
1
I n t r od u ct i o n to
P e r l O n e - L i n e r s

Perl one-liners are small and awesome Perl programs
that fit in a single line of code. They do one thing
really well—like changing line spacing, numbering
lines, performing calculations, converting and sub-
stituting text, deleting and printing specific lines,
parsing logs, editing files in-place, calculating statistics, carrying out
system administration tasks, or updating a bunch of files at once. Perl
one-liners will make you a shell warrior: what took you minutes (or even
hours) to solve will now take you only seconds!

In this introductory chapter, I’ll show you what one-liners look like
and give you a taste of what’s in the rest of the book. This book requires
some Perl knowledge, but most of the one-liners can be tweaked and
modified without knowing the language in depth.

 Perl One-Liners
© 2013 by Peteris Krumins

2 Chapter 1

Let’s look at some examples. Here’s one:

perl -pi -e 's/you/me/g' file

This one-liner replaces all occurrences of the text you with me in the
file file. Very useful if you ask me. Imagine you’re on a remote server and
you need to replace text in a file. You can either open the file in a text edi-
tor and execute find-replace or simply perform the replacement through
the command line and, bam, be done with it.

This one-liner and others in this book work well in UNIX. I’m using
Perl 5.8 to run them, but they also work in newer Perl versions, such
as Perl 5.10 and later. If you’re on a Windows computer, you’ll need to
change them a little. To make this one-liner work on Windows, swap the
single quotes for double quotes. To learn more about using Perl one-
liners on Windows, see Appendix B.

I’ll be using Perl’s -e command-line argument throughout the book.
It allows you to use the command line to specify the Perl code to be
executed. In the previous one-liner, the code says “do the substitution
(s/you/me/g command) and replace you with me globally (/g flag).” The
-p argument ensures that the code is executed on every line of input and
that the line is printed after execution. The -i argument ensures that file
is edited in-place. Editing in-place means that Perl performs all the sub-
stitutions right in the file, overwriting the content you want to replace. I
recommend that you always make a backup of the file you’re working with
by specifying the backup extension to the -i argument, like this:

perl -pi.bak -e 's/you/me/g' file

Now Perl creates a file.bak backup file first and only then changes the
contents of file.

How about doing this same replacement in multiple files? Just specify
the files on the command line:

perl -pi -e 's/you/me/g' file1 file2 file3

Here, Perl first replaces you with me in file1 and then does the same in
file2 and file3.

You can also perform the same replacement only on lines that match
we, as simply as this:

perl -pi -e 's/you/me/g if /we/' file

Here, you use the conditional if /we/ to ensure that s/you/me/g is exe-
cuted only on lines that match the regular expression /we/.

 Perl One-Liners
© 2013 by Peteris Krumins

Introduction to Perl One-Liners 3

The regular expression can be anything. Say you want to execute the
substitution only on lines with digits in them. You could use the /\d/ regu-
lar expression to match numbers:

perl -pi -e 's/you/me/g if /\d/' file

How about finding all lines in a file that appear more than once?

perl -ne 'print if $a{$_}++' file

This one-liner records the lines you’ve seen so far in the %a hash
and counts the number of times it sees the lines. If it has already seen
the line, the condition $a{$_}++ is true, so it prints the line. Otherwise it
“automagically” creates an element that contains the current line in the
%a hash and increments its value. The $_ special variable contains the
current line. This one-liner also uses the -n command-line argument to
loop over the input, but unlike -p, it doesn’t print the lines automatically.
(Don’t worry about all the command-line arguments right now; you’ll
learn about them as you work through this book!)

How about numbering lines? Super simple! Perl’s $. special variable
maintains the current line number. Just print it together with the line:

perl -ne 'print "$. $_"' file

You can do the same thing by using the -p argument and modifying
the $_ variable:

perl -pe '$_ = "$. $_"' file

Here, each line is replaced by the string "$. $_", which is equal to
the current line number followed by the line itself. (See one-liner 3.1
on page 17 for a full explanation.)

If you omit the filename at the end of the one-liner, Perl reads data
from standard input. From now on, I’ll assume the data comes from the
standard input and drop the filename at the end. You can always put it
back if you want to run one-liners on whole files.

