
One exciting thing about LEGO robotics is that you can program
your robots by using Word Blocks, a visual programming
language based on Scratch, or Python, a popular text-based
programming language. Word Blocks provides a great
introduction to coding, but Python takes your coding skills to
the next level, while still being very intuitive. Because Python
code is written in English, you can generally get a sense of
what a program is doing just by reading it, even if you don’t
understand all of the specific details.

Knowing Python has benefits far beyond the world of
LEGO: the language is widely used in companies and univer-
sities. When you code in Python, you’re working with a
programming language used by millions of professional coders
around the world.

In this chapter, you’ll learn some of the basics of Python
programming in the MINDSTORMS App. You’ll try adding lights

and sounds to your robots and using the Hub buttons to con-
trol what happens in your programs.

first steps
When you open a new Python project in the MINDSTORMS
App, you’ll see the coding area with some starting code already
written for you. You’ll write your own code below that starting
code. The screen also has other useful features. To get you
ready to start programming in Python, you’ll examine two of
those features, the console and the Help Center. Then you’ll
take a closer look at the starting code.

the console
At the bottom of the screen is an area called the console (see
Figure 1-1). This is where you’ll see error messages if your

Help Center

Console

Figure 1-1: A Python project in the MINDSTORMS App

1
introduction to

Python programming

2	 CHAPTER 1

code has any problems as it runs. You can also print messages
to the console from within your code, which can be a useful
way to keep track of how your program is working.

It’s a good idea to have the console open when you’re
programming with Python. To expand the console, click the
Console icon at the bottom of the window.

the Help Center
The built-in Help Center is another valuable tool to help you
program in Python. To open the Help Center, click the book
icon on the right side of the screen and choose the Python
option. The Help Center contains lots of useful information,
including detailed descriptions of the features available in
MINDSTORMS Python.

the starting code
As we already noted, when you create a new Python program in
the MINDSTORMS App, some code will already be in the coding
area. Don’t delete any of this starting code—it does some impor-
tant setup for your program. You don’t need to understand all
the starting code to begin programming with Python, but for the
curious, here’s a rundown of what the code means. (This infor-
mation will be useful as you get further into writing Python code.)

The first few lines of the starting code are called imports:

from mindstorms import MSHub, Motor, MotorPair, ↩
ColorSensor, DistanceSensor, App
from mindstorms.control import wait_for_seconds, wait ↩
_until, Timer
from mindstorms.operator import greater_than, greater ↩
_than_or_equal_to, less_than, less_than_or_equal_to, ↩
equal_to, not_equal_to
import math

This code imports, or loads, the main libraries you’ll need for
programming your robot. Libraries are collections of code. These
collections allow you to communicate with the various pieces of
MINDSTORMS hardware and to perform operations in programs.
For example, to use the Color Sensor in your program, you must
import the ColorSensor library. Once these libraries have been
imported, you can use them in the programs you write.

Here’s the next part of the starting code:

Create your objects here.
hub = MSHub()

The first line, # Create your objects here, is a comment.
In other words, it’s a note to yourself or anyone else looking at
the program. Any line that starts with # is treated as a com-
ment and isn’t executed when the program runs. It’s there just
for your information. Including comments in your programs is a
good habit, since they make your code easier to understand.

The second line, hub = MSHub(), creates an object, a named
piece of code that comes with a set of behaviors. Python objects
often represent objects in the real world. In this case, hub =

MSHub() creates an object representing your actual Hub. Other
objects might represent your motors or sensors.

You create an object by giving it a name and telling your
program where to look for all the behaviors that go with it.
Those behaviors are called methods, and they’re defined in
libraries like the ones imported at the start of the program.
Writing hub = MSHub() is like saying, “Use the MSHub library to
create an object and name it hub.” The MSHub library includes
methods for controlling many parts of your robot—the buttons,
the speaker, the lights, the internal sensors, and the ports—
everything that’s part of the Hub.

