
4
Creating the Space Station

In this chapter, you’ll build the map for
your space station on Mars. Using the

simple Explorer code that you’ll add in this
chapter, you’ll be able to look at the walls of

each room and start to find your bearings. We’ll
use lists, loops, and the techniques you learned in
Chapters 1, 2, and 3 to create the map data and dis-
play the room in 3D.

Automating the Map Making Process
The problem with our current room_map data is that there’s a lot of it. The
Escape game includes 50 locations. If you had to enter room_map data for
every location, it would take ages and be hugely inefficient. As an example,
if each room consisted of 9 × 9 tiles, we would have 81 data items per room,
or 4,050 data items in total. Just the room data would take up 10 pages of
this book.

60 Chapter 4

Much of that data is repeated: 0s mark the floor and exits, and 1s mark
the walls at the edges. You know from Chapter 3 that we can use loops to
efficiently manage repetition. We can use that knowledge to make a pro-
gram that will generate the room_map data automatically when we give it cer-
tain information, such as the room size and the location of the exits.

How the Automatic Map Maker Works
The Escape program will work like this: when the player visits a room, our
code will take the data for that room (its size and exit positions) and con-
vert it into the room_map data. The room_map data will include columns and
rows that represent the floor, walls around the edge, and gaps where the
exits should be. Eventually, we’ll use the room_map data to draw the room
with the floor and walls in the correct place.

Figure 4-1 shows the map for the space station. I’ll refer to each loca-
tion as a room, although numbers 1 to 25 are sectors on the planet surface
within the station compound, similar to a
garden. Numbers 26 to 50 are rooms inside
the space station.

The indoor layout is a simple maze with
many corridors, dead-ends, and rooms to
explore. When you make your own maps,
try to create winding paths and corners to
explore, even if the map isn’t very big. Be
sure to reward players for their exploration
by placing a useful or appealing item at the
end of each corridor. Players also often feel
more comfortable travelling from left to right
as they explore a game world, so the player’s
character will start on the left of the map in
room 31.

Outside, players can walk anywhere, but a
fence will stop them from leaving the station
compound (or wandering off the game map).
Due to the claustrophobic atmosphere inside
the space station, players will experience a
sense of freedom outside with space to roam.

When you’re playing the final Escape game, you can refer to this map,
but you might find it more enjoyable to explore without a map or to make
your own. This map doesn’t show where the doors are, which in the final
game will stop players from accessing some parts of the map until they find
the right key cards.

Creating the Map Data
Let’s create the map data. The rooms in our space station will all join up, so
we only need to store the location of an exit from one side of the wall. For

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

Figure 4-1: The space
station map

Creating the Space Station 61

instance, an exit on the right of room 31 and an exit on the left of room 32
would be the same doorway connecting the two rooms. We don’t need
to specify that exit for both rooms. For each room in the map, we’ll store
whether it has an exit at the top or on the right. The program can work out
on its own whether an exit exists at the bottom or on the left (as I’ll explain
shortly). This approach also ensures that the map is consistent and no exits
seem to vanish after you walk through them. If you can go one way through
an exit, you can always go back the other way.

Each room in the map needs the following data:

•	 A short description of the room.

•	 Height in tiles, which is the size of the room from top to bottom on the
screen. (This has nothing to do with the distance from floor to ceiling.)

•	 Width in tiles, which is the size of the room from left to right across the
screen.

•	 Whether or not there is an exit at the top (True or False).

•	 Whether or not there is an exit on the right (True or False).

Tip

True and False are known as Boolean values. In Python, these values must start
with a capital letter, and they don’t need quotes around them, because they’re not
strings.

We call the unit we use to measure the room size a tile because it’s
the same size as a floor tile. As you learned in Chapter 3, a tile will be our
basic unit of measurement for all objects. For instance, a single object in
the room, such as a chair or a cabinet, will often be the size of one tile. In
Chapter 3 (see Figure 3-1 and Listing 3-5), we made a room map that had
seven rows with five list items in each row, so that room would be seven tiles
high and five tiles wide.

Having rooms of different sizes adds variety to the map: some rooms
can be narrow like corridors, and some can be expansive like community
rooms. To fit in our game window, the maximum size of a room is 15 tiles
high by 25 tiles wide. Large rooms or rooms with lots of objects in them
might run more slowly on older computers, though.

