
2

Digital Operations

And

Or
Not
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Okay!  
Today is 
my treat!

But that also means 
you have to teach me 

about CPUS!

Wow... you’re 
pre$y pushy...

Why do I have to m%t 
with you on my way back 
from sch&l anyway?

On your way back 
from sch&l...?!

Does that mean you’re 
not a shut-in anymore? 

So you’re an ex-
hikikomori now??

Could you 
please set your 
crazy-switch to 
o4 for once?! 

I am a bit 
hungry 

though... 

The Computer's World Is Binary
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The Reciprocal States of 1 and 0

Okay, let me start 
o' with a question!

Last time you said that, 
“computers live in a world 
of 1S and 0S,” but that was 

a* pre$y abstract.

But what do you 
mean by 1S and 0S 

anyway?

H+. A g&d question a* of 
a su/en. You can think of 

1S and 0S as two reciprocal 
states that are o2osites.

They’re more 
like signals than 
numbers rea*y.

Two reciprocal 
states...

You mean like 
“light and dark,” 

“life and death,” or 
“on and o'?”

Precisely!

To put it another way, the 
voltages in computer circuits 
genera*y fa* into two bands. 

High voltages are close to 
the su2ly voltage, and low 

voltages are close to ground, 
at zero volts. 

Time

Voltage changes with time

Low

High

Voltage*
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I s%!  
If it’s just two 

voltages, it’s a* 
pre$y clear then.

The voltage is 
either low or high. 
It’s rea*y simple!

Yeah.

A* computers use these 
two values (zero and one, 

or low and high*) when 
performing operations.

Decimal and Binary

* In this b&k, we’* treat low as zero and high as one, 
but it’s po:ible to do it the other way around as we*. 
It’s up to the system designer which a:ignment to use.

H+... but what can you 
rea*y do with just 

1S and 0S?

Wouldn’t you 
only be able to 
do very simple 

calculations with 
just those two 

numbers?

Hehehe! Na;ow-minded, 
f&lish human!

Computers and humans 
think in di'erent ways!

Humans use the decimal 
number system which 
uses the ten digits 

from 0 to 9.

But computers expre: a* 
numbers in binary using 

only 1S and 0S.

Binary  
(or base 2)

Decimal  
(or base 10)
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Decimal Binary

Comparing decimal 
and binary

As you can s%, 
you don’t n%d more 

than 1S and 0S!!

Wow, It rea*y is 
only 1S and 0S! But 

the number of digits 
increases rea*y fast 

in binary...

By the way, a binary digit  
(a one or a zero) is also 
ca*ed a bit in computer 

terminology. That’s 
rea*y important, so 

don’t forget it!

Four digits,  
so four bits

A four-digit binary 
number is four bits... So, 
to expre: the decimal 

number 9, we would n%d 
four bits (1001), right?

Come now, are you 
prepared to dive 

into the world of 
1S and 0S?!

swish

Ah, sure!

I wonder if 
he’s always 
this hyper...

Another 
digit!

Another 
digit!

Another 
digit!

Another 
digit!
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Expressing Numbers in Binary

Well then, let’s learn the basics of binary, or base 2, math! Let’s start by thinking about the 

decimal, or base 10, system that we use every day.

Hundreds Tens Ones

For example, the number 356 is divided up as in the illustration above. Each digit is 

multiplied by successive powers of ten to get the final value. 

Okay! It’s really easy if I just think of it like different coin denominations: 356 yen is just 

three 100-yen coins (102), five 10-yen coins (101), and six 1-yen coins (100) added together.

That’s right. The next step is to apply that same logic to binary. We just swap the 10 in our 

decimal calculations for a 2 in the binary case to get the appropriate factors for each digit. 

Take a look at this picture. 

Any number to the power of zero is equal to one. For example, 100 = 1, and 20 = 1.
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Uh-huh! I don’t think anyone uses coins like this though... but if someone did, I would just 

take either 1 or 0 of each of the 8 yen, 4 yen, 2 yen, and 1 yen coins, right?

Sooo, it’s the same reasoning with binary, right? That means that it would be (2-1, 2-2, 2-3) 

and so on after the decimal point as we add more digits. So the factors would be one-half 

(0.5), one-fourth (0.25), one-eighth (0.125), and so on. It seems a bit cumbersome, but I 

think I get it.

This means that the binary 1011 would translate into 8 + 0 + 2 + 1 = 11. As soon as 

you understand the basic principle, it’s easy!