After you create an object, you can use its name inside your
program anytime you want that object to do something—that is,
anytime you want to call one of the object’s methods. You call a
method by adding a period after the object’s name, followed by
the name of the method, followed by a set of parentheses. That’s
exactly what happens in the last part of the starting code:

Write your program here.
hub.speaker.beep()

After another comment, the second line, hub.speaker.beep(),
calls the beep() method of the hub object’s speaker. This code is a
bit like saying, “Hey Hub, use your speaker to play a beep.” If you
write your program below this line, your program will start with a
beep. If you don’t want the beep, delete this line of code. (However,
don’t delete any of the lines above it.)

SPIKE PRIME STARTING CODE

New Python projects in the SPIKE Prime App also start
with some code already in the coding area. As you can
see, it’s similar to the Robot Inventor starting code:

from spike import PrimeHub, LightMatrix, Button, ↩
StatusLight, ForceSensor, MotionSensor, Speaker, ↩
ColorSensor, App, DistanceSensor, Motor, MotorPair
from spike.control import wait_for_seconds, wait ↩
_until, Timer
from math import *
hub = PrimeHub()
hub.light_matrix.show_image('HAPPY')

The code begins by importing libraries. Then the
line hub = PrimeHub() creates an object representing
the Hub, much like in the Robot Inventor starting code.
The last line of code displays a smiley face on the Hub’s
light matrix. If you write your program below this line,
your program will start with the Hub displaying a smi-
ley face, or you can delete this last line if you choose.

	introd uction to Python programming 	 3

controlling Hub
outputs and inputs
The hub object comes with lots of methods for controlling the
Hub’s outputs and inputs. As you’ve already seen, the default
starting code calls a method that plays a beep. In fact, you can
write code to play many sounds, and Python also has methods
for controlling the Hub’s lights. These sounds and lights are
examples of outputs—signals your program sends out into the
world. You can also write programs that respond to the outside
world by taking inputs from the Hub’s buttons.

sounds
To make the Hub play a beep, as in the Robot Inventor starting
program, use this:

hub.speaker.beep()

Like many methods, beep() comes with a set of param-
eters, options that let you customize the way the method will
be executed. You set them inside the parentheses after the
method name. In the case of beep(), its parameters set the
beep’s pitch and duration. Pitches are represented by num-
bers corresponding to MIDI notes, and durations are given in
seconds. For example, beep(67, 1.0) will play the note G (MIDI
note number 67) for one second.

NOTE	 The system for numbering notes, such as 60 for
middle C, comes from MIDI. Short for Musical Instrument
Digital Interface, MIDI is a standard way for electronic
devices to represent music.

You must enter values for the parameters in the correct
order (pitch followed by duration), separated by a comma. If
you don’t specify any values, the beep will play with the default
values: a note of 60 (equivalent to middle C) for a duration of
0.2 seconds. If you enter only one number, it will be treated
as the first parameter (pitch), and the default duration will be
used. For example, hub.speaker.beep(67) will play the note G
for 0.2 seconds.

The beep() method halts the program until the beep has
finished playing. To start playing a beep and move immediately
to the next line of code, use hub.speaker.start_beep() instead.
This method is useful if you want to do two things simultane-
ously, such as playing a sound while displaying an image. To
stop a beep, use hub.speaker.stop().

TRY THIS

Write code to play the first line of “Mary Had a Little
Lamb.” The notes are B, A, G, A, B, B, B.

Here’s one possible solution:

hub.speaker.beep(71, 0.5)
hub.speaker.beep(69, 0.5)
hub.speaker.beep(67, 0.5)
hub.speaker.beep(69, 0.5)
hub.speaker.beep(71, 0.5)
hub.speaker.beep(71, 0.5)
hub.speaker.beep(71, 1)

In addition to playing beeps, you can play sound files,
but to do this, you first have to create another object. This
is because most sound files play through your programming
device’s speakers, not from the Hub. To access these sound
files, first create an object by using the App library and give it
the name app:

app = App()

Then use the app object’s play_sound() method, with the
name of the desired sound in the parentheses:

app.play_sound('Emotional Piano')

The name of the sound must be given inside quotation
marks. Single or double quotes will work, as long as they
match—either both single or both double. You’ll find a list
of the many available sounds in the App section of the
Help Center.

