
5
BASIC BINARY ANALYSIS IN LINUX

Even in the most complex binary analysis, you can
accomplish surprisingly advanced feats by combining
a set of basic tools in the right way. This can save you
hours of work implementing equivalent functionality
on your own. In this chapter, you’ll learn the funda-
mental tools you’ll need to perform binary analysis on
Linux.

Instead of simply showing you a list of tools and explaining what they
do, I’ll use a Capture the Flag (CTF) challenge to illustrate how they work. In
computer security and hacking, CTF challenges are often played as contests,
where the goal is typically to analyze or exploit a given binary (or a running
process or server) until you manage to capture a flag hidden in the binary.
The flag is usually a hexadecimal string, which you can use to prove that you
completed the challenge as well as unlock new challenges.

In this CTF, you start with a mysterious file called payload, which you
can find on the VM in the directory for this chapter. The goal is to figure
out how to extract the hidden flag from payload. In the process of analyzing
payload and looking for the flag, you’ll learn to use a wide range of basic
binary analysis tools that are available on virtually any Linux-based system
(most of them as part of GNU coreutils or binutils). I encourage you to fol-
low along.



Most of the tools you’ll see have a number of useful options, but there
are far too many to cover exhaustively in this chapter. Thus, it’s a good idea
to check out the man page for every tool using the command man tool on the
VM. At the end of the chapter, you’ll use the recovered flag to unlock a new
challenge, which you can complete on your own!

5.1 Resolving Identity Crises Using file
Because you received absolutely no hints about the contents of payload, you
have no idea what to do with this file. When this happens (for instance, in
reverse engineering or forensics scenarios), a good first step is to figure
out what you can about the file type and its contents. The file utility was
designed for this purpose; it takes a number of files as input and then tells
you what type each file is. You may remember it from Chapter 2, where I
used file to find out the type of an ELF file.

The nice thing about file is that it isn’t fooled by extensions. Instead,
it searches for other telltale patterns in the file, such as magic bytes like the
0x7f ELF sequence at the start of ELF files, to find out the file type. This is
perfect here because the payload file doesn’t have an extension. Here’s what
file tells you about payload:

$ file payload

payload: ASCII text

As you can see, payload contains ASCII text. To examine the text in
detail, you can use the head utility, which dumps the first few lines (10 by
default) of a text file to stdout. There’s also an analogous utility called tail,
which shows you the last few lines of a file. Here’s what the head utility’s out-
put shows:

$ head payload

H4sIAKiT61gAA+xaD3RTVZq/Sf9TSKL8aflnn56ioNJJSiktDpqUlL5o0UpbYEVI0zRtI2naSV5K

YV0HTig21jqojH9mnRV35syZPWd35ZzZ00XHxWBHYJydXf4ckRldZRUxBRzxz2CFQvb77ru3ee81

AZdZZ92z+XrS733fu993v/v/vnt/bqmVfNNkBlq0cCFyy6KFZiUHKi1buMhMLAvMi0oXWSzlZYtA

v2hRWRkRzN94ZEChoOQKCAJp8fdcNt2V3v8fpe9X1y7T63Rjsp7cTlCKGq1UtjL9yPUJGyupIHnw

/zoym2SDnKVIZyVWFR9hrjnPZeky4JcJvwq9LFforSo+i6XjXKfgWaoSWFX8mclExQkRxuww1uOz

Ze3x2U0qfpDFcUyvttMzuxFmN8LSc054er26fJns18D0DaxcnNtZOrsiPVLdh1ILPudey/xda1Xx

MpauTGN3L9hlk69PJsZXsPxS1YvA4uect8N3fN7m8rLv+Frm+7z+UM/8nory+eVlJcHOklIak4ml

rbm7kabn9SiwmKcQuQ/g+3n/OJj/byfuqjv09uKVj8889O6TvxXM+G4qSbRbX1TQCZnWPNQVwG86

/F7+4IkHl1a/eebY91bPemngU8OpI58YNjrWD16u3P3wuzaJ3kh4i6vpuhT6g7rkfs6k0DtS6P8l

hf6NFPocfXL9yRTpS0ny+NtJ8vR3p0hfl8J/bgr9Vyn0b6bQkxTl+ixF+p+m0N+qx743k+wWmlT6

That definitely doesn’t look human-readable. Taking a closer look at the
alphabet used in the file, you can see that it consists of only alphanumeric
characters and the characters + and /, organized in neat rows. When you see
a file that looks like this, it’s usually safe to assume that it’s a Base64 file.

90 Chapter 5



Base64 is a widely used method of encoding binary data as ASCII text.
Among other things, it’s commonly used in email and on the web to ensure
that binary data transmitted over a network isn’t accidentally malformed by
services that can handle only text. Conveniently, Linux systems come with a
tool called base64 (typically as part of GNU coreutils) that can encode and
decode Base64. By default, base64 will encode any files or stdin input given to
it. But you can use the -d flag to tell base64 to decode instead. Let’s decode
payload to see what you get!

$ base64 -d payload > decoded_payload

This command decodes payload and then stores the decoded contents in
a new file called decoded_payload. Now that you’ve decoded payload, let’s use
file again to check the type of the decoded file.

$ file decoded_payload

decoded_payload: gzip compressed data, last modified: Tue Oct 22 15:46:43 2019, from Unix

Now you’re getting somewhere! It turns out that behind the layer of
Base64 encoding, the mysterious file is actually just a compressed archive
that uses gzip as the outer compression layer. This is an opportunity to intro-
duce another handy feature of file: the ability to peek inside zipped files.
You can pass the -z option to file to see what’s inside the archive without
extracting it. Here’s what you should see:

$ file -z decoded_payload

decoded_payload: POSIX tar archive (GNU) (gzip compressed data, last modified:

Tue Oct 22 19:08:12 2019, from Unix)

You can see that you’re dealing with multiple layers that you need to
extract, because the outer layer is a gzip compression layer and inside that
is a tar archive, which typically contains a bundle of files. To reveal the files
stored inside, you use tar to unzip and extract decoded_payload, like this:

$ tar xvzf decoded_payload

ctf

67b8601

As shown in the tar log, there are two files extracted from the archive:
ctf and 67b8601. Let’s use file again to see what kinds of files you’re deal-
ing with.

$ file ctf

ctf: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=29aeb60bcee44b50d1db3a56911bd1de93cd2030, stripped

Basic Binary Analysis in Linux 91



The first file, ctf , is a dynamically linked 64-bit stripped ELF executable.
The second file, called 67b8601, is a bitmap (BMP) file of 512 × 512 pixels.
Again, you can see this using file as follows:

$ file 67b8601

67b8601: PC bitmap, Windows 3.x format, 512 x 512 x 24

This BMP file depicts a black square, as you can see in Figure 5-1a. If you
look carefully, you should see some irregularly colored pixels at the bottom
of the figure. Figure 5-1b shows an enlarged snippet of these pixels.