By the way, this also works for fractional expressions. Take a look at this.

In decimal, each digit after the decimal point has factors using negative powers (10-1, 

10-2 etc.). So we have one-tenth (0.1), one-hundredth (0.01), and so on.

(Decimal)

ones twosfoursEights

one-hundredthsone-tenthsOnes
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Fixed-Point and Floating-Point

Next up, I’ll teach you a really important concept. In computers, there are two ways to 

store fractions—either fixed-point or floating-point. 

When using extremely small values like 0.00000000000000...001 or very large 

 values like 1000000000000000..., it is a lot more practical to use floating-point fractions.

Hmm... Why is that? What’s the difference?

Well, for example, instead of writing a billion in decimal, as 1,000,000,000, you could write 

it as 109 to save some space, right? We call this form scientific notation or standard form, 

where the n in 10n is called the exponent. Floating-point fractions use scientific notation 

when storing values. 

In contrast, fixed-point fractions express values the way we’re used to, with a decimal 

point. When expressing integers with this method, you can imagine the decimal point being 

at the far right of the number. Here’s a comparison of the two.

Fixed-point Floating-point

decimal 
point
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Oh, okay. So if you’re using fixed-point fractions to express really large or really small 

numbers, the number of digits you need increases by a lot. But if you’re using floating-

point, only the exponent gets bigger and smaller, while the number of digits stays the 

same. Yeah, that’s really useful!

That’s right. That last example was in decimal, but since computers use binary, the prin-

ciple becomes even more relevant. The most common variant used is this one.

I made our example here, 1.69, decimal just to make it easier to understand. The number 

would be in binary in a computer. The important part here is that this significand always 

has to be greater than 1 and less than 2.

An example 
significand

Significand

Exponent

Base

Hmm... So this representation makes it easy for computers to handle extremely small and 

extremely large numbers, right? They’re also easy to use in calculations, huh.

Yes! And it’s also important to understand that the speed with which you can calculate 

using floating-point numbers is a very important question and ties in deeply with CPU 

performance. (See page 139 for a more detailed explanation.)

Generally, scientific calculations require an accuracy of only around 15 digits, but in 

some cases, 30 are used. Some modern encoding algorithms even use integers of up to 

300 digits! It’s worth mentioning that gaming systems that process real-time, high-fidelity 

graphics use floating-point arithmetic extensively.

Ugh... I don’t think I could do those calculations in my head. I hate to lose to computers, but 

I hope they’re at least advancing some fields of science!

An example of floating-point representation inside a computer 

(using a base 10 number for illustration)

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤



44 Chapter 2 Digital Operations

Addition and Subtraction in Binary

It’s finally time to talk about binary arithmetic. Let’s start by thinking about addition. First 

off, adding two bits works like this!

Okay, that’s easy! The last equation, 1 + 1 = 10, means that we carried the 1 to the second 

place value and the first digit became 0, right?

Yeah. If you understand how to add one bit to another, you should be able to understand 

calculations with more digits as well. For example, when adding the binary numbers 

(1011)
2
 + (1101)

2
, you just need to start from the right and work your way to the left, car-

rying digits as you go.* Take a look here.

Uh-huh, I just have to be careful with the carries, right? Binary addition is pretty simple! 

Or, it might just be my genius shining through. 

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10

Ca;y

Don’t 
forget 

to ca;y 
the 1!

Hey! Okay then, let’s take a look at subtraction next. When doing subtraction, it is impor-

tant to learn how to create negative values using a technique called two’s complement.

Adding the two’s complement (a number that corresponds to the negative version of a 

number) of a binary number A to another number B is the same as subtracting A from B!! 

What do you think—pretty cool, right? 

Ca;ied to the 
next place value 

place 

* ()
2
 means the number is in binary representation and ()

10
 means decimal representation.
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Ahh... I’m sorry to stop you when you’re on a roll, but I didn’t understand that at all... 

What are you talking about?

Let’s start out slow in decimal. First off, let’s agree that subtracting 15 is the same as add-

ing -15. But what would you do if you weren’t allowed to use the minus sign at all? Is there 

some other number that we can use to represent the number -15?

I... I have no idea. Stop putting on airs and just teach me already! 

Where did your genius go? Well, have a look at these two equations then.

Whaaa...? You’re right, 0 and 00 are the same! But what happens to the 1 in 100 of the 

equation B result? 

