s the code:

1 findols <- function(x) {

2 findol <- function(xrow) {
3 mdn <- median(xrow)
4 devs <- abs(xrow-mdn)
5 return(which.max(devs))
6 }
7 return(apply(x,1,findol))
s}

Our call will be as follows:

findols(rs)

How will this work? First, we need a function to specify in our
apply() call.

Since this function will be applied to each row of our sales matrix, our
description implies that it needs to report the index of the most deviant
observation in a given row. Our function findol() does that, in lines 4 and
5. (Note that we’ve defined one function within another here, a common
practice if the inner function is short.) In the expression xrow-mdn, we are
subtracting a number that is a one-element vector from a vector that gener-
ally will have a length greater than 1. Thus, recycling is used to extend mdn to
conform with xrow before the subtraction.

Then in line 5, we use the R function which.max(). Instead of finding the
maximum value in a vector, which the max() function does, which.max() tells
us where that maximum value occurs—that is, the index where it occurs. This
is just what we need.

Finally, in line 7, we ask R to apply findol() to each row of x, thus pro-
ducing the indices of the most deviant observation in each row.

3.4 Adding and Deleting Matrix Rows and Columns

Technically, matrices are of fixed length and dimensions, so we cannot add
or delete rows or columns. However, matrices can be reassigned, and thus we
can achieve the same effect as if we had directly done additions or deletions.

3.4.1 Changing the Size of a Matrix

Recall how we reassign vectors to change their size:

> X
[1] 12 513 16 8

> X <- c(x,20) # append 20
> X

[1] 12 513 16 8 20

Matrices and Arrays 73

> X <- c(x[1:3],20,x[4:6]) # insert 20

> X

[1] 12 513 20 16 8 20

> X <- x[-2:-4] # delete elements 2 through 4
> X

[1] 12 16 8 20

In the first case, x is originally of length 5, which we extend to 6 via con-
catenation and then reassignment. We didn’t literally change the length of
x but instead created a new vector from x and then assigned x to that new
vector.

NOTE Reassignment occurs even when you don’t see it, as you’ll see in Chapter 14.
For instance, even the innocuous-looking assignment x[2] <- 12 is actually a
reassignment.

Analogous operations can be used to change the size of a matrix. For
instance, the rbind() (row bind) and cbind() (column bind) functions let you
add rows or columns to a matrix.

> one
[1] 1111

o r O R, —

[4,1]4 o
> cbind(one,z)
[1,]1 111
[2,]J1210
[3,]J1301
[4,]J1400

Here, cbind() creates a new matrix by combining a column of 1s with the
columns of z. We choose to get a quick printout, but we could have assigned
the result to z (or another variable), as follows:

z <- cbind(one,z)

Note, too, that we could have relied on recycling:

> cbind(1,z)

1] [,2] [L3] [L4

o r O R

1[,3]
1 1
2 1
3 0
4 0

R R R R

74 Chapter 3

Here, the 1 value was recycled into a vector of four 1 values.
You can also use the rbind() and cbind() functions as a quick way to cre-
ate small matrices. Here’s an example:

> q <- cbind(c(1,2),c(3,4))
>q

Be careful with rbind and cbin(), though. Like creating a vector, creating
a matrix is time consuming (matrices are vectors, after all). In the following
code, cbind() creates a new matrix:

z <- cbind(one,z)

The new matrix happens to be reassigned to z; that is, we gave it the name
z—the same name as the original matrix, which is now gone. But the point is
that we did incur a time penalty in creating the matrix. If we did this repeat-
edly inside a loop, the cumulative penalty would be large.

So, if you are adding rows or columns one at a time within a loop, and
the matrix will eventually become large, it’s better to allocate a large matrix
in the first place. It will be empty at first, but you fill in the rows or columns
one at a time, rather than doing a time-consuming matrix memory alloca-
tion each time.

You can delete rows or columns by reassignment, too:

> m <- matrix(1:6,nrow=3)

>m

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
>m <- m[c(1,3),]

3.4.2 Extended Example: Finding the Closest Pair of Vertices in a Graph

Finding the distances between vertices on a graph is a common example
used in computer science courses and is used in statistics/data sciences too.
This kind of problem arises in some clustering algorithms, for instance, and
in genomics applications.