With play_sound(), the entire sound will play before the
program moves on to the next line of code. You can also start
to play a sound and move immediately to the next line of code
by using app.start_sound().

light matrix
The Hub’s light matrix can be programmed to display a
smiley face:

hub.light_matrix.show_image('HAPPY')

Many other images can be displayed—simply replace
HAPPY with the name of your desired image. Go to HubLight
Matrix in the Help Center for a list of options.

4	 CHAPTER 1

THINK ABOUT IT

If you run the following two pieces of code, will the
results be the same? If not, what will be different?

app.play_sound('Emotional Piano')
hub.light_matrix.show_image('HEART')

app.start_sound('Emotional Piano')
hub.light_matrix.show_image('HEART')

Answer: The first version uses the play_sound()
method, so the entire Emotional Piano sound will
play and then a heart will appear on the light matrix.
The second version uses start_sound(), so the
program will play the music and display the heart
simultaneously.

To light up individual squares, or pixels, on the light matrix,
use this:

hub.light_matrix.set_pixel(x, y)

The x-coordinate defines the pixel’s column, and the
y-coordinate defines the pixel’s row. Rows and columns are
numbered from 0 to 4, as shown in Figure 1-2. For example,
set_pixel(0, 0) lights up the pixel in the upper-left corner of
the light matrix, and set_pixel(4, 4) lights up the pixel in the
lower-right corner.

NOTE	 This numbering system differs from the one used
in Word Blocks programming, which numbers the light
matrix’s rows and columns from 1 to 5. As you learn more
about Python, you’ll find that it’s common in text-based
programming to start counting from 0 rather than 1.

0

0 1 2

Columns

3 4

1

2Rows

3

4

Figure 1-2: In Python programming, the

rows and columns of the light matrix are

numbered from 0 to 4.

By stringing together multiple set_pixel() commands,
you can create your own patterns on the light matrix. For
example, these lines of code will light up the entire middle
column:

hub.light_matrix.set_pixel(2, 0)
hub.light_matrix.set_pixel(2, 1)
hub.light_matrix.set_pixel(2, 2)
hub.light_matrix.set_pixel(2, 3)
hub.light_matrix.set_pixel(2, 4)

All the commands use 2 as the x-coordinate, correspond-
ing to the middle column of the light matrix, but each command
has a different y-coordinate, so the middle pixel in each row
will be lit up.

To turn off all the pixels in the light matrix, use this:

hub.light_matrix.off()

TRY THIS

Write a program to light the bottom row of the light
matrix.

Here’s one possible solution:

hub.light_matrix.set_pixel(0, 4)
hub.light_matrix.set_pixel(1, 4)
hub.light_matrix.set_pixel(2, 4)
hub.light_matrix.set_pixel(3, 4)
hub.light_matrix.set_pixel(4, 4)

The light matrix can scroll words and numbers as well as
display static images. The method write() scrolls whatever is
in its parentheses on the light matrix. If the text is in quota-
tion marks, it will be displayed exactly as you type it (minus
the quotation marks). For example, this line of code scrolls the
words Hello there:

hub.light_matrix.write('Hello there')

The sequence of characters in quotes is called a string.
We’ve already used strings in this chapter to select sound and
image files. You’ll learn more about strings in later chapters,
where you’ll also learn how to display sensor readings and
other information on the light matrix without having to type it
out exactly.

	introd uction to Python programming 	 5

status light
The status light is the round center button on the front of
the Hub. In Word Blocks programming, it’s referred to as the
center button light. To turn on the Hub’s status light, use this
command:

hub.status_light.on()

If you don’t specify a color in the parentheses, the light will
be white. To choose a different color, enter its name as a string
(that is, in quotes) in the parentheses, like this:

hub.status_light.on('blue')

You have 11 colors to choose from: azure, blue, cyan,
green, orange, pink, red, violet, yellow, white, and black (which
turns off the light). These two lines of code, for example, turn
on a red light and then turn the light off:

hub.status_light.on('red')
hub.status_light.on('black')

If you run the code as it’s written, however, the light will
turn red and then immediately turn off so fast that you won’t
actually see anything happen. In the next chapter, you’ll learn
how to fix this problem.