Here’s an example of the data for room 26: it’s a narrow room 13 tiles
high and 5 tiles wide with an exit at the top but none to the right (see the
map in Figure 4-1).

["The airlock", 13, 5, True, False]

We give the room a name (or description), numbers for the height and
width respectively, and True and False values for whether the top and right
edges have an exit. In this game, each wall can have only one exit, and that
exit will be automatically positioned in the middle of the wall.

62 Chapter 4

When the program makes the room_map data for room 27 next door,
it will check room 26 to see whether it has an exit on the right. Because
room 26 has no exit on the right, the program will know that room 27 has
no left exit.

We’ll store the lists of data for each room in a list called GAME_MAP.

Writing the GAME_MAP Code
Click File4New File to start a new file in Python. Enter the code
from Listing 4-1 to start building the space station. Save your listing
as listing4-1.py. Remember to save it (and your other programs for this
book) in the escape folder so the images folder is in the right place (see
“Downloading the Game Files” on page 7).

Tip

Remember to save your work regularly when you’re typing a long program. As in
many applications, you can press ctrl-S to save in IDLE.

Escape - A Python Adventure
by Sean McManus / www.sean.co.uk
Typed in by PUT YOUR NAME HERE

import time, random, math

###############
VARIABLES
###############

WIDTH = 800 # window size
HEIGHT = 800

#PLAYER variables
 PLAYER_NAME = "Sean" # change this to your name!

FRIEND1_NAME = "Karen" # change this to a friend's name!
FRIEND2_NAME = "Leo" # change this to another friend's name!
current_room = 31 # start room = 31

 top_left_x = 100
top_left_y = 150

 DEMO_OBJECTS = [images.floor, images.pillar, images.soil]

###############
MAP
###############

 MAP_WIDTH = 5
MAP_HEIGHT = 10
MAP_SIZE = MAP_WIDTH * MAP_HEIGHT

listing4-1.py

Creating the Space Station 63

 GAME_MAP = [["Room 0 - where unused objects are kept", 0, 0, False, False]]

outdoor_rooms = range(1, 26)
 for planetsectors in range(1, 26): #rooms 1 to 25 are generated here

 GAME_MAP.append(["The dusty planet surface", 13, 13, True, True])

 GAME_MAP += [
 #["Room name", height, width, Top exit?, Right exit?]
 ["The airlock", 13, 5, True, False], # room 26
 ["The engineering lab", 13, 13, False, False], # room 27
 ["Poodle Mission Control", 9, 13, False, True], # room 28
 ["The viewing gallery", 9, 15, False, False], # room 29
 ["The crew's bathroom", 5, 5, False, False], # room 30
 ["The airlock entry bay", 7, 11, True, True], # room 31
 ["Left elbow room", 9, 7, True, False], # room 32
 ["Right elbow room", 7, 13, True, True], # room 33
 ["The science lab", 13, 13, False, True], # room 34
 ["The greenhouse", 13, 13, True, False], # room 35
 [PLAYER_NAME + "'s sleeping quarters", 9, 11, False, False], # room 36
 ["West corridor", 15, 5, True, True], # room 37
 ["The briefing room", 7, 13, False, True], # room 38
 ["The crew's community room", 11, 13, True, False], # room 39
 ["Main Mission Control", 14, 14, False, False], # room 40
 ["The sick bay", 12, 7, True, False], # room 41
 ["West corridor", 9, 7, True, False], # room 42
 ["Utilities control room", 9, 9, False, True], # room 43
 ["Systems engineering bay", 9, 11, False, False], # room 44
 ["Security portal to Mission Control", 7, 7, True, False], # room 45

 [FRIEND1_NAME + "'s sleeping quarters", 9, 11, True, True], # room 46
 [FRIEND2_NAME + "'s sleeping quarters", 9, 11, True, True], # room 47
 ["The pipeworks", 13, 11, True, False], # room 48
 ["The chief scientist's office", 9, 7, True, True], # room 49
 ["The robot workshop", 9, 11, True, False] # room 50
]

simple sanity check on map above to check data entry
 assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match"

Listing 4-1: The GAME_MAP data

Let’s take a closer look at this code for setting out the room map data.
Keep in mind that as we build the Escape game, we’ll keep adding to the
program. To help you find your way around the program, I’ll mark the dif-
ferent sections with headings like this:

###############
VARIABLES
###############

The # symbol marks a comment and tells Python to ignore anything
after it on the same line, so the game will work with or without these com-
ments. The comments will make it easier to figure out where you are in

64 Chapter 4

the code and where you need to add new instructions as the program gets
bigger. I’ve drawn boxes using the comment symbols to make the headings
stand out as you scroll through the program code.