Before exploring what this all means, let’s first take a closer look at ctf,
the ELF file you just extracted.

(a) The complete figure

(b) Enlarged view of some of the colored pixels at the bottom

Figure 5-1: The extracted BMP file, 67b8601

92 Chapter 5



5.2 Using ldd to Explore Dependencies
Although it’s not wise to run unknown binaries, since you’re working in a
VM, let’s try running the extracted ctf binary. When you try to run the file,
you don’t get far.

$ ./ctf

./ctf: error while loading shared libraries: lib5ae9b7f.so:

cannot open shared object file: No such file or directory

Before any of the application code is even executed, the dynamic
linker complains about a missing library called lib5ae9b7f.so. That doesn’t
sound like a library you normally find on any system. Before searching for
this library, it makes sense to check whether ctf has any more unresolved
dependencies.

Linux systems come with a program called ldd, which you can use to find
out on which shared objects a binary depends and where (if anywhere) these
dependencies are on your system. You can even use ldd along with the -v

flag to find out which library versions the binary expects, which can be use-
ful for debugging. As mentioned in the ldd man page, ldd may run the binary
to figure out the dependencies, so it’s not safe to use on untrusted binaries
unless you’re running it in a VM or another isolated environment. Here’s
the ldd output for the ctf binary:

$ ldd ctf

linux-vdso.so.1 => (0x00007fff6edd4000)

lib5ae9b7f.so => not found

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f67c2cbe000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f67c2aa7000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f67c26de000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f67c23d5000)

/lib64/ld-linux-x86-64.so.2 (0x0000561e62fe5000)

Luckily, there are no unresolved dependencies besides the missing
library identified earlier, lib5ae9b7f.so. Now you can focus on figuring out
what this mysterious library is and how you can obtain it in order to capture
the flag!

Because it’s obvious from the library name that you won’t find it in any
standard repository, it must reside somewhere in the files you’ve been given
so far. Recall from Chapter 2 that all ELF binaries and libraries begin with
the magic sequence 0x7f ELF. This is a handy string to look for in search
of your missing library; as long as the library is not encrypted, you should
be able to find the ELF header this way. Let’s try a simple grep for the
string 'ELF'.

$ grep 'ELF' *
Binary file 67b8601 matches

Binary file ctf matches

Basic Binary Analysis in Linux 93



As expected, the string 'ELF' appears in ctf , which is not surprising
because you already know it’s an ELF binary. But you can see that this
string is also in 67b8601, which at first glance appeared to be an innocent
bitmap file. Could there be a shared library hidden within the bitmap’s
pixel data? It would certainly explain those strangely colored pixels you
saw in Figure 5-1b! Let’s examine the contents of 67b8601 in more detail
to find out.

Quickly Looking Up ASCII Codes

When interpreting raw bytes as ASCII, you’ll often need a table that
maps byte values in various representations to ASCII symbols. You
can use a special man page called man ascii for quick access to such a
table. Here’s an excerpt of the table from man ascii:

Oct Dec Hex Char Oct Dec Hex Char

______________________________________________________________________

000 0 00 NUL '\0' (null character) 100 64 40 @

001 1 01 SOH (start of heading) 101 65 41 A

002 2 02 STX (start of text) 102 66 42 B

003 3 03 ETX (end of text) 103 67 43 C

004 4 04 EOT (end of transmission) 104 68 44 D

005 5 05 ENQ (enquiry) 105 69 45 E

006 6 06 ACK (acknowledge) 106 70 46 F

007 7 07 BEL '\a' (bell) 107 71 47 G

...

As you can see, this is an easy way to look up the mappings from
octal, decimal, and hexadecimal encodings to ASCII characters. This
is much faster than googling for an ASCII table!

5.3 Viewing File Contents with xxd
To discover exactly what’s in a file without being able to rely on any stan-
dard assumptions about the file contents, you’ll have to analyze it at the byte
level. To do this, you can use any numeric system to display bits and bytes
on the screen. For instance, you could use the binary system, displaying all
the ones and zeros individually. But because that makes for some tedious
analysis, it’s better to use the hexadecimal system. In the hexadecimal system
(also known as base 16, or hex for short), digits range from 0 to 9 (with the
usual meaning) and then from a to f (where a represents the value 10 and f
represents 15). In addition, because a byte has 256 = 16 × 16 possible values,
it fits exactly in two hexadecimal digits, making this a convenient encoding
for compactly displaying bytes.

To display the bytes of a file in hexadecimal representation, you use a
hex-dumping program. A hex editor is a program that can also edit the bytes

94 Chapter 5



in the file. I’ll get back to hex editing in Chapter 7, but for now let’s use a
simple hex-dumping program called xxd, which is installed on most Linux
systems by default.

Here are the first 15 lines of output from xxd for the bitmap file you’re
analyzing:

$ xxd 67b8601 | head -n 15

00000000: 424d 3800 0c00 0000 0000 3600 0000 2800 BM8.......6...(.

00000010: 0000 0002 0000 0002 0000 0100 1800 0000 ................

00000020: 0000 0200 0c00 c01e 0000 c01e 0000 0000 ................

00000030: 0000 0000 Ê7f45 4c46 0201 0100 0000 0000 .....ELF........

00000040: 0000 0000 0300 3e00 0100 0000 7009 0000 ......>.....p...

00000050: 0000 0000 4000 0000 0000 0000 7821 0000 ....@.......x!..

00000060: 0000 0000 0000 0000 4000 3800 0700 4000 ........@.8...@.

00000070: 1b00 1a00 0100 0000 0500 0000 0000 0000 ................

00000080: 0000 0000 0000 0000 0000 0000 0000 0000 ................

00000090: 0000 0000 f40e 0000 0000 0000 f40e 0000 ................

000000a0: 0000 0000 0000 2000 0000 0000 0100 0000 ...... .........

000000b0: 0600 0000 f01d 0000 0000 0000 f01d 2000 .............. .

000000c0: 0000 0000 f01d 2000 0000 0000 6802 0000 ...... .....h...

000000d0: 0000 0000 7002 0000 0000 0000 0000 2000 ....p......... .

000000e0: 0000 0000 0200 0000 0600 0000 081e 0000 ................

As you can see, the first output column shows the offset into the file in
hexadecimal format. The next eight columns show hexadecimal represen-
tations of the bytes in the file, and on the rightmost side of the output, you
can see an ASCII representation of the same bytes.