You can also combine the previous two one-liners to create one that
numbers only the repeated lines:

perl -ne 'print "$. $_" if $a{$_}++'

Another thing you can do is sum the numbers in each line using the
sum function from the List::Util CPAN module. CPAN (Comprehensive
Perl Archive Network; http://www.cpan.org/) is an archive of over 100,000

 Perl One-Liners
© 2013 by Peteris Krumins

4 Chapter 1

reusable Perl modules. List::Util is one of the modules on CPAN, and it
contains various list utility functions. You don’t need to install this mod-
ule because it comes with Perl. (It’s in Perl core.)

perl -MList::Util=sum -alne 'print sum @F'

The -MList::Util command-line argument imports the List::Util
module. The =sum part of this one-liner imports the sum function from
the List::Util module so that the program can use the function. Next,
-a enables the automatic splitting of the current line into fields in the
@F array. The splitting happens on the whitespace character by default.
The -l argument ensures that print outputs a newline at the end of each
line. Finally, sum @F sums all the elements in the @F list, and print prints
the result followed by a newline (which I added with the -l argument).
(See one-liner 4.2 on page 30 for a more detailed explanation.)

How about finding the date 1299 days ago? Try this:

perl -MPOSIX -le
 '@t = localtime; $t[3] -= 1299; print scalar localtime mktime @t'

I explain this example in detail in one-liner 4.19 (page 41), but
basically you modify the fourth element of the structure returned by
localtime, which happens to be days. You simply subtract 1299 days from
the current day and then reassemble the result into a new time with
localtime mktime @t and print the result in the scalar context to display
human-readable time.

How about generating an eight-letter password? Here you go:

perl -le 'print map { ("a".."z")[rand 26] } 1..8'

The "a".."z" generates a list of letters from a to z (for a total of
26 letters). Then you randomly choose a letter eight times! (This example
is explained in detail in one-liner 5.4 on page 51.)

Or suppose you want to find the decimal number that corresponds to
an IP address. You can use unpack to find it really quickly:

perl -le 'print unpack("N", 127.0.0.1)'

This one-liner uses a v-string, which is a version literal. V-strings offer
a way to compose a string with the specified ordinals. The IP address
127.0.0.1 is treated as a v-string, meaning the numbers 127, 0, 0, 1 are con-
catenated together into a string of four characters, where the first char-
acter has ordinal value 127, the second and third characters have ordinal
values 0, and the last character has ordinal value 1. Next, unpack unpacks
them to a single decimal number in “network” (big-endian) order. (See
one-liner 4.27 on page 45 for more.)

 Perl One-Liners
© 2013 by Peteris Krumins

Introduction to Perl One-Liners 5

What about calculations? Let’s find the sum of the numbers in the
first column in a table:

perl -lane '$sum += $F[0]; END { print $sum }'

The lines are automatically split into fields with the -a argument,
which can be accessed through the @F array. The first element of the
array, $F[0], is the first column, so you simply sum all the columns with
$sum += $F[0]. When the Perl program finishes, it executes any code in
the END block, which, in this case, prints the total sum. Easy!

Now let’s find out how many packets have passed through iptables
rules:

iptables -L -nvx | perl -lane '$pkts += $F[0]; END { print $pkts }'

The iptables program outputs the packets in the first column. All
you have to do to find out how many packets have passed through the
firewall rules is sum the numbers in the first column. Although iptables
will output table headers as well, you can safely ignore these because Perl
converts them to zero for the += operation.

How about getting a list of all users on the system?

perl -a -F: -lne 'print $F[4]' /etc/passwd

Combining -a with the -F argument lets you specify the character
where lines should be split, which, by default, is whitespace. Here, you
split lines on the colon character, the record separator of /etc/passwd.
Next, you print the fifth field, $F[4], which contains the user’s real name.

If you ever get lost with command-line arguments, remember that
Perl comes with a fantastic documentation system called perldoc. Type
perldoc perlrun at the command line. This will display the documentation
about how to run Perl and all the command-line arguments. It’s very use-
ful when you suddenly forget which command-line argument does what
and need to look it up quickly. You may also want to read perldoc perlvar,
which explains variables; perldoc perlop, which explains operators; and
perldoc perlfunc, which explains functions.

Perl one-liners let you accomplish many tasks quickly. You’ll find over
130 one-liners in this book. Read them, try them, and soon enough you’ll
be the local shell wizard. ( Just don’t tell your friends—unless you want
competition.)

Enjoy!

 Perl One-Liners
© 2013 by Peteris Krumins