Three astronauts are based on the space station, and you can person-
alize their names in the code . Change the PLAYER_NAME to your own, and
add the names of two friends for the FRIEND1_NAME and FRIEND2_NAME variables.
Throughout the code, we’ll use these variables wherever we need to use
the name of one of your friends: for example, each astronaut has their own
sleeping quarters. We need to set up these variables now because we’ll use
them to set up some of the room descriptions later in this program. Who
will you take with you to Mars?

The program also sets up some variables we’ll need at the end of this
chapter to draw our room: the top_left_x and top_left_y variables  specify
where to start drawing the room; and the DEMO_OBJECTS list contains the
images to use .

First, we set up variables to contain the height, width, and overall size
of the map in tiles . We create the GAME_MAP list  and give it the data for
room 0: this room is for storing items that aren’t in the game yet because
the player hasn’t discovered or created them. It’s not a real room the player
can visit.

We then use a loop  to add the same data for each of the 25
planet surface rooms that make up the grounds of the compound. The
range(1, 26) function is used to repeat 25 times. The first number is the
one we want to start at, and the second is the number we want to finish at
plus one (range() doesn’t include the last number you give it, remember).
Each time through the loop, the program adds the same data to the end of
GAME_MAP because all the planet surface “rooms” are the same size and have
exits in every direction. The data for every surface room looks like this:

["The dusty planet surface", 13, 13, True, True]

When this loop finishes, GAME_MAP will include room 0 and also have
the same “dusty planet surface” data for rooms 1 to 25. We also set up the
outdoor_rooms range to store the room numbers 1 to 25. We’ll use this range
when we need to check whether a room is inside or outside the space station.

Finally, we add rooms 26 to 50 to GAME_MAP . We do this by using +=
to add a new list to the end of GAME_MAP. That new list includes the data
for the remaining rooms. Each of these rooms will be different, so we
need to enter the data for them separately. You saw the information for
room 26 earlier: the data contains the room name, its height and width,
and whether it has exits at the top and the right. Each piece of room data
is a list, so it has square brackets at the start and end. At the end of each
piece of room data (except the last one), we must use a comma to separate
it from the next one. I’ve also put the room number in a comment at the
end of each line to help keep track of the room numbers. These comments
will be helpful as you develop the game. It’s good practice to annotate your
code like this so you can understand it when you revisit it.

Creating the Space Station 65

Rooms 46 and 47 add the variables FRIEND1_NAME and FRIEND2_NAME to the
room description, so you have two rooms called something like “Karen’s
sleeping quarters,” using your friends’ names . As well as using the +
symbol to add numbers and combine lists, you can also use it to combine
strings.

At the end of listing4-1.py, we perform a simple check using assert() to
make sure the map data makes sense . We check whether the length of
the GAME_MAP (the number of rooms in the map data) is the same as the size
of the map, which we calculated at  by multiplying its width by its height.
If it’s not, it means we’re missing some data or have too much.

We have to subtract 1 from the length of GAME_MAP because it also includes
room 0, which we didn’t include when we calculated the map size. This check
won’t catch all errors, but it can tell you whether you missed a line of the map
data when entering it. Wherever possible, I’ll try to include simple tests like
this to help you check for any errors as you enter the program code.

Testing and Debugging the Code
From the command line, navigate to your escape folder and run the pro-
gram from the command line using pgzrun listing4-1.py. An empty game
window should open. The reason is that all we’ve asked the program to
do is set up some variables and a list, so there is nothing to see. But if you
made a mistake entering the listing, you might see an error message in the
command line window. If so, double-check the following details:

•	 Are the quote marks in the right place? Strings are in green in the
Python program window, so look for large areas of green, which sug-
gest you didn’t close your string. If room descriptions are in black, you
didn’t open the string. Both indicate a missing quote mark.

•	 Are you using the correct brackets and parentheses in the proper
places? In this listing, square brackets surround list items, and paren-
theses (curved brackets) are used for functions, such as range() and
append(). Curly brackets {…} are not used at all.