You can change the number of bytes displayed per line using the xxd

program’s -c option. For instance, xxd -c 32 will display 32 bytes per line.
You can also use -b to display binary instead of hexadecimal, and you can
use -i to output a C-style array containing the bytes, which you can directly
include in your C or C++ source. To output only some of the bytes, you can
use the -s (seek) option to specify a file offset at which to start, and you
can use the -l (length) option to specify the number of bytes to dump.

In the xxd output for the bitmap file, the ELF magic bytes appear at off-
set 0x34 Ê, which corresponds to 52 in the decimal system. This tells you
where in the file the suspected ELF library begins. Unfortunately, finding
out where it ends is not so trivial because there are no magic bytes delimit-
ing the end of an ELF file. Thus, before you try to extract the complete ELF
file, begin by extracting only the ELF header instead. This is easier since you
know that 64-bit ELF headers contain exactly 64 bytes. You can then exam-
ine the ELF header to figure out how large the complete file is.

To extract the header, you use dd to copy 64 bytes from the bitmap file,
starting at offset 52, into a new output file called elf_header.

$ dd skip=52 count=64 if=67b8601 of=elf_header bs=1

64+0 records in

Basic Binary Analysis in Linux 95



64+0 records out

64 bytes copied, 0.000404841 s, 158 kB/s

Using dd is incidental here, so I won’t explain it in detail. However, dd is
an extremely versatile1 tool, so it’s worth reading its man page if you aren’t
already familiar with it.

Let’s use xxd again to see whether it worked.

$ xxd elf_header

00000000: Ê7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0300 3e00 0100 0000 7009 0000 0000 0000 ..>.....p.......

00000020: 4000 0000 0000 0000 7821 0000 0000 0000 @.......x!......

00000030: 0000 0000 4000 3800 0700 4000 1b00 1a00 ....@.8...@.....

That looks like an ELF header! You can clearly see the magic bytes at
the start Ê, and you can also see that the e_ident array and other fields look
reasonable (refer to Chapter 2 for a description of these fields).

5.4 Parsing the Extracted ELF with readelf
To view the details of the ELF header you just extracted, it would be great
if you could use readelf, like you did in Chapter 2. But will readelf work on
a broken ELF file that contains nothing but a header? Let’s find out in List-
ing 5-1!

Listing 5-1: The readelf output for the extracted ELF header

Ê $ readelf -h elf_header

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: DYN (Shared object file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x970

Start of program headers: 64 (bytes into file)

Ë Start of section headers: 8568 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 7

1. And dangerous! It’s so easy to accidentally overwrite crucial files with dd that the letters dd
have often been said to stand for destroy disk. Needless to say, use this command with caution.

96 Chapter 5



Ì Size of section headers: 64 (bytes)

Í Number of section headers: 27

Section header string table index: 26

readelf: Error: Reading 0x6c0 bytes extends past end of file for section headers

readelf: Error: Reading 0x188 bytes extends past end of file for program headers

The -h option Ê tells readelf to print only the executable header. It still
complains that the offsets to the section header table and program header
table point outside the file, but that’s okay. What matters is that you now
have a convenient representation of the extracted ELF header.

Now, how can you figure out the size of the complete ELF using noth-
ing but the executable header? In Figure 2-1 of Chapter 2, you learned that
the last part of an ELF file is typically the section header table and that the
offset to the section header table is given in the executable header Ë. The
executable header also tells you the size of each section header Ì and the
number of section headers in the table Í. This means you can calculate the
size of the complete ELF library hidden in your bitmap file as follows:

size = e_shoff + (e_shnum × e_shentsize)
= 8,568 + (27 × 64)
= 10,296

In this equation, size is the size of the complete library, e_shoff is the off-
set to the section header table, e_shnum is the number of section headers in
the table, and e_shentsize is the size of each section header.

Now that you know that the size of the library should be 10,296 bytes,
you can use dd to extract it completely, as follows:

$ dd skip=52 count=10296 if=67b8601 Êof=lib5ae9b7f.so bs=1

10296+0 records in

10296+0 records out

10296 bytes (10 kB, 10 KiB) copied, 0.0287996 s, 358 kB/s

The dd command calls the extracted file lib5ae9b7f.so Ê because that’s
the name of the missing library the ctf binary expects. After running this
command, you should now have a fully functioning ELF shared object. Let’s
use readelf to see whether all went well, as shown in Listing 5-2. To keep the
output brief, let’s only print the executable header (-h) and symbol tables
(-s). The latter should give you an idea of the functionality that the library
provides.

Listing 5-2: The readelf output for the extracted library, lib5ae9b7f.so

$ readelf -hs lib5ae9b7f.so

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Basic Binary Analysis in Linux 97



Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: DYN (Shared object file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x970

Start of program headers: 64 (bytes into file)

Start of section headers: 8568 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 7

Size of section headers: 64 (bytes)

Number of section headers: 27

Section header string table index: 26

Symbol table '.dynsym' contains 22 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000000008c0 0 SECTION LOCAL DEFAULT 9

2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _ZNSt7__cxx1112basic_stri@GL(2)

5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND malloc@GLIBC_2.2.5 (3)

6: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab

7: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable

8: 0000000000000000 0 FUNC WEAK DEFAULT UND __cxa_finalize@GLIBC_2.2.5 (3)

9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __stack_chk_fail@GLIBC_2.4 (4)

10: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _ZSt19__throw_logic_error@ (5)

11: 0000000000000000 0 FUNC GLOBAL DEFAULT UND memcpy@GLIBC_2.14 (6)

Ê 12: 0000000000000bc0 149 FUNC GLOBAL DEFAULT 12 _Z11rc4_encryptP11rc4_sta

Ë 13: 0000000000000cb0 112 FUNC GLOBAL DEFAULT 12 _Z8rc4_initP11rc4_state_t

14: 0000000000202060 0 NOTYPE GLOBAL DEFAULT 24 _end

15: 0000000000202058 0 NOTYPE GLOBAL DEFAULT 23 _edata

Ì 16: 0000000000000b40 119 FUNC GLOBAL DEFAULT 12 _Z11rc4_encryptP11rc4_sta

Í 17: 0000000000000c60 5 FUNC GLOBAL DEFAULT 12 _Z11rc4_decryptP11rc4_sta

18: 0000000000202058 0 NOTYPE GLOBAL DEFAULT 24 __bss_start

19: 00000000000008c0 0 FUNC GLOBAL DEFAULT 9 _init

Î 20: 0000000000000c70 59 FUNC GLOBAL DEFAULT 12 _Z11rc4_decryptP11rc4_sta

21: 0000000000000d20 0 FUNC GLOBAL DEFAULT 13 _fini

As hoped, the complete library seems to have been extracted correctly.
Although it’s stripped, the dynamic symbol table does reveal some interest-
ing exported functions (Ê through Î). However, there seems to be some
gibberish around the names, making them difficult to read. Let’s see if that
can be fixed.