Matrices and Arrays 75

76

Chapter 3

Here, we’ll look at the common example of finding distances between
cities, as it is easier to describe than, say, finding distances between DNA
strands.

Suppose we need a function that inputs a distance matrix, where the
element in row i, column j gives the distance between city i and city j and
outputs the minimum one-hop distance between cities and the pair of cities
that achieves that minimum. Here’s the code for the solution:

returns the minimum value of d[i,j], i != j, and the row/col attaining
that minimum, for square symmetric matrix d; no special policy on ties
mind <- function(d) {

n <- nrow(d)

add a column to identify row number for apply()

dd <- cbind(d,1:n)

wmins <- apply(dd[-n,],1,imin)

wmins will be 2xn, 1st row being indices and 2nd being values

i <- which.min(wmins[2,])

j <- wmins[1,1i]

return(c(d[i,j],1,3))

finds the location, value of the minimum in a row x
imin <- function(x) {

1x <- length(x)

i <- x[1x] # original row number

j <- which.min(x[(i+1):(1x-1)])

k <- i+j
return(c(k,x[k]))
}

And here’s an example of putting our new function to use:
>q

[,1]1 [,2]1 [,3] [,4] [,5]
[1,] 0 12 13 8 20
[2,] 12 o 15 28 88
[3,] 13 15 o 6 9
4,1 8 28 6 0 33
[5,] 20 88 9 33 0
> mind(q)
[1] 6 3 4

The minimum value was 6, located in row 3, column 4. As you can see, a
call to apply() plays a prominent role.

Our task is fairly simple: We need to find the minimum nonzero ele-
ment in the matrix. We find the minimum in each row—a single call to
apply() accomplishes this for all the rows—and then find the smallest value

among those minima. But as you’ll see, the code logic becomes rather
intricate.

One key point is that the matrix is symmetric, because the distance from
city i to city j is the same as from j to i. So in finding the minimum value in
the i™ row, we need look at only elements i+1, i+2,..., n, where n is the num-
ber of rows and columns in the matrix. Note too that this means we can skip
the last row of d in our call to apply() in line 7.

Since the matrix could be large—a thousand cities would mean a mil-
lion entries in the matrix—we should exploit that symmetry and save work.
That, however, presents a problem. In order to go through the basic com-
putation, the function called by apply() needs to know the number of the
row in the original matrix—knowledge that apply() does not provide to the
function. So, in line 6, we augment the matrix with an extra column, consist-
ing of the row numbers, so that the function called by apply() can take row
numbers into account.

The function called by apply() is imin(), beginning in line 15, which finds
the mininum in the row specified in the formal argument x. It returns not
only the mininum in the given row but also the index at which that mini-
mum occurs. When imin() is called on row 1 of our example matrix q above,
the minimum value is 8, which occurs in index 4. For this latter purpose, the
R function which.min(), used in line 18, is very handy.

Line 19 is noteworthy. Recall that due to the symmetry of the matrix, we
skip the early part of each row, as is seen in the expression (i+1):(1x-1) in
line 18. But that means that the call to which.min() in that line will return the
minimum’s index relative to the range (i+1):(1x-1). In row 3 of our example
matrix q, we would get an index of 1 instead of 4. Thus, we must adjust by
adding i, which we do in line 19.

Finally, making proper use of the output of apply() here is a bit tricky.
Think again of the example matrix q above. The call to apply() will return

the matrix wmins:
4 3 4 5
8 15 6 33

As noted in the comments, the second row of that matrix contains the
upper-diagonal minima from the various rows of d, while the first row con-
tains the indices of those values. For instance, the first column of wmins gives
the information for the first row of g, reporting that the smallest value in
that row is 8, occurring at index 4 of the row.

Thus line 9 will pick up the number i of the row containing the smallest
value in the entire matrix, 6 in our q example. Line 10 will give us the po-
sition j in that row where the minimum occurs, 4 in the case of q. In other
words, the overall minimum is in row i and column j, information that we
then use in line 11.

Meanwhile, row 1 of apply()’s output shows the indices within those rows
at which the row minima occur. That’s great, because we can now find which
other city was in the best pair. We know that city 3 is one of them, so we go

Matrices and Arrays 77

78

to entry 3 in row 1 of the output, finding 4. So, the pair of cities closest to
each other is city 3 and city 4. Lines 9 and 10 then generalize this reasoning.