•	 Are you missing any brackets or parentheses? A simple way to check is
to count the number of opening and closing brackets and parentheses.
Every opening bracket or parenthesis should have a closing bracket or
parenthesis of the same shape.

•	 You have to close brackets and parentheses in the reverse order of
how you opened them. If you have an opening parenthesis and then an
opening square bracket, you must close them first with a closing square
bracket and then a closing parenthesis. This format is correct: ([…]).
This format is wrong: ([…)].

•	 Are your commas in the correct place? Remember that each list for a
room in GAME_MAP must have a comma after the closing square bracket to
separate it from the next room’s data (except for the last room).

66 Chapter 4

Tip

Why not ask a friend to help you build the game? Programmers often work in pairs
to help each other with ideas and, perhaps most importantly, have two pairs of
eyes checking everything. You can take turns typing too!

Generating Rooms from the Data
Now the space station map is stored in our GAME_MAP list. The next step is to
add the function that takes the data for the current room from GAME_MAP and
expands it into the room_map list that the Escape game will use to see what’s at
each position in the room. The room_map list always stores information about
the room the player is currently in. When the player enters a different
room, we replace the data in room_map with the map of the new room. Later
in the book, we’ll add scenery and props to the room_map, so the player has
items to interact with too.

The room_map data is made by a function we’ll create called generate_map(),
shown in Listing 4-2.

Add the code in Listing 4-2 to the end of Listing 4-1. The grayed
out code shows you where Listing 4-1 ends. Make sure all the indenta-
tion is correct. The indentation determines whether code belongs to the
get_floor_type() or generate_map() function, and some code is indented fur-
ther to tell Python which if or for command it belongs to.

Save your program as listing4-2.py and use pgzrun listing4-2.py to run
it and check for any error messages in the command line window.

R e d A l e r t 	 Don’t start a new program with the code in Listing 4-2: make sure you add Listing 4-2
to the end of Listing 4-1. As you follow along in this book, you’ll increasingly add to
your existing program to build the Escape game.

--snip--
simple sanity check on map above to check data entry
assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match"

###############
MAKE MAP
###############

 def get_floor_type():
 if current_room in outdoor_rooms:
 return 2 # soil
 else:
 return 0 # tiled floor

def generate_map():
This function makes the map for the current room,
using room data, scenery data and prop data.

listing4-2.py

Creating the Space Station 67

 global room_map, room_width, room_height, room_name, hazard_map
 global top_left_x, top_left_y, wall_transparency_frame

 room_data = GAME_MAP[current_room]
 room_name = room_data[0]
 room_height = room_data[1]
 room_width = room_data[2]

 floor_type = get_floor_type()
 if current_room in range(1, 21):
 bottom_edge = 2 #soil
 side_edge = 2 #soil
 if current_room in range(21, 26):
 bottom_edge = 1 #wall
 side_edge = 2 #soil
 if current_room > 25:
 bottom_edge = 1 #wall
 side_edge = 1 #wall

 # Create top line of room map.
 room_map=[[side_edge] * room_width]

 # Add middle lines of room map (wall, floor to fill width, wall).
 for y in range(room_height - 2):

 room_map.append([side_edge]
 + [floor_type]*(room_width - 2) + [side_edge])
 # Add bottom line of room map.

 room_map.append([bottom_edge] * room_width)

 # Add doorways.
 middle_row = int(room_height / 2)

 middle_column = int(room_width / 2)

 if room_data[4]: # If exit at right of this room
 room_map[middle_row][room_width - 1] = floor_type
 room_map[middle_row+1][room_width - 1] = floor_type
 room_map[middle_row-1][room_width - 1] = floor_type

 if current_room % MAP_WIDTH != 1: # If room is not on left of map
 room_to_left = GAME_MAP[current_room - 1]
 # If room on the left has a right exit, add left exit in this room
 if room_to_left[4]:
 room_map[middle_row][0] = floor_type
 room_map[middle_row + 1][0] = floor_type
 room_map[middle_row - 1][0] = floor_type

 if room_data[3]: # If exit at top of this room
 room_map[0][middle_column] = floor_type
 room_map[0][middle_column + 1] = floor_type
 room_map[0][middle_column - 1] = floor_type

 if current_room <= MAP_SIZE - MAP_WIDTH: # If room is not on bottom row
 room_below = GAME_MAP[current_room+MAP_WIDTH]
 # If room below has a top exit, add exit at bottom of this one
 if room_below[3]:
 room_map[room_height-1][middle_column] = floor_type

68 Chapter 4

 room_map[room_height-1][middle_column + 1] = floor_type
 room_map[room_height-1][middle_column - 1] = floor_type

Listing 4-2: Generating the room_map data

You can build the Escape game and even make your own game maps
without understanding how the room_map code works. But if you’re curious,
read on and I’ll walk you through it.