Hah! Since we’re doing two-digit math at the moment, we don’t care about digits that carry 

over beyond those two. Just pretend you can’t see them! We call those overflow, and we 

just ignore them.

What kind of twisted reasoning is that? Is that even allowed? 

Equation A Equation B

Ignore!

Looking at just the final two digits of these equations, we see that the result of equa-

tion A is 0 and the result of equation B is 00. We could therefore say that for the last two 

digits, the results of 15 + (-15) and 15 + 85 are the same!
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Heh heh heh! Surprised? In situations like this, we say that 85 is the ten’s complement 

of 15. In other words, we say that a number’s complement in some base is the smallest 

number you have to add to the original number to make the number’s digits overflow. As 

the name suggests, you can think of the numbers “complementing” each other to reach the 

next digit.

And this complement corresponds to the original value’s negative form. So in this case, 

85 is essentially equal to -15.

Let’s take another example. When calculating 9647 – 1200 = 8447, we might 

as well calculate 9647 + 8800 = 18447 and ignore the carry. That’s because in 

the result, we see that the lower four digits are the same. Therefore, we can use 

8800 as the ten’s complement of 1200 during addition to get the same result as 

we would get using subtraction.

As you can see, when you add two binary numbers and ignore the overflow, if the 

result equals 0, it means the two numbers are complementary. To a number, simply add its 

complement instead.

Okay... But finding the complement seems kinda hard...

Don’t worry, there is a really easy way to find a two’s complement. Just follow these steps.

It’s not farfetched—it’s awesome! It’s logical!! Anyway, let me show you how to do it in 

binary.  

Uhh... This is getting pretty hard to grasp! So using complements, we can perform sub-

traction using addition instead. I suppose that might be useful? So what happens if we try 

this farfetched solution with binary numbers? 

A/ the two numbers: 
if the result is 
0 (ignoring the 

overflow), it means 
the numbers are 
complementary.

Ignore!
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Sweet! I tried finding the complement of that last example. Using this method, it was easy.

Computers (actually the ALUs) use this type of reasoning all the time for arithmetic opera-

tions (addition and subtraction). The only difference is that most ALUs perform subtraction 

by adding the first number and the inverted second number. Then finally, they add 1 to 

that sum. The order of operations is different, but the end result is the same, right?

I see. So there are some merits to binary, I suppose!

By the way... Don’t 
french fries kinda 

l&k like 1S and 
onion rings kinda 

l&k like 0S?

This must be like... 
binary in the fried-

f6d world?!

And since the computer calculations only deal with 1s and 0s, this method is both 

really simple and incredibly fast at the same time.

Let’s find the two’s complement to do subtraction!

Step 1: Invert all the digits of the first number from 1 to 0 and vice versa. (This is also 

called finding the one’s complement.)

Step 2: Add 1 to this inverted version of the number.

And you’ll end up with the two’s complement!

...

Flip 
a* the 
digits!

A/ 1!

Complement

A great 
discovery!
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Integrated Circuits Contain 
Logic Gates

We* then, let’s 
get into today’s 

main topic.

First o',  
have a careful 
l&k at these!!

Don’t bring bugs 
into restaurants!!

They’re 
not bugs!

This is an extremely important 
electronic component ca*ed 

an integrated circuit (IC).

They’re inside many 
di'erent electronics...

Even CPUs are just 
very advanced and 

complicated integrated 
circuits.

Long time no s%!

What Are Logical Operations?
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Even so, this bug... 
this IC... sure has a lot 

of silvery legs...

They’re ca*ed pins and 
are the paths in and out 

of the circuit.

Digital electronic  
signals transmi$ed as 1S 

and 0S (high and low voltage) 
pa: through these pins as 

input and output.

Oh, so they’re 
not just 

decorations 
then.

And here’s the 
important part!

Lo and behold! Inside, the circuit 
performs logical operations on 
the 1S and 0S on the input pins and 

produces the a2ropriate 1S and 0S 
on the output pins!!

Logical 
operations...? That 
s%ms even more 
complicated than 
those arithmetic 

operations... 

No, I’ve decided to 
think logica*y, 
so that’* make 
understanding 
them a br%ze!! 

...I think?

There’s no n%d to 
get so defensive 
about it. logical 

operations are rea*y 
simple and easy to 

understand.

Wow       !!

Logical 
operations!

Pin
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First, I want you to get 
the general idea. The 

inside of an integrated 
circuit l&k something 

like this...