If the minimal element in our matrix is unique, there is an alternate
approach that is far simpler:

minda <- function(d) {
smallest <- min(d)
ij <- which(d == smallest,arr.ind=TRUE)
return(c(smallest,ij))

This works, but it does have some possible drawbacks. Here’s the key
line in this new code:

ij <- which(d == smallest,arr.ind=TRUE)

It determines the index of the element of d that achieves the minimum.
The argument arr.ind=TRUE specifies that the returned index will be a matrix
index—that is, a row and a column, rather than a single vector subscript.
Without this argument, d would be treated as a vector.

As noted, this new code works only if the minimum is unique. If that is
not the case, which() will return multiple row/column number pairs, con-
trary to our basic goal. And if we used the original code and d had multiple
minimal elements, just one of them would be returned.

Another problem is performance. This new code is essentially making
two (behind-the-scenes) loops through our matrix: one to compute smallest
and the other in the call to which(). This will likely be slower than our origi-
nal code.

Of these two approaches, you might choose the original code if execu-
tion speed is an issue or if there may be multiple minima, but otherwise opt
for the alternate code; the simplicity of the latter will make the code easier
to read and maintain.

3.5 More on the Vector/Matrix Distinction

Chapter 3

At the beginning of the chapter, I said that a matrix is just a vector but with
two additional attributes: the number of rows and the number of columns.

Here, we’ll take a closer look at the vector nature of matrices. Consider this
example:

> z <- matrix(1:8,nrow=4)
>z

0 N O Ul

As z is still a vector, we can query its length:

> length(z)
[1] 8

But as a matrix, z is a bit more than a vector:

> class(z)

[1] "matrix"

> attributes(z)
$dim

[1] 4 2

In other words, there actually is a matrix class, in the object-oriented pro-
gramming sense. As noted in Chapter 1, most of R consists of S3 classes,
whose components are denoted by dollar signs. The matrix class has one
attribute, named dim, which is a vector containing the numbers of rows and
columns in the matrix. Classes will be covered in detail in Chapter 9.

You can also obtain dim via the dim() function:

> dim(z)
[1] 4 2

The numbers of rows and columns are obtainable individually via the
nrow() and ncol() functions:

> nrow(z)
(1] 4
> ncol(z)
[1] 2

These just piggyback on dim(), as you can see by inspecting the code.
Recall once again that objects can be printed in interactive mode by simply
typing their names:

> nrow
function (x)
dim(x)[1]

These functions are useful when you are writing a general-purpose
library function whose argument is a matrix. By being able to determine
the number of rows and columns in your code, you alleviate the caller
of the burden of supplying that information as two additional arguments.
This is one of the benefits of object-oriented programming.

Matrices and Arrays 79

80

3.6 Avoiding Unintended Dimension Reduction

Chapter 3

In the world of statistics, dimension reduction is a good thing, with many
statistical procedures aimed to do it well. If we are working with, say, 10 vari-
ables and can reduce that number to 3 that still capture the essence of our
data, we’re happy.

However, in R, something else might merit the name dimension reduc-
tion that we may sometimes wish to avoid. Say we have a four-row matrix and
extract a row from it:

>z

[>1] [,2]
[,b] 1 5
[2,] 2 6
(3,1 3 7
(4,1 4 8
> 1 <- z[2,]
>r
[1] 2 6

This seems innocuous, but note the format in which R has displayed
r. It’s a vector format, not a matrix format. In other words, r is a vector of
length 2, rather than a 1-by-2 matrix. We can confirm this in a couple
of ways:

> attributes(z)

$dim

[1] 4 2

> attributes(r)

NULL

> str(z)

int [1:4, 1:2] 123456738
> str(r)

int [1:2] 2 6

Here, R informs us that z has row and column numbers, while r does
not. Similarly, str() tells us that z has indices ranging in 1:4 and 1:2, for rows
and columns, while r’s indices simply range in 1:2. No doubt about it—r is a
vector, not a matrix.