How the Room Generating Code Works
Let’s start with a reminder of what we want the generate_map() function to
do. Given the height and width of a room, and the location of the exits, we
want it to generate a room map, which might look something like this:

[
[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]

This is room number 31 on the map, the room the player starts the
game in. It’s 7 tiles high and 11 tiles wide, and it has an exit at the top and
right. The floor spaces (and exits in the wall) are marked with a 0. The
walls around the room are marked with a 1. Figure 4-2 shows the same
room in a grid layout, with the index numbers for the lists shown at the
top and on the left.

0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0 1

6 1 1 1 1 1 1 1 1 1 1 1

Figure 4-2: A grid representing room 31; the 1s
are wall pillars, and the 0s are empty floor spaces.

The number of the room the player is currently in is stored in the
current_room variable, which you set up in the VARIABLES section of your pro-
gram (see Listing 4-1). The generate_map() function starts by collecting the
room data for the current room from the GAME_MAP  and putting it into a
list called room_data.

Creating the Space Station 69

If you cast your mind back to when we set up GAME_MAP, the information
in the room_data list will now look similar to this:

["The airlock", 13, 5, True, False]

This list format allows us to set up the room_name by taking the first ele-
ment from this list at index 0. We can find the room’s height at index 1 and
width at index 2 by taking the next elements. The generate_map() function
stores the height and width information in the room_height and room_width
variables.

Creating the Basic Room Shape
The next step is to set the materials we’ll use to build the rooms and create
the basic room shape using them. We’ll add exits later. We’ll use three ele-
ments for each room:

•	 The floor type, which is stored in the variable floor_type. Inside the space
station, we use floor tiles (represented by 0 in room_map), and outside we
use soil (represented by 2 in room_map).

•	 The edge type, which appears in each space at the edge of the room. For
an inside room, this is a wall pillar, represented by 1. For an outside
room, this is the soil.

•	 The bottom edge type, which is a wall inside the station and usually soil
outside. The bottom row of the outside compound, where it meets the
space station, is a special case because the station wall is visible here, so
the bottom_edge type is a wall pillar (see Figure 4-3).

A planet surface room A planet surface room
bordering the space station

An inside room

Figure 4-3: Different materials are used for the edges and bottom edge of the room,
depending on where the room is in the space station compound. (Note that the astro-
naut and additional scenery won’t be in your game yet.)

We use a function called get_floor_type()  to find out the correct floor
type for the room. Functions can send information back to other parts of
the program using the return instruction, as you can see in this function.

70 Chapter 4

The get_floor_type() function checks whether the current_room value is in
the outdoor_rooms range. If so, the function returns the number 2, which
represents Martian soil. Otherwise, it returns the number 0, which rep-
resents a tiled floor. This check is in a separate function so other parts of
the program can use it too. The generate_map() function puts the number
that get_floor_type() returns into the floor_type variable. Using one instruc-
tion , generate_map() sets up the floor_type variable to be equal to whatever
get_floor_type() sends back, and it tells the get_floor_type() function to run
now too.

The generate_map() function also sets up variables for the bottom_edge
and side_edge. These variables store the type of material that will be used to
make the edges of the room, as shown in Figure 4-3. The side edge mate-
rial is used for the top, left, and right sides, and the bottom edge material is
for the bottom edge. If the room number is between 1 and 20 inclusive, it’s
a regular planet surface room. The bottom and edge are soil in that case.
If the room number is between 21 and 25, it’s a planet surface room that
touches the space station at the bottom. This is a special case: the side edge
material is soil, but the bottom edge is made of wall pillars. If the room
number is higher than 25, the side and bottom edges are made of wall
pillars because it’s an inside room. (You can check that these room num-
bers make sense in Figure 4-1.)