98 Chapter 5



5.5 Parsing Symbols with nm
C++ allows functions to be overloaded, which means there may be multiple
functions with the same name, as long as they have different signatures.
Unfortunately for the linker, it doesn’t know anything about C++. For exam-
ple, if there are multiple functions with the name foo, the linker has no idea
how to resolve references to foo; it simply doesn’t know which version of foo
to use. To eliminate duplicate names, C++ compilers emit mangled function
names. A mangled name is essentially a combination of the original function
name and an encoding of the function parameters. This way, each version
of the function gets a unique name, and the linker has no problems disam-
biguating the overloaded functions.

For binary analysts, mangled function names are a mixed blessing. On
the one hand, mangled names are more difficult to read, as you saw in the
readelf output for lib5ae9b7f.so (Listing 5-2), which is programmed in C++.
On the other hand, mangled function names essentially provide free type
information by revealing the expected parameters of the function, and this
information can be useful when reverse engineering a binary.

Fortunately, the benefits of mangled names outweigh the downsides
because mangled names are relatively easy to demangle. There are several
standard tools you can use to demangle mangled names. One of the best
known is nm, which lists symbols in a given binary, object file, or shared
object. When given a binary, nm by default attempts to parse the static sym-
bol table.

$ nm lib5ae9b7f.so

nm: lib5ae9b7f.so: no symbols

Unfortunately, as this example shows, you can’t use nm’s default config-
uration on lib5ae9b7f.so because it has been stripped. You have to explicitly
ask nm to parse the dynamic symbol table instead, using the -D switch, as
shown in Listing 5-3. In this listing, “...” indicates that I’ve truncated a line
and continued it on the next line (mangled names can be quite long).

Listing 5-3: The nm output for lib5ae9b7f.so

$ nm -D lib5ae9b7f.so

w _ITM_deregisterTMCloneTable

w _ITM_registerTMCloneTable

w _Jv_RegisterClasses

0000000000000c60 T _Z11rc4_decryptP11rc4_state_tPhi

0000000000000c70 T _Z11rc4_decryptP11rc4_state_tRNSt7__cxx1112basic_...

...stringIcSt11char_traitsIcESaIcEEE

0000000000000b40 T _Z11rc4_encryptP11rc4_state_tPhi

0000000000000bc0 T _Z11rc4_encryptP11rc4_state_tRNSt7__cxx1112basic_...

...stringIcSt11char_traitsIcESaIcEEE

0000000000000cb0 T _Z8rc4_initP11rc4_state_tPhi

U _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_...

Basic Binary Analysis in Linux 99



...M_createERmm

U _ZSt19__throw_logic_errorPKc

0000000000202058 B __bss_start

w __cxa_finalize

w __gmon_start__

U __stack_chk_fail

0000000000202058 D _edata

0000000000202060 B _end

0000000000000d20 T _fini

00000000000008c0 T _init

U malloc

U memcpy

This looks better; this time you see some symbols. But the symbol names
are still mangled. To demangle them, you have to pass the --demangle switch
to nm, as shown in Listing 5-4.

Listing 5-4: Demangled nm output for lib5ae9b7f.so

$ nm -D --demangle lib5ae9b7f.so

w _ITM_deregisterTMCloneTable

w _ITM_registerTMCloneTable

w _Jv_RegisterClasses

0000000000000c60 T Êrc4_decrypt(rc4_state_t*, unsigned char*, int)

0000000000000c70 T Ërc4_decrypt(rc4_state_t*,

std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >&)

0000000000000b40 T Ìrc4_encrypt(rc4_state_t*, unsigned char*, int)

0000000000000bc0 T Írc4_encrypt(rc4_state_t*,

std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >&)

0000000000000cb0 T Îrc4_init(rc4_state_t*, unsigned char*, int)

U std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >::_M_create(unsigned long&, unsigned long)

U std::__throw_logic_error(char const*)

0000000000202058 B __bss_start

w __cxa_finalize

w __gmon_start__

U __stack_chk_fail

0000000000202058 D _edata

0000000000202060 B _end

0000000000000d20 T _fini

00000000000008c0 T _init

U malloc

U memcpy

Finally, the function names appear human-readable. You can see
five interesting functions, which appear to be cryptographic functions

100 Chapter 5



implementing the well-known RC4 encryption algorithm.2 There’s a func-
tion called rc4_init, which takes as input a data structure of type rc4_state_t,
as well as an unsigned character string and an integer Î. The first parameter
is presumably a data structure where the cryptographic state is kept, while
the next two are probably a string representing a key and an integer speci-
fying the length of the key, respectively. You can also see several encryption
and decryption functions, each of which takes a pointer to the cryptographic
state, as well as parameters specifying strings (both C and C++ strings) to
encrypt or decrypt (Ê through Í).

As an alternative way of demangling function names, you can use a
specialized utility called c++filt, which takes a mangled name as the input
and outputs the demangled equivalent. The advantage of c++filt is that it
supports several mangling formats and automatically detects the correct
mangling format for the given input. Here’s an example using c++filt to
demangle the function name _Z8rc4_initP11rc4_state_tPhi:

$ c++filt _Z8rc4_initP11rc4_state_tPhi

rc4_init(rc4_state_t*, unsigned char*, int)

At this point, let’s briefly recap the progress so far. You extracted the
mysterious payload and found a binary called ctf that depends on a file
called lib5ae9b7f.so. You found lib5ae9b7f.so hidden in a bitmap file and suc-
cessfully extracted it. You also have a rough idea of what it does: it’s a cryp-
tographic library. Now let’s try running ctf again, this time with no missing
dependencies.

When you run a binary, the linker resolves the binary’s dependencies by
searching a number of standard directories for shared libraries, such as /lib.
Because you extracted lib5ae9b7f.so to a nonstandard directory, you need to
tell the linker to search that directory too by setting an environment variable
called LD_LIBRARY_PATH. Let’s set this variable to contain the current working
directory and then try launching ctf again.

$ export LD_LIBRARY_PATH=`pwd`

$ ./ctf

$ echo $?

1

Success! The ctf binary still doesn’t appear to do anything useful, but
it runs without complaining about any missing libraries. The exit status of
ctf contained in the $? variable is 1, indicating an error. Now that you have
all the required dependencies, you can continue your investigation and see
whether you can coax ctf into getting past the error so that you can reach
the flag you’re trying to capture.