This seems natural, but in many cases, it will cause trouble in programs
that do a lot of matrix operations. You may find that your code works fine
in general but fails in a special case. For instance, suppose that your code
extracts a submatrix from a given matrix and then does some matrix oper-
ations on the submatrix. If the submatrix has only one row, R will make ita
vector, which could ruin your computation.

Fortunately, R has a way to suppress this dimension reduction: the drop
argument. Here’s an example, using the matrix z from above:

> 1 <- z[2,, drop=FALSE]
> T
[,1] [,2]
[1,] 2 6
> dim(r)
[1] 1 2

Now r is a 1-by-2 matrix, not a two-element vector.

For these reasons, you may find it useful to routinely include the
drop=FALSE argument in all your matrix code.

Why can we speak of drop as an argument? Because that [is actually a
function, just as is the case for operators like +. Consider the following code:

> z[3,2]

[1] 7

> "["(2,3,2)
[1] 7

If you have a vector that you wish to be treated as a matrix, you can use
the as.matrix() function, as follows:

>u

[1] 123

> v <- as.matrix(u)
> attributes(u)
NULL

> attributes(v)
$dim

[1] 31

3.7 Naming Matrix Rows and Columns

The natural way to refer to rows and columns in a matrix is via the row and
column numbers. However, you can also give names to these entities. Here’s
an example:

1] [,2]
[1,] 13
[2,] 24
> colnames(z)
NULL
> colnames(z) <- c("a","b")

Matrices and Arrays 81

82

ab
[1,] 13
[2,] 24
> colnames(z)
[1] "a" "b"
> 2[,"a"]
[1] 1 2

As you see here, these names can then be used to reference specific
columns. The function rownames() works similarly.

Naming rows and columns is usually less important when writing R
code for general applications, but it can be useful when analyzing a specific
data set.

3.8 Higher-Dimensional Arrays

Chapter 3

In a statistical context, a typical matrix in R has rows corresponding to obser-
vations, say on various people, and columns corresponding to variables, such
as weight and blood pressure. The matrix is then a two-dimensional data
structure. But suppose we also have data taken at different times, one data
point per person per variable per time. Time then becomes the third dimen-
sion, in addition to rows and columns. In R, such data sets are called arrays.

As a simple example, consider students and test scores. Say each test
consists of two parts, so we record two scores for a student for each test. Now
suppose that we have two tests, and to keep the example small, assume we
have only three students. Here’s the data for the first test:

> firsttest
[,1] [,2]

[1,] 46 30
[2,] 21 25
[3,] 50 50

Student 1 had scores of 46 and 30 on the first test, student 2 scored 21
and 25, and so on. Here are the scores for the same students on the sec-
ond test:

> secondtest
[,1] [,2]
[1,] 46 43
[2,] 41 35
[3,] 50 50

Now let’s put both tests into one data structure, which we’ll name tests.
We’ll arrange it to have two “layers”—one layer per test—with three rows

and two columns within each layer. We’ll store firsttest in the first layer and
secondtest in the second.

In layer 1, there will be three rows for the three students’ scores on the
first test, with two columns per row for the two portions of a test. We use R’s
array function to create the data structure:

> tests <- array(data=c(firsttest,secondtest),dim=c(3,2,2))

In the argument dim=c(3,2,2), we are specifying two layers (this is the sec-
ond 2), each consisting of three rows and two columns. This then becomes
an attribute of the data structure:

> attributes(tests)
$dim
[1] 322

Each element of tests now has three subscripts, rather than two as in
the matrix case. The first subscript corresponds to the first element in the
$dim vector, the second subscript corresponds to the second element in the
vector, and so on. For instance, the score on the second portion of test 1 for
student 3 is retrieved as follows:

> tests[3,2,1]
[1] 48

R’s print function for arrays displays the data layer by layer:

> tests
)) 1

[,1] [,2]
[1,] 46 30
[2,] 21 25
[3,] 50 48
) 2

[>1] [,2]
[1,] 46 43
[2,] 41 35
[3,] 50 49

Just as we built our three-dimensional array by combining two matri-
ces, we can build four-dimensional arrays by combining two or more three-
dimensional arrays, and so on.

One of the most common uses of arrays is in calculating tables. See Sec-
tion 6.3 for an example of a three-dimensional table.

Matrices and Arrays 83