We start making the room_map list by creating the top row, which will
be a row of soil outside or the back wall inside. The top row is made of the
same material all the way across, so we can use a shortcut. Try this in the
shell:

>>> print([1] * 10)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The [1] in the print() instruction is a list that contains just one item.
When we multiply it by 10, we get a list that contains that item 10 times. In
our program, we multiply the edge type we’re using by the width of the
room . If the top edge has an exit in it, we’ll add that shortly.

The middle rows of the room are made using a loop  that adds each
row in turn to the end of room_map. All the middle rows in a room are the
same and are made up of the following:

1.	 An edge tile (either wall or soil) for the left side of the room.

2.	 The floor in the middle. We can use our shortcut again here. We mul-
tiply the floor_type by the size of the space in the middle of the room.
That is the room_width minus 2 because there are two edge spaces.

3.	 The edge piece at the right side.

The bottom line is then added  and is generated in the same way as
the top line.

Creating the Space Station 71

Adding Exits
Next, we add exits in the walls where required. We’ll put the exits in
the middle of the walls, so we start by figuring out where the middle row
and middle column are  by dividing the room height and width by 2.
Sometimes this calculation results in a number with a decimal. We need
a whole number for our index positions, so we use the int() function to
remove the decimal part . The int() function converts a decimal number
into a whole number (an integer).

We check for a right exit first . Remember that room_data contains the
information for this room, which was originally taken from GAME_MAP. The
value room_data[4] tells us whether there is an exit on the right of this room.
This instruction:

if room_data[4]:

is shorthand for this instruction:

if room_data[4] == True:

We use == to check whether two things are the same. One reason that
Boolean values are often a great choice to use for your data is that they
make the code easier to read and write, as this example shows.

When there is a right exit, we change three positions in the middle of
the right wall from the edge type to the floor type, making a gap in the
wall there. The value room_width-1 finds the x position on the right edge:
we subtract 1 because index numbers start at 0. In Figure 4-2, for example,
you can see that the room width is 11 tiles, but the index position for the
right wall is 10. On the planet surface, this code doesn’t change anything,
because there’s no wall there to put a gap in. But it’s simpler to let the pro-
gram add the floor tiles anyway so we don’t have to write code for special
cases.

Before we check whether we need an exit for the left wall, we make sure
the room isn’t on the left edge of the map where there can be no exit . The
% operator gives us the remainder when we divide one number by another. If
we divide the current room number by the map width, 5, using the % opera-
tor, we’ll get a 1 if the room is on the left edge. The left edge room numbers
are 1, 6, 11, 16, 21, 26, 31, 36, 41, and 46. So we only continue checking for a
left exit if the remainder is not 1 (!= means “is not equal to”).

To see whether we need an exit on the left in this room, we work out
which room is on the other side of that wall by subtracting 1 from the cur-
rent room number. Then we check whether that room has a right exit. If so,
our current room needs a left exit, and we add it.

The exits at the top and bottom are added in a similar way . We check
room_data directly to see whether there’s an exit at the top of the room, and
if so, we add a gap in that wall. We can check the room below as well to see
whether there should be a bottom exit in the room.

72 Chapter 4

Testing the Program
When you run the program, you can confirm that you don’t see any errors in
the command line window. You can also check that the program is working
by adding these two lines to the end of your program and running it again:

generate_map()
print(room_map)

In the command line window you should see this:

[[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1]]

The current_room variable is set by default to be room 31, the starting
room in the game, so that is the room_map data that prints. From our GAME_MAP
data (and Figure 4-2) we can see that this room has 7 rows and 11 columns,
and our output confirms that we have 7 lists, each containing 11 numbers:
perfect. What’s more, we can see that the first row features four wall pillars,
three empty spaces, and then four more wall pillars, so the function has put
an exit here as we would expect. Three of the lists have a 0 as their last num-
ber too, indicating an exit on the right. It looks like the program is working!

Training Mission #1

You can change the value of current_room at the end of your program to print a
different room. Check the output against the map and the GAME_MAP code to make
sure the results match what you expect. Here is one to try:

current_room = 45
generate_map()
print(room_map)

What happens when you enter a value for one of the planet surface rooms?

Make sure you delete all the test instructions from the end of your pro-
gram when you’ve finished experimenting.