This is a 74LS08 
integrated circuit.

This is a labeled diagram 
of the inside of this chip. 

scritch 

H+. Yeah, I can 
s% that there are 
four symbols that 

l&k the same, 
and they s%m to 
be coKected to 
thr% pins each...

Now let’s focus 
on one of those 

symbols.

Pins

A>ention!

Input A

Input B
Output

L&king closely,  
you can s% that they 
each have two inputs 

and one output. We ca* 
each of these pins a 

logic gate.

I s%, so that 
means... L&k at the 

next part!

scritch

Pins
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Each logic gate 
is like a magic 
box where you 

get some output 
if you put things 
into the inputs!

And the inputs and 
outputs are, of 

course, 1S and 0S... 
yeah.

Yeah, that’s 
right.

The Three Basic Logic Gates 
(AND, OR, and NOT)

Then let me use 
your magic box 

analogy as we get 
into the specifics.

Among the logic gates, the 
most basic 1S are these: the 
AND gate, the OR gate, and 

the NOT gate.

Memorize a; of 
them together!!

A* of them?? 
Is this a 

b&tcamp?!

Don’t wo;y, 
these gates’ rules are 

rea*y simple.

Just think of 
it like an oral 

exam!

Each input and 
the output can 

either be 1 or 0.

Output ZLogic gate

Input A

Input B
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Let’s a:ume that one 
means a pa: and zero 

means a fail in this case.

And that the inputs 
are represented by 

two interviewers who 
can give either a pa: 

or a fail.

Huh...

So if both don’t give 
a pa:, the result 

wi* be a fail...

In the case of an AND gate, the 
output wi* only be a 1 (pa:) if 
both inputs are 1S (pa:es). If 

either input or both are 0 (fail), 
the output wi* also  

be a 0 (fail).

For an OR gate, it’s 
enough if at least one 
of the inputs is a one 
(pa:) for the output 

to be a one (pa:).

So if even a single 
input gives a pa:, it 
means you pa:ed... 

what a relief...

Fail

Pa:

Pa:
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The NOT gate wi* flip the 
input. So an input of one 

(pa:) wi* give the output 
zero (fail).

Rea*y?? So it 
always completely 

disregards the 
interviewer’s 

opinion?!

…we* yeah, it’s 
just how logic 

gates work.

But the important part is 
that you understand that 

even with the same input, AND 
and OR gates can produce 

di'erent outputs.

I’m sti* shocked by that 
last NOT gate. I wonder 

how the interviewer must 
be f%ling...

Truth Tables and 
Venn Diagrams

But there are even more 
pa$erns, right? Like where 

both inputs are 0S (fail) 
and so on. In those cases, 

the output would sti* 
have to be a 0 (fail), right... 

Just thinking about it is 
making me depre:ed...

Hah! I have something 
I want to show you!

A truth table spaKing 
a* po:ible pa$erns!! 
It’s a table containing 

a* po:ible input/output 
combinations!

Whip—
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This is it!  
Burn it into  
your mind!!!

O&h! You can s% a* the 
input and output po:ibilities. 

that’s super useful!!

Also, when thinking 
about logic gates, 
VeK diagrams are 

rea*y handy.

Oh, I remember 
those from 
junior high.

Yes, but the important 
thing here is that these 
VeK diagrams i*ustrate 

two states.

The area inside 
this rectangle is a 

world that consists 
only of regions 

without color (0) or 
with color (1), okay?

So using VeK 
diagrams, we can 
visualize the 1S 

and 0S. Nice!

That’s right. 
Then let’s use 
this to take 

a l&k at the 
thr% logic 
gates again 
a* at once, 
sha* we?

Swat—
If A and B are both 1, 
the output is 1.

If A is 0 and B is 1, 
the output is 0.

If A is 1 and B is 0, 
the output is 0.

If both A and B are 0, 
the output is 0.

OutputInput

Truth table for 
the AND gate

The area inside the 
rectangle is a world 

of only 1S and 0S.

In this example, there 
is only color (1) where 

A and B intersect.
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A Summary of the AND, OR, and NOT Gates

Let’s summarize the first three basic gates. Let’s look at the symbols, truth tables, and 

Venn diagrams as sets!

AND gate (Logic intersection gate)

Symbol

AND gates output 1 only when both inputs are 1 and are sometimes expressed in equa-

tion form as Z = A · B. The symbols used to represent AND are those for logical intersec-

tions:  or .