2. RC4 is a widely used stream cipher, noted for its simplicity and speed. If you’re interested,
you can find more details about it at https://en.wikipedia.org/wiki/RC4. Note that RC4 is now
considered broken and should not be used in any new real-world projects!

Basic Binary Analysis in Linux 101

https://en.wikipedia.org/wiki/RC4


5.6 Looking for Hints with strings
To figure out what a binary does and what kinds of inputs it expects, you can
check whether the binary contains any helpful strings that can reveal its pur-
pose. For instance, if you see strings containing parts of HTTP requests or
URLs, you can safely guess that the binary is doing something web related.
When you’re dealing with malware such as a bot, you might be able to find
strings containing the commands that the bot accepts, if they’re not obfus-
cated. You might even find strings left over from debugging that the pro-
grammer forgot to remove, which has been known to happen in real-world
malware!

You can use a utility called strings to check for strings in a binary (or
any other file) on Linux. The strings utility takes one or more files as input
and then prints any printable character strings found in those files. Note
that strings doesn’t check whether the found strings were really intended
to be human readable, so when used on binary files, the strings output may
include some bogus strings as a result of binary sequences that just happen
to be printable.

You can tweak the behavior of strings using options. For example, you
can use the -d switch with strings to print only strings found in data sections
in a binary instead of printing all sections. By default, strings prints only
strings of four characters or more, but you can specify another minimum
string length using the -n option. For our purposes, the default options will
suffice; let’s see what you can find in the ctf binary using strings, as shown in
Listing 5-5.

Listing 5-5: Character strings found in the ctf binary

$ strings ctf

Ê /lib64/ld-linux-x86-64.so.2

lib5ae9b7f.so

Ë __gmon_start__

_Jv_RegisterClasses

_ITM_deregisterTMCloneTable

_ITM_registerTMCloneTable

_Z8rc4_initP11rc4_state_tPhi

...

Ì DEBUG: argv[1] = %s

Í checking '%s'

Î show_me_the_flag

>CMb

-v@P:̂

flag = %s

guess again!

Ï It's kinda like Louisiana. Or Dagobah. Dagobah - Where Yoda lives!

;*3$"

zPLR

102 Chapter 5



GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609

Ð .shstrtab

.interp

.note.ABI-tag

.note.gnu.build-id

.gnu.hash

.dynsym

.dynstr

.gnu.version

.gnu.version_r

.rela.dyn

.rela.plt

.init

.plt.got

.text

.fini

.rodata

.eh_frame_hdr

.eh_frame

.gcc_except_table

.init_array

.fini_array

.jcr

.dynamic

.got.plt

.data

.bss

.comment

Here, you can see some strings that you’ll encounter in most ELF files.
For example, there’s the name of the program interpreter Ê, as found in
the .interp section, and some symbolic names found in .dynstr Ë. At the
end of the strings output, you can see all the section names as found in the
.shstrtab section Ð. But none of these strings is very interesting for the pur-
poses here.

Fortunately, there are also some more useful strings. For example,
there is what appears to be a debug message, which suggests that the pro-
gram expects a command line option Ì. There are also checks of some sort,
presumably performed on an input string Í. You don’t yet know what the
value of the command line option should be, but you could try some of
the other interesting-looking strings, such as show_me_the_flag Î, that might
work. There’s also a mysterious string Ï that contains a message whose pur-
pose is unclear. You don’t know what the message means at this point, but
you do know from your investigation of lib5ae9b7f.so that the binary uses RC4
encryption. Perhaps the message is used as an encryption key?

Basic Binary Analysis in Linux 103



Now that you know that the binary expects a command line option, let’s
see whether adding an arbitrary option gets you any closer to revealing the
flag. For lack of a better guess, let’s simply use the string foobar, like this:

$ ./ctf foobar

checking 'foobar'

$ echo $?

1

The binary now does something new. It tells you that it’s checking the
input string you gave it. But the check doesn’t succeed because the binary
still exits with an error code after the check. Let’s take a gamble and try one
of the other interesting-looking strings that you found, such as the string
show_me_the_flag, which looks promising.

$ ./ctf show_me_the_flag

checking 'show_me_the_flag'

ok

$ echo $?

1

That did it! The check now appears to succeed. Unfortunately, the exit
status is still 1, so there must be something else missing. To make things
worse, the strings results don’t provide any more hints. Let’s take a more
detailed look at ctf ’s behavior to determine what to do next, starting with
the system and library calls ctf makes.

5.7 Tracing System Calls and Library Calls with strace
and ltrace
To make forward progress, let’s investigate the reason that ctf exits with an
error code by looking at ctf ’s behavior just before it exits. There are many
ways that you could do this, but one way is to use two tools called strace and
ltrace. These tools show the system calls and library calls, respectively, exe-
cuted by a binary. Knowing the system and library calls that a binary makes
can often give you a good high-level idea of what the program is doing.

Let’s start by using strace to investigate ctf ’s system call behavior. In
some cases, you may want to attach strace to a running process. To do this,
you need to use the -p pid option, where pid is the process ID of the pro-
cess you want to attach to. However, in this case, it suffices to run ctf with
strace from the start. Listing 5-6 shows the strace output for the ctf binary
(some parts are truncated with “...”).

Listing 5-6: System calls executed by the ctf binary

$ strace ./ctf show_me_the_flag

Ê execve("./ctf", ["./ctf", "show_me_the_flag"], [/* 73 vars */]) = 0

brk(NULL) = 0x1053000

104 Chapter 5



access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f703477e000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

Ë open("/ch3/tls/x86_64/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or ...)