Exploring the Space Station in 3D
Let’s turn our room maps into rooms! We’ll combine the code we created for
turning room maps into 3D rooms in Chapter 3 with our code for extracting
the room map from the game map. Then we can tour the space station and
start to get our bearings.

The Explorer feature of our program will enable us to view all the rooms
on the space station. We’ll give it its own EXPLORER section in the program.

Creating the Space Station 73

It’s a temporary measure to enable us to quickly see results. We’ll replace
the Explorer with better code for viewing rooms in Chapters 7 and 8.

Add the code in Listing 4-3 to the end of your program for Listing 4-2,
after the instructions shown in gray. Then save the program as listing4-3.py.

 room_map[room_height-1][middle_column] = floor_type
 room_map[room_height-1][middle_column + 1] = floor_type
 room_map[room_height-1][middle_column - 1] = floor_type

###############
EXPLORER
###############

def draw():
 global room_height, room_width, room_map

 generate_map()
 screen.clear()

 for y in range(room_height):
 for x in range(room_width):
 image_to_draw = DEMO_OBJECTS[room_map[y][x]]
 screen.blit(image_to_draw,
 (top_left_x + (x*30),
 top_left_y + (y*30) - image_to_draw.get_height()))

 def movement():
 global current_room
 old_room = current_room

 if keyboard.left:
 current_room -= 1
 if keyboard.right:
 current_room += 1
 if keyboard.up:
 current_room -= MAP_WIDTH
 if keyboard.down:
 current_room += MAP_WIDTH

 if current_room > 50:
 current_room = 50

 if current_room < 1:
 current_room = 1

 if current_room != old_room:
 print("Entering room:" + str(current_room))

 clock.schedule_interval(movement, 0.1)

Listing 4-3: The Explorer code

The new additions in Listing 4-3 should look familiar to you. We call
the generate_map() function to create the room_map data for the current

listing4-3.py

74 Chapter 4

room . We then display it  using the code we created in Listing 3-5 in
Chapter 3. We use keyboard controls to change the current_room variable ,
similar to how we changed the x and y position of our spacewalking astro-
naut in Chapter 1 (see Listing 1-4). To go up or down a row in the map,
we change the current_room number by the width of the game map. For
example, to go up a row from room 32, we subtract 5 to go into room 27
(see Figure 4-1). If the room number has changed, the program prints the
current_room variable . The str() function converts the room number to a
string , so it can be joined to the "Entering room:" string. Without using the
str() function, you can’t join a number to a string.

Finally, we schedule the movement function to run at regular intervals ,
as we did in Chapter 1. This time, we have a longer gap between each time
the function runs (0.1 seconds), so the keys are less responsive.

Run the program from the command line using pgzrun listing4-3.py.
The screen should be similar to Figure 4-4, which shows the walls and door-
ways for room 31.

Figure 4-4: The Explorer shows your starting room in 3D.

Now you can use the arrow keys to explore the map. The program will
draw a room for you and enable you to go to the neighboring rooms by press-
ing an arrow key. At this point, you only see the shell of the room: walls and
floor. We’ll add more objects in the rooms and your character later.

At the moment, you can walk in any direction, including through walls:
the program doesn’t check for any movement errors. If you walk off the left
of the map, you’ll reappear on the right, a row higher. If you walk off the
right, you’ll reappear on the left, a row lower. If you try to go off the top or

Creating the Space Station 75

the bottom of the map, the program will return you to room 1 (at the top)
or room 50 (at the bottom). For example, if the room number is more than
(>) 50 x it’s reset to 50 y. In this code, I’ve lowered the sensitivity of the
keys to reduce the risk of whizzing through the rooms too fast. If you find
the controls unresponsive or sluggish, you might need to press the keys for
slightly longer.

Explore the space station and compare what you see on screen with
the map in Figure 4-1. If you see any errors, go back to the GAME_MAP data to
check the data, and then take another look at the generate_map() function to
make sure it’s been entered correctly. To help you follow the map, when you
move to a new room, its number will appear in the command line window
where you entered the pgzrun command, as shown in Figure 4-5.

Figure 4-5: The command line window tells you which room you’re entering.

Also, check that exits exist from both sides: if you go through a door
and it isn’t there when you look from the other side, generate_map() has been
entered incorrectly. Follow along on the map first to make sure you’re not
going off the edge of the map and coming back on the other side before
you start debugging. It’s worth taking the time to make sure your map data
and functions are all correct at this point, because broken map data can
make it impossible to complete the Escape game!