Inputs Output

Truth table VeK diagram

OR gate (Logic union gate)

OR gates output 1 when either input is 1 and are sometimes expressed in equation form 

as Z = A + B. The symbols used to represent OR are those for logical unions: + or .

Symbol Truth table VeK diagram

Inputs Output
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NOT gate (Logic negation gate)

NOT gates output 0 only when the input is 1 and are sometimes expressed in equation 

form as Z = A
−

. The symbol used to represent NOT is the one for logical negation (comple-

ment): 
−
.

This white circle 
indicates that 0 and 1 
should be fli2ed!

Okay. Be extra careful about this though! In the examples here, we showed AND and OR 

gates having only the two inputs A and B, but it’s not uncommon for these gates to have 

three or more inputs.

Ohh! So you can also write them as A  B, A + B, or A
−

. I think I understand all these forms 

now.

So these input and output lines are called signals and can either be a 1 or 0. That’s easy to 

remember. 

In these cases, we require that all inputs of the AND gate be 1 for the output to be 1. 

In the case of OR gates, we require that at least one input be 1 for the output to be 1.

Symbol Truth table VeK diagram

Input Output

Sometimes 
more than 

thr%!

Signal 
pathways 
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Other Basic Gates (NAND, NOR, and XOR)

Okay, let’s take a 
l&k at NAND, NOR, 

and XOR* gates next.

WHAT?!

* XOR is wri$en as EOR or EXOR in some cases.

You just said that AND, OR, 
and NOT were the thr% 

basic gates...

You’re just going to 
take that back? Liar! 

There’s even more of 
them?!

Stop whining 
and calm 
down!!  

You should know 
about NAND, NOR, 

and XOR t&.

And the 
reason is...

Something 
you’; realize 

after you learn 
about them!!!

Even more 
zealous than 

usual!

Let’s do it! 

To>ering 
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A Summary of the NAND, NOR, and XOR Gates

Okay, let’s talk about the other basic gates. Actually, these gates are really just 

combinations of AND, OR, and NOT gates!

NAND gate (Logic intersection complement gate)

The NAND gate is an AND gate wired to a NOT gate. The NAND gate’s output is therefore 

the output of an AND gate run through a NOT (negation) gate. It’s sometimes written as 

the equation Z = A B .

NOR gate (Logic union complement gate)

Symbol Truth table VeK diagram

Symbol Truth table VeK diagram

Input Output

Input Output

The same!
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The NOR gate is an OR gate wired to a NOT gate. The NOR gate’s output is therefore the 

output of an OR gate run through a NOT (negation) gate. It’s sometimes written as the 

equation Z = A B .

XOR gate (Exclusive logic union gate)

XOR gates output 1 only when the inputs A and B are different. Such a gate is sometimes 

written as the equation Z = A  B.

The XOR gate’s function is shown in the schematic above, where you see a combination 

of AND, OR, and NOT gates. The X in XOR stands for exclusive.

Oho! You were right. These gates really are just combinations of basic gates. 

Symbol Truth table VeK diagram

Input Output

Output

The same!
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De Morgan’s laws

This might be kind of off topic, but don’t you feel a certain fascination whenever you hear 

the word theorem or law? It’s so charming and cool, I can’t help but feel my heart throb 

wistfully every time... Well, let me tell you about an important theorem! Here it is! De Mor-

gan’s indispensable laws for logical operations.

Aah, I might have eaten a little bit too much today. But fast food can be really good some-

times, don’t you think?

Stop ignoring me! Well I suppose formulas like this can look complicated at first glance... 

Let’s start with the important part. This law basically just says that you can swap AND for 

OR operators and vice versa. Does that make it clearer? 

Yeah! I can see that the left and right sides have big differences in how they use  (AND) 

and + (OR). Is it like this?

Oh-

De Morgan’s Theorem
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That’s it! It also means that we can use De Morgan’s laws to show our circuits in different 

ways. Using this technique, it’s easy to simplify schematics when necessary.

But they’re completely different! There’s really no problem even though the left and right 

side look nothing alike?

I see... Then you won’t mind if I just rewrite all of them then? This is a law I like! 

Yeah, the expressions might be different, but their functions are the same. Since logic gates 

(digital gates) only work with 1s and 0s, everything stays logically the same even if you flip 

everything. We’re just leveraging that particular feature of the math.