Rather than set the light to black, you can turn off the
status light:

hub.status_light.off()

TRY THIS

Try reversing the red and black status light com-
mands, like so:

hub.status_light.on('black')
hub.status_light.on('red')

What do you think will happen when you execute
the program? Run it and see.

Answer: The status light glows red. The first
command, which turns off the light, is followed imme-
diately by the command to turn the light red, so you
see only the red light.

Hub buttons
The Hub’s left and right buttons function as inputs in your pro-
grams. You can use these inputs in several ways. For example,
you can wait until a button is pushed. This code waits until the
left button is pushed and then turns the status light pink:

hub.left_button.wait_until_pressed()
hub.status_light.on('pink')

You can wait until a button is released too. The following
code turns on the pink light when the button is pressed and
turns it off when the button is released:

hub.left_button.wait_until_pressed()
hub.status_light.on('pink')
hub.left_button.wait_until_released()
hub.status_light.off()

This way, the light will stay on for as long as you hold
down the button.

TRY THIS

Let’s say you want to display a new color of status
light every time you press the left Hub button. Will
the following program display red, then green, then
blue? Try it and see:

hub.status_light.on('red')
hub.left_button.wait_until_pressed()
hub.status_light.on('green')
hub.left_button.wait_until_pressed()
hub.status_light.on('blue')

Answer: This program does not display all three
colors. Instead, the status light glows red when you
start the program and then goes directly to blue
when you press the Hub button. You never see the
green light. Here’s why: both hub.left_button.wait
_until_pressed() commands in the program are
triggered by your single button press.

What if you want to use multiple button presses in a pro-
gram? To make sure that each press of the button triggers only
one wait_until_pressed() command, pair each wait_until
_pressed() command with a wait_until_released() command.
That way, the code will wait for the button to be bumped—both
pressed and released.

6	 CHAPTER 1

For example, the code in the red/green/blue light program
you just tried could be rewritten like this:

hub.status_light.on('red')
hub.left_button.wait_until_pressed()
hub.left_button.wait_until_released()
hub.status_light.on('green')
hub.left_button.wait_until_pressed()
hub.left_button.wait_until_released()
hub.status_light.on('blue')

This program displays all three light colors, switching col-
ors each time you press and release the left Hub button.

You can also check whether the left button is pressed
currently by using hub.left_button.is_pressed(), or you can
check whether the button was pressed at any time since you
last checked its status by using hub.left_button.was_pressed().
You’ll learn how to incorporate these commands into if state-
ments (conditionals) in the next chapter.

To program with the Hub’s right button instead of the left
button, use right instead of left in your code. For example,
hub.right_button.wait_until_pressed() pauses the program
until the right button is pressed.

NOTE	 The Hub’s built-in Accelerometer and Gyro Sensor,
which together are called the Motion Sensor in Python pro-
gramming, provide other ways of getting input from the Hub.
We cover programming with the Motion Sensor in Chapter 4.

TRY THIS

Write a program that displays a heart on the light
matrix and then makes it smaller when the right Hub
button is pressed.

Here’s one possible solution:

hub.light_matrix.show_image('HEART')
hub.right_button.wait_until_pressed()
hub.light_matrix.show_image('HEART_SMALL')

some programming
basics
You’ve gotten your first taste of Python as you’ve learned to
write simple programs that control the Hub’s inputs and outputs.
Now let’s take a step back and look at some basic rules and best
practices for programming with Python.

indenting and spacing
Unlike many programming languages, Python uses indentation,
or spaces at the beginning of lines, to indicate to the com-
puter how to run a program. For that reason, getting your
indentations correct really matters! You’ll see this in the next
chapter when you start using control structures like loops
and conditionals.

While spacing is important at the starts of lines, the spacing
between elements on the same line doesn’t matter. For example,
Python will treat hub.speaker.beep(71,1) and hub.speaker
.beep(71, 1) as equivalent. Whether or not you have a space
between 71 and 1, the program will run the same way. However,
the comma between the parameter values is required.

uppercase and lowercase letters
Python is case sensitive: it views uppercase and lowercase ver-
sions of a letter as different. So, if you write hub.light_matrix
.show_image('Heart') instead of hub.light_matrix.show_image
('HEART'), you’ll get an error message. HEART in all caps is a
valid image to display on the light matrix, but Heart is not.