stat("/ch3/tls/x86_64", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)

open("/ch3/tls/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

stat("/ch3/tls", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)

open("/ch3/x86_64/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

stat("/ch3/x86_64", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)

open("/ch3/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = 3

Ì read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\t\0\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0775, st_size=10296, ...) = 0

mmap(NULL, 2105440, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f7034358000

mprotect(0x7f7034359000, 2097152, PROT_NONE) = 0

mmap(0x7f7034559000, 8192, PROT_READ|PROT_WRITE, ..., 3, 0x1000) = 0x7f7034559000

close(3) = 0

open("/ch3/libstdc++.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, st_mode=S_IFREG|0644, st_size=150611, ...) = 0

mmap(NULL, 150611, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7034759000

close(3) = 0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

Í open("/usr/lib/x86_64-linux-gnu/libstdc++.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 \235\10\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0644, st_size=1566440, ...) = 0

mmap(NULL, 3675136, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f7033fd6000

mprotect(0x7f7034148000, 2097152, PROT_NONE) = 0

mmap(0x7f7034348000, 49152, PROT_READ|PROT_WRITE, ..., 3, 0x172000) = 0x7f7034348000

mmap(0x7f7034354000, 13312, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x7f7034354000

close(3) = 0

open("/ch3/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/x86_64-linux-gnu/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p*\0\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0644, st_size=89696, ...) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034758000

mmap(NULL, 2185488, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f7033dc0000

mprotect(0x7f7033dd6000, 2093056, PROT_NONE) = 0

mmap(0x7f7033fd5000, 4096, PROT_READ|PROT_WRITE, ..., 3, 0x15000) = 0x7f7033fd5000

close(3) = 0

open("/ch3/libc.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\t\2\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0755, st_size=1864888, ...) = 0

mmap(NULL, 3967392, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f70339f7000

mprotect(0x7f7033bb6000, 2097152, PROT_NONE) = 0

Basic Binary Analysis in Linux 105



mmap(0x7f7033db6000, 24576, PROT_READ|PROT_WRITE, ..., 3, 0x1bf000) = 0x7f7033db6000

mmap(0x7f7033dbc000, 14752, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x7f7033dbc000

close(3) = 0

open("/ch3/libm.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/x86_64-linux-gnu/libm.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0V\0\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0644, st_size=1088952, ...) = 0

mmap(NULL, 3178744, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f70336ee000

mprotect(0x7f70337f6000, 2093056, PROT_NONE) = 0

mmap(0x7f70339f5000, 8192, PROT_READ|PROT_WRITE, ..., 3, 0x107000) = 0x7f70339f5000

close(3) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034757000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034756000

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034754000

arch_prctl(ARCH_SET_FS, 0x7f7034754740) = 0

mprotect(0x7f7033db6000, 16384, PROT_READ) = 0

mprotect(0x7f70339f5000, 4096, PROT_READ) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034753000

mprotect(0x7f7034348000, 40960, PROT_READ) = 0

mprotect(0x7f7034559000, 4096, PROT_READ) = 0

mprotect(0x601000, 4096, PROT_READ) = 0

mprotect(0x7f7034780000, 4096, PROT_READ) = 0

munmap(0x7f7034759000, 150611) = 0

brk(NULL) = 0x1053000

brk(0x1085000) = 0x1085000

fstat(1, st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...) = 0

Î write(1, "checking 'show_me_the_flag'\n", 28checking 'show_me_the_flag'

) = 28

Ï write(1, "ok\n", 3ok

) = 3

Ð exit_group(1) = ?

+++ exited with 1 +++

When tracing a program from the start, strace includes all the system
calls used by the program interpreter to set up the process, making the out-
put quite verbose. The first system call in the output is execve, which is called
by your shell to launch the program Ê. After that, the program interpreter
takes over and starts setting up the execution environment. This involves set-
ting up memory regions and setting the correct memory access permissions
using mprotect. Additionally, you can see the system calls used to look up and
load the required dynamic libraries.

Recall that in Section 5.5, you set the LD_LIBRARY_PATH environment vari-
able to tell the dynamic linker to add your current working directory to
its search path. This is why you can see the dynamic linker searching for
the lib5ae9b7f.so library in a number of standard subfolders in your current
working directory, until it finally finds the library in the root of your working

106 Chapter 5



directory Ë. When the library is found, the dynamic linker reads it and maps
it into memory Ì. The setup process is repeated for other required libraries,
such as libstdc++.so.6 Í, and it accounts for the vast majority of the strace

output.
It isn’t until the last three system calls that you finally see application-

specific behavior. The first system call used by ctf itself is write, which is used
to print checking 'show_me_the_flag' to the screen Î. You see another write

call to print the string ok Ï, and finally, there’s a call to exit_group, which
leads to the exit with status code 1 Ð.

That’s all interesting, but how does it help you figure out how to extract
the flag from ctf ? The answer is that it doesn’t! In this case, strace didn’t
reveal anything helpful, but I still wanted to show you how it works because it
can be useful for understanding a program’s behavior. For instance, observ-
ing the system calls executed by a program is useful not only for binary anal-
ysis but also for debugging.

Looking at ctf ’s system call behavior didn’t help much, so let’s try library
calls. To view the library calls executed by ctf , you use ltrace. Because ltrace

is a close relative of strace, it takes many of the same command line options,
including -p to attach to an existing process. Here, let’s use the -i option to
print the instruction pointer at every library call (this will be useful later).
We’ll use -C to automatically demangle C++ function names. Let’s run ctf
with ltrace from the start, as shown in Listing 5-7.

Listing 5-7: Library calls made by the ctf binary

$ ltrace -i -C ./ctf show_me_the_flag

Ê [0x400fe9] __libc_start_main (0x400bc0, 2, 0x7ffc22f441e8, 0x4010c0 <unfinished ...>

Ë [0x400c44] __printf_chk (1, 0x401158, 0x7ffc22f4447f, 160checking 'show_me_the_flag') = 28

Ì [0x400c51] strcmp ("show_me_the_flag", "show_me_the_flag") = 0

Í [0x400cf0] puts ("ok"ok) = 3

Î [0x400d07] rc4_init (rc4_state_t*, unsigned char*, int)

(0x7ffc22f43fb0, 0x4011c0, 66, 0x7fe979b0d6e0) = 0

Ï [0x400d14] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: assign (char const*)

(0x7ffc22f43ef0, 0x40117b, 58, 3) = 0x7ffc22f43ef0

Ð [0x400d29] rc4_decrypt (rc4_state_t*, std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> >&)

(0x7ffc22f43f50, 0x7ffc22f43fb0, 0x7ffc22f43ef0, 0x7e889f91) = 0x7ffc22f43f50

Ñ [0x400d36] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: _M_assign (std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> > const&)

(0x7ffc22f43ef0, 0x7ffc22f43f50, 0x7ffc22f43f60, 0) = 0

Ò [0x400d53] getenv ("GUESSME") = nil

[0xffffffffffffffff] +++ exited (status 1) +++

As you can see, this output from ltrace is a lot more readable than
the strace output because it isn’t polluted by all the process setup code.

Basic Binary Analysis in Linux 107



The first library call is __libc_start_main Ê, which is called from the _start

function to transfer control to the program’s main function. Once main is
started, its first library call prints the now familiar checking ... string to the
screen Ë. The actual check turns out to be a string comparison, which is
implemented using strcmp, and verifies that the argument given to ctf is
equal to show_me_the_flag Ì. If this is the case, ok is printed to the screen Í.