Conversions using De Morgan’s laws

De 
Morgan’s 

laws

Both of these are NAND gates!

Both of these are NOR gates!
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The Addition Circuit

Heh, it s%ms I’ve 
fina*y mastered 

a* the gate 
symbols...

L&k! Revel in my ski*!

*Snort*

Hey, that’s rude! 

So;y about 
that.

But if you’re 
rea*y satisfied with 

scri^les like those, then 
I su2ose you’re sti* far 
from understanding the 

subtleties of logic gates.

Logic gates aren’t g&d for 
anything unle: you make a circuit 

that actua*y does something useful!!

Wha- what do you mean?!

Tada!

Swat!

ScriN
le

ScriNle

Circuits That Perform Arithmetic
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Take a l&k! This is a 
circuit that actua*y does 

something worthwhile!

Take a g&d l&k at the 
magnificence of this half 

aOer circuit!!

!!

This is a very old, 
rudimentary circuit 

but... 

… a useful one 
that performs 

a/ition.

It does f%l a bit 
magnificent, a* wired up 
like that... I s% it’s using 

AND and XOR gates!

But I don’t s% 
how it can a/ 

numbers...

I wi* let you 
e-explain it to me!

If you want me 
to te* you, just 

say so...

Thunder!
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The Half Adder

Let me explain what the half adder I showed you is all about. Even though I suspect 

you won’t need that much explaining at this point. First off, do you remember single-bit 

addition?

If we bundle all of these together, it kind of starts to look like a truth table, doesn’t it? 

Let’s treat the two bits as inputs A and B, and let’s standardize our output to two digits, so 

an output of 1 looks like 01.

Well then, do you notice anything? Pay special attention to the gray area.

Wh—what? Could it be...? The lower digit output... it looks just like an XOR gate’s truth 

table (see page 59)! XOR produces an output of 1 only if the inputs are different, right?

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10

The lower digit

output

(The digit 
is ca;ied.)
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That’s correct. This time, look only at the upper output digit.

Hmm, that looks just like the truth table for an AND gate (see page 55)! An AND gate’s 

output is 1 only when both inputs are 1. . . . That must mean . . .

As soon as you get that part, it seems really easy, right? The lower digit comes from output 

S, and the upper digit comes from output C. In this case, S stands for sum, and C for carry.

This is how we can get two outputs from two inputs with the same half adder circuit. And 

this is also how we can add two bits together!

That by combining an XOR and AND gate, we can get two outputs (one for the upper 

digit, one for the lower digit) and perform single-bit addition!

Half A/er

The u2er digit

output

(The digit 
is ca;ied.)

output 
S

input

output 
C

input

(Ca;y)

(The value 
of A + B)
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Full Adder and Ripple Carry Adder

After learning how the half adder works, it seems really simple! Hmm, but, there’s still 

something that bothers me about it.

Heh, an acute observation for sure. It is true that the half adder cannot deal with carries 

from previous digits and can therefore only ever add two single bits. That’s why half adders 

are just that, “half an adder.” It’s no use putting it down for something it can’t help. 

I’m not dissing anyone! Why am I the bad guy all of a sudden?!

Don’t underestimate the half adder though! Actually, using two half adders, you can make a 

full adder. In addition to having the inputs A and B, you can use an additional input for the 

carry in this circuit.

In that circuit, there’s an output for the carry, but there’s no input for the carry from 

the previous digit. That means you can only ever add two single digits, right? That doesn’t 

seem very useful. In fact, only being able to add two single digits seems pretty useless!

Think of water ri2les

Take a look at this next schematic. We call this circuit with three inputs and two 

outputs a full adder. We’ll put each half adder into its own box to make the diagram a bit 

easier to understand.
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You were right, it’s using two half adders! Two halves really make a whole. I guess C
in
 is the 

carry input and C
out

 is the carry output then.

That’s right. And by connecting several of these full adders together, we can add any num-

ber of bits! We call a circuit like this a ripple carry adder.

Uh-huh. So each adder’s output carry goes into the next adder’s input carry. This is how 

the carry flows so that we’re able to do the calculation properly.

In this example, we’re using four adders, so we can add four digits. We’ve also put the 

full adders into their own boxes. During subtraction, we would deal with the inverse carry 

instead (borrow).