Be especially careful about capitalization when you’re
naming things; Python will treat myHub and myhub as two dif-
ferent objects. Python doesn’t allow spaces in the middle of a
name, so capitalization can help make the names you choose
more readable, as long as the capitalization you use is con-
sistent. For example, capitalizing the H in myHub helps make it
clear where the first word of the name ends and the second
word begins.

use comments!
As you already saw, any line that starts with # is treated as a
comment and isn’t executed. This feature is extremely useful
for documenting your programs. For example, it helps to leave
a comment before some lines of code, explaining what that
code is supposed to do. You might think the code’s purpose is
clear as you’re writing it, but if you come back to the code a
week later, you might not remember what you were thinking.

Comments can also be handy for debugging—testing code
and fixing mistakes. For example, if you want to temporarily
stop a line of code from executing, but you don’t want to have to
delete and retype it later, simply turn that line into a comment
by placing a # in front of it. If you want to stop multiple lines of
code from executing (or if you want to write a long comment),
enclose the lines of code in triple quotes ("""), like this:

"""
these lines won't execute
because they're in triple quotes:

hub.speaker.beep(67, 1.0)
hub.light_matrix.show_image('HEART')
"""

	introd uction to Python programming 	 7

printing to the console
You can display words and numbers in the console at the
bottom of the coding area by using print(). Enter the text
you want to display inside the parentheses as a string (using
quotes). For example, this code will display the message Hello
there in the console:

print('Hello there')

You can also print sensor values and other information to
the console. For example, here’s how to print the Hub’s current
volume level:

print(hub.speaker.get_volume())

Notice that hub.speaker.get_volume() isn’t enclosed in
quotation marks. This is because it isn’t a string—it’s a method
of the hub object. When this line of code runs, your program will
know to look up the current volume level of the Hub, and it will
print whatever that number is to the console.

Printing to the console can be helpful in debugging your
programs and is often much easier than displaying text on the
Hub’s light matrix. For example, you could print output values
from the Distance Sensor to the console to check whether the
sensor is detecting an object. You can even combine strings and
methods inside print() statements to make your output easier
to understand. For example, this line of code prints the word
volume followed by the current volume level:

print('volume', hub.speaker.get_volume())

Since volume is enclosed in quotes, it’s treated as a string
and is printed exactly the way it’s typed, whereas hub.speaker
.get_volume() isn’t in quotes, so it’s treated as a method and
will result in printing the current volume level. When you mix
strings and non-strings inside a print() statement, separate
each element with a comma.

summary
In this chapter, you learned how to write Python programs to
control the Hub inputs and outputs. You also learned a few
Python programming basics, such as how indents, spaces, and
capitalization are treated, and the value of using comments
and print() statements. In the next chapter, you’ll expand your
knowledge of Python by learning how to use control structures
like loops and conditionals, as well as operators.

PROJECTS

SLEEPING

Write a program that displays a sleeping face on the
light matrix while playing snoring sounds.

Here’s one possible solution:

app = App()
hub.light_matrix.show_image('ASLEEP')
app.play_sound('Snoring')

TRAFFIC LIGHT

Write a program that switches the status light from
green to yellow to red, changing to the next color
when you press a Hub button.

Here’s one possible solution:

hub.status_light.on('green')
hub.left_button.wait_until_pressed()
hub.left_button.wait_until_released()
hub.status_light.on('yellow')
hub.left_button.wait_until_pressed()
hub.left_button.wait_until_released()
hub.status_light.on('red')

WALK SIGNAL

Write a program that displays a green status light
until the left Hub button is pressed. Then, the status
light turns red and the light matrix scrolls WALK.
After WALK finishes scrolling, the status light turns
green again.

Here’s one possible solution:

hub.status_light.on('green')
hub.left_button.wait_until_pressed()
hub.status_light.on('red')
hub.light_matrix.write('WALK')
hub.status_light.on('green')