Training Mission #2

To enjoy playing Escape and solving the puzzles, I recommend that you use the
data I’ve provided for the game map. It’s best not to change the data until you’ve
completed playing the game and have decided to redesign it. Otherwise, objects
might be in locations you can’t reach, making the game impossible to complete.

However, you can safely extend the map. The easiest way to do so is to add
another row of rooms at the bottom of the map, making sure a door connects at
least one of the new rooms to the existing bottom row of the map. Remember to
change the MAP_HEIGHT variable. You’ll also need to change the number 50 in the
Explorer code (listing4-3.py) to your highest room number (see  and ). Why not
add a corridor now?

76 Chapter 4

Making Your Own Maps
After you’ve finished building and playing Escape, you can customize the
map or design your own game layouts using this code.

If you want to add your own map data for rooms 1 to 25, delete the code
that generates their data automatically (see z in Listing 4-1). You can then
add your own data for these rooms.

Alternatively, if you don’t want to use the planet surface locations,
just block the exit to them. The exit onto the planet surface is in room 26.
Change that room’s entry in the GAME_MAP list so it doesn’t have a top exit.
You can use room numbers starting at room 26 and extend the map down-
ward to make a game that is completely indoors. As a result, you won’t need
to make any code changes to account for the planet surface.

If you remove a doorway from the Escape game map (including the one
in room 26), you might also need to remove a door. Some of the exits at the
top and bottom of the room will have doors that seal them off. (We’ll add
doors to the Escape game in Chapter 11.)

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� The GAME_MAP list stores the main map data for Escape.

�� The GAME_MAP only needs to store the exit at the top and right of a room.

�� When the player visits a room, the generate_map() function makes the
room_map list for the current room. The room_map list describes where the
walls and objects are in the room.

�� Locations 1 to 25 are on the planet surface, and a loop generates their
map data. Locations 26 to 50 are the space station rooms, and you need
to input their data manually.

�� We use comments to help us find our way around the Escape program
listing.

�� When adding data using a program in script mode, you can use the
shell to check the contents of lists and variables to make sure the pro-
gram is working correctly. Remember to run the program first to set up
the data!

�� The Explorer code enables you to look at every room in the game map
using the arrow keys.

�� It’s important to make sure the game map matches Figure 4-1. Other
wise, it might not be possible for players to complete the Escape game.
You can use the Explorer program to do this.

Creating the Space Station 77

Mission Debrief
Here are the solutions to the training missions in this chapter.

Training Mission # 1

If you go to one of the planet surface rooms, the entire map consists of Martian soil,
so you should see only the number 2 repeated. If you go to a surface room that bor-
ders the space station, you should also see the space station wall at the bottom.

Training Mission # 2

To extend my game, I added a secret passageway at the bottom of the map that
connects rooms 46 and 50. To do so, in the MAP section of the program, change
MAP_HEIGHT from 10 to 11:

MAP_HEIGHT = 11

In the GAME_MAP list, add a comma at the end of room 50’s data but before the #
comment:

["The south east corner", 7, 9, True, False], # room 50

Add a row of rooms in the GAME_MAP list, after room 50. Each room’s list must end
with a comma except for the final room list. All of the lists should be inside the final
closing square bracket of GAME_MAP:

--snip--
 ["The robot workshop", 9, 11, True, False], # room 50
 ["Secret Passageway", 9, 15, True, True], # room 51
 ["Secret Passageway", 9, 9, False, True], # room 52
 ["Secret Passageway", 9, 15, False, True], # room 53
 ["Secret Passageway", 9, 9, False, True], # room 54
 ["Secret Passageway", 9, 15, True, False] # room 55
]
--snip--

I alternated the width of the rooms in this passageway between 15 and 9, so you
can easily see when you’ve moved to another room. If your rooms all look the same, it’s
hard to know when you’ve moved to a different room in this simple Explorer program.
In the final Escape game, you will be able to clearly see when you walk between similar
rooms because the character will walk out one door and enter through the opposite door.

I also changed the Explorer code (listing4-3.py) to show my new row of rooms up
to room 55:

--snip--
 if current_room > 55:
 current_room = 55
 if current_room < 1:
 current_room = 1
--snip--

	_GoBack