So far, this is mostly behavior you’ve seen before. But now you see some-
thing new: the RC4 cryptography is initialized through a call to rc4_init,
which is located in the library you extracted earlier Î. After that, you see
an assign to a C++ string, presumably initializing it with an encrypted mes-
sage Ï. This message is then decrypted with a call to rc4_decrypt Ð, and the
decrypted message is assigned to a new C++ string Ñ.

Finally, there’s a call to getenv, which is a standard library function used
to look up environment variables Ò. You can see that ctf expects an environ-
ment variable called GUESSME! The name of this variable may well be the string
that was decrypted earlier. Let’s see whether ctf ’s behavior changes when
you set a dummy value for the GUESSME environment variable as follows:

$ GUESSME='foobar' ./ctf show_me_the_flag

checking 'show_me_the_flag'

ok

guess again!

Setting GUESSME results in an additional line of output that says guess

again!. It seems that ctf expects GUESSME to be set to another specific value.
Perhaps another ltrace run, as shown in Listing 5-8, will reveal what the
expected value is.

Listing 5-8: Library calls made by the ctf binary after setting the GUESSME environment variable

$ GUESSME='foobar' ltrace -i -C ./ctf show_me_the_flag

...

[0x400d53] getenv ("GUESSME") = "foobar"

Ê [0x400d6e] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: assign (char const*)

(0x7fffc7af2b00, 0x401183, 5, 3) = 0x7fffc7af2b00

Ë [0x400d88] rc4_decrypt (rc4_state_t*, std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> >&)

(0x7fffc7af2b60, 0x7fffc7af2ba0, 0x7fffc7af2b00, 0x401183) = 0x7fffc7af2b60

[0x400d9a] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: _M_assign (std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> > const&)

(0x7fffc7af2b00, 0x7fffc7af2b60, 0x7700a0, 0) = 0

[0x400db4] operator delete (void*)(0x7700a0, 0x7700a0, 21, 0) = 0

Ì [0x400dd7] puts ("guess again!"guess again!) = 13

[0x400c8d] operator delete (void*)(0x770050, 0x76fc20, 0x7f70f99b3780, 0x7f70f96e46e0) = 0

[0xffffffffffffffff] +++ exited (status 1) +++

108 Chapter 5



After the call to getenv, ctf goes on to assign Ê and decrypt Ë another
C++ string. Unfortunately, between the decryption and the moment that
guess again is printed to the screen Ì, you don’t see any hints regarding the
expected value of GUESSME. This tells you that the comparison of GUESSME to
its expected value is implemented without the use of any library functions.
You’ll need to take another approach.

5.8 Examining Instruction-Level Behavior Using objdump
Because you know that the value of the GUESSME environment variable is
checked without using any well-known library functions, a logical next step
is to use objdump to examine ctf at the instruction level to find out what’s
going on.3

From the ltrace output in Listing 5-8, you know that the guess again

string is printed to the screen by a call to puts at address 0x400dd7. Let’s focus
the objdump investigation around this address. It will also help to know the
address of the string to find the first instruction that loads it. To find this
address, you can look at the .rodata section of the ctf binary using objdump -s

to print the full section contents, as shown in Listing 5-9.

Listing 5-9: The contents of ctf’s .rodata section as shown by objdump

$ objdump -s --section .rodata ctf

ctf: file format elf64-x86-64

Contents of section .rodata:

401140 01000200 44454255 473a2061 7267765b ....DEBUG: argv[

401150 315d203d 20257300 63686563 6b696e67 1] = %s.checking

401160 20272573 270a0073 686f775f 6d655f74 '%s'..show_me_t

401170 68655f66 6c616700 6f6b004f 89df919f he_flag.ok.O....

401180 887e009a 5b38babe 27ac0e3e 434d6285 .~..[8..'..>CMb.

401190 55868954 3848a34d 00192d76 40505e3a U..T8H.M..-v@P:̂

4011a0 00726200 666c6167 203d2025 730a00Ê67 .rb.flag = %s..g

4011b0 75657373 20616761 696e2100 00000000 uess again!.....

4011c0 49742773 206b696e 6461206c 696b6520 It's kinda like

4011d0 4c6f7569 7369616e 612e204f 72204461 Louisiana. Or Da

4011e0 676f6261 682e2044 61676f62 6168202d gobah. Dagobah -

4011f0 20576865 72652059 6f646120 6c697665 Where Yoda live

401200 73210000 00000000 s!......

Using objdump to examine ctf ’s .rodata section, you can see the guess

again string at address 0x4011af Ê. Now let’s take a look at Listing 5-10, which

3. Remember from Chapter 1 that objdump is a simple disassembler that comes with most Linux
distributions.

Basic Binary Analysis in Linux 109



shows the instructions around the puts call, to find out what input ctf expects
for the GUESSME environment variable.

Listing 5-10: Instructions checking the value of GUESSME

$ objdump -d ctf

...

Ê 400dc0: 0f b6 14 03 movzx edx,BYTE PTR [rbx+rax*1]

400dc4: 84 d2 test dl,dl

Ë 400dc6: 74 05 je 400dcd <_Unwind_Resume@plt+0x22d>

Ì 400dc8: 3a 14 01 cmp dl,BYTE PTR [rcx+rax*1]

400dcb: 74 13 je 400de0 <_Unwind_Resume@plt+0x240>

Í 400dcd: bf af 11 40 00 mov edi,0x4011af

Î 400dd2: e8 d9 fc ff ff call 400ab0 <puts@plt>

400dd7: e9 84 fe ff ff jmp 400c60 <_Unwind_Resume@plt+0xc0>

400ddc: 0f 1f 40 00 nop DWORD PTR [rax+0x0]

Ï 400de0: 48 83 c0 01 add rax,0x1

Ð 400de4: 48 83 f8 15 cmp rax,0x15

Ñ 400de8: 75 d6 jne 400dc0 <_Unwind_Resume@plt+0x220>

...

The guess again string is loaded by the instruction at 0x400dcd Í and is
then printed using puts Î. This is the failure case; let’s work our way back-
ward from here.

The failure case is reached from a loop that starts at address 0x400dc0. In
each iteration of the loop, it loads a byte from an array (probably a string)
into edx Ê. The rbx register points to the base of this array, while rax indexes
it. If the loaded byte turns out to be NULL, then the je instruction at 0x400dc6
jumps to the failure case Ë. This comparison to NULL is a check for the end of
the string. If the end of the string is reached here, then it’s too short to be
a match. If the byte is not NULL, the je falls through to the next instruction,
at address 0x400dc8, which compares the byte in edx against a byte in another
string, based at rcx and indexed by rax Ì.

If the two compared bytes match up, then the program jumps to address
0x400de0, where it increases the string index Ï, and checks whether the string
index is equal to 0x15, the length of the string Ð. If it is, then the string com-
parison is complete; if not, the program jumps into another iteration of the
loop Ñ.

From this analysis, you now know that the string based at the rcx register
is used as a ground truth. The program compares the environment string
taken from the GUESSME variable against this ground truth. This means that
if you can dump the ground truth string, you can find the expected value
for GUESSME! Because the string is decrypted at runtime and isn’t available
statically, you’ll need to use dynamic analysis to recover it instead of using
objdump.

110 Chapter 5



5.9 Dumping a Dynamic String Buffer Using gdb
Probably the most used dynamic analysis tool on GNU/Linux is gdb, or the
GNU Debugger. As the name suggests, gdb is mainly for debugging, but
it can be used for a variety of dynamic analysis purposes. In fact, it’s an
extremely versatile tool, and there’s no way to cover all of its functionality
in this chapter. However, I’ll go over some of the most-used features of gdb
you can use to recover the expected value of GUESSME. The best place to look
up information on gdb is not the man page but http://www.gnu.org/software/
gdb/documentation/ , where you’ll find an extensive manual covering all the
supported gdb commands.

Like strace and ltrace, gdb has the ability to attach to a running pro-
cess. However, because ctf is not a long-running process, you can simply
run it with gdb from the start. Because gdb is an interactive tool, when you
start a binary under gdb, it’s not immediately executed. After printing a
startup message with some usage instructions, gdb pauses and waits for a
command. You can tell that gdb is waiting for a command by the command
prompt: (gdb).

Listing 5-11 shows the sequence of gdb commands needed to find the
expected value of the GUESSME environment variable. I’ll explain each of these
commands as I discuss the listing.

Listing 5-11: Finding the expected value of GUESSME using gdb

$ gdb ./ctf

GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./ctf...(no debugging symbols found)...done.

Ê (gdb) b *0x400dc8

Breakpoint 1 at 0x400dc8

Ë (gdb) set env GUESSME=foobar

Ì (gdb) run show_me_the_flag

Starting program: /home/binary/code/chapter3/ctf show_me_the_flag

checking 'show_me_the_flag'

ok

Basic Binary Analysis in Linux 111

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/


Í Breakpoint 1, 0x0000000000400dc8 in ?? ()

Î (gdb) display/i $pc

1: x/i $pc

=> 0x400dc8: cmp (%rcx,%rax,1),%dl

Ï (gdb) info registers rcx

rcx 0x615050 6377552

Ð (gdb) info registers rax

rax 0x0 0

Ñ (gdb) x/s 0x615050

0x615050: "Crackers Don't Matter"

Ò (gdb) quit

One of the most basic functions of any debugger is setting a breakpoint,
which is simply an address or a function name at which the debugger will
“break” execution. Whenever the debugger reaches a breakpoint, it pauses
execution and returns control to the user, waiting for a command. To dump
the “magic” string against which the GUESSME environment variable is com-
pared, you set a breakpoint at address 0x400dc8 Ê where the comparison
happens. In gdb, the command for setting a breakpoint at an address is
b *address (b is a short version of the command break). If symbols are avail-
able (they aren’t in this case), you can set a breakpoint at the entry point of
a function using the function’s name. For instance, to set a breakpoint at the
start of main, you would use the command b main.

After setting the breakpoint, you need to do one more thing before you
can start the execution of ctf . You still need to set a value for the GUESSME

environment variable to prevent ctf from exiting prematurely. In gdb,
you can set the GUESSME environment variable using the command set env

GUESSME=foobar Ë. Now, you can begin the execution of ctf by issuing the
command run show_me_the_flag Ì. As you can see, you can pass arguments
to the run command, which it then automatically passes on to the binary
you’re analyzing (in this case, ctf ). Now, ctf begins executing normally, and
it should continue doing so until it hits your breakpoint.

When ctf hits the breakpoint, gdb halts the execution of ctf and returns
control to you, informing you that a breakpoint was hit Í. At this point, you
can use the display/i $pc command to display the instruction at the current
program counter ($pc), just to make sure you’re at the expected instruc-
tion Î. As expected, gdb informs you that the next instruction to be executed
is cmp (%rcx,%rax,1),%dl, which is indeed the comparison instruction you’re
interested in (in AT&T format).

Now that you’ve reached the point in ctf ’s execution where GUESSME is
compared against the expected string, you need to find out the base address
of the string so that you can dump it. To view the base address contained
in the rcx register, use the command info registers rcx Ï. You can also
view the contents of rax, just to ensure that the loop counter is zero, as
expected Ð. It’s also possible to use the command info registers without
specifying any register name. In that case, gdb will show the contents of all
general-purpose registers.

112 Chapter 5



You now know the base address of the string you want to dump; it
starts at address 0x615050. The only thing left to do is to dump the string at
that address. The command to dump memory in gdb is x, which is capable
of dumping memory in many granularities and encodings. For instance,
x/d dumps a single byte in decimal representation, x/x dumps a byte in
hexadecimal representation, and x/4xw dumps four hexadecimal words
(which are 4-byte integers). In this case, the most useful version of the com-
mand is x/s, which dumps a C-style string, continuing until it encounters
a NULL byte. When you issue the command x/s 0x615050 to dump the string
you’re interested in Ñ, you can see that the expected value of GUESSME is
Crackers Don't Matter. Let’s exit gdb using the quit command Ò to try it!

$ GUESSME="Crackers Don't Matter" ./ctf show_me_the_flag

checking 'show_me_the_flag'

ok

flag = 84b34c124b2ba5ca224af8e33b077e9e

As this listing shows, you’ve finally completed all the necessary steps to
coax ctf into giving you the secret flag! On the VM in the directory for this
chapter, you’ll find a program called oracle. Go ahead and feed the flag
to oracle, like this: ./oracle 84b34c124b2ba5ca224af8e33b077e9e. You’ve now
unlocked the next challenge, which you can complete on your own using
your new skills.

5.10 Summary
In this chapter, I introduced you to all the essential Linux binary analysis
tools you need to be an effective binary analyst. While most of these tools
are simple enough, you can combine them to implement powerful binary
analyses in no time! In the next chapter, you’ll explore some of the major
disassembly tools and other, more advanced analysis techniques.

Exercise

1. A New CTF Challenge
Complete the new CTF challenge unlocked by the oracle program!
You can complete the entire challenge using only the tools discussed
in this chapter and what you learned in Chapter 2. After completing
the challenge, don’t forget to give the flag you found to the oracle to
unlock the next challenge.

Basic Binary Analysis in Linux 113