Fu* a/er

Ri2le ca;y a/er

Thr% 
inputs

Half a/er Half a/er

Fu* a/erFu* a/erFu* a/er

The ca;ies are being propagated

Half a/er
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The Ripple Carry Adder and Carry Look-ahead Adder

But even then... that ripple carry adder kind of makes me feel a sense of fellowship with 

how it moves the carry after each step in the calculation. It’s really similar to how we 

humans do calculations on pen and paper, moving the carry from each lower place value to 

the next higher place value.

Yeah. But that’s actually a big problem—it takes a lot of time to keep moving the carry from 

each calculation to the next.

Yeah, that seems a bit slow... Addition and subtraction are pretty common too, so I suppose 

they’re not something you want to be doing slowly. Hmm. So what do we do about it?!

In ripple carry adders, the more digits there are, the slower the calculation speed will 

be because of the larger propagation delay. 

An artistic impre:ion of a 
ri2le ca;y a/er

Ca;y propagation delay...

I’m so bored...

U2er digit

Sti*  
nothing...

Okay, 
roger 
that! 

Here! A 
ca;y!
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Heh heh heh. To fix this problem, someone came up with what is known as a carry look-

ahead adder.

It basically delegates the carry calculations to a completely different circuit that serves 

its results to each digit’s adder. Using this method, the upper digits can do their calculations 

right away, without having to wait! 

Eeeh, is that even possible? So there’s some other dedicated circuit that decides whether or 

not there’s a carry?

Yeah. It determines whether there is a carry in either direction during addition and sub-

traction. The downside is that the circuit is a lot bigger, but calculation times are drastically 

reduced.

Hmm. So it’s reducing calculation times with all kinds of smart tricks then. When we first 

talked about making a circuit for addition, I was imagining something pretty small, but the 

final product is quite impressive. 

An artistic impre:ion of a 
ca;y l&k-ahead a/er

U2er digit
The circuit that deals 

 with ca;ies  
(L&kahead-ca;y unit) 

They don’t have to wait for the ca;y!
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Circuits with Memory 
Are a Necessity!

Now, let’s get 
into today’s last 

topic.

Let’s talk about 
circuits with 

memory.

O-kay... this memory has 
to be the same memory 
we talked about last 

time, right?

Back then, you 
showed me 

these things... 
(S% page 18.)

Hm, yeah. It’s true 
that when we say 

“memory,” we usua*y 
mean primary memory 

like this.

But, there’s 
actua*y memory 

storage inside the 
CPU as we*.

And this storage is ca*ed 
registers!!

Data and 
program 

instructions, 
among other 
things used in 
operations

Memory!

RegistersMemory!

Circuits That Remember
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Registers? 
Never heard 

of ‘em.

What are those 
things?

A simple analogy 
for registers might 
be something like a 

disposable scratch pad.

When performing 
operations, 

registers are 
used to store 

temporary  
values!

This kind of memory 
is more short-term 
than other types of 

memory. 

So there are many 
types of memory, each 

made for a specific 
task.

We*, the important thing with 
a* of them is that by using 
them, we are able to use 

previous memory (the state) in 
future operations.

That is, previous memories 
can a'ect future 

calculation outputs!!

Could you...  
say that again in 
plain language, 

please?
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Okay, then imagine...

That you are about 
to buy a drink from a 

vending machine.

Yay! I’* have a coke!!

Hey, we’re talking 
hypothetica*y here!

To buy a 130-yen cola, you 
first have to put 100 yen in, 
then 50 yen... after that, the 

machine should display a 
total of 150 yen, right?

That just means that the 
machine remembers the sum 

of the 100 yen you put in 
before and the 50 yen you 

inserted just now.

What do you think? Do 
you understand how the 
previous memory of 100 

yen a'ected the end 
result of 150 yen?

Ah, it s%ms very obvious 
now. The reason why it’s 
able to show the sum 

of 150 yen is that it has 
memory.

FuQy 
motivated!!
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If it didn’t have 
any memory...

What a rip-o'! I’d 
have no choice but to 

destroy it!!

Calm down, 
violence solves 

nothing!

Comparing cu;ent memory 
to past memory

I sold 3 today > I sold 2 
yesterday. This means I sold 
more today than yesterday.

This is why computers,  
such as the one in the vending 
machine, n%d to have memory 

circuits to be useful.

They reuse results from 
previous calculations 

together with new data as 
input to other calculations.

I’ve sold 6 up until 
yesterday + I sold 
3 today = I’ve sold 

9 in total.

Many program 
instructions are 

like this.

I s%. I gue: it makes 
sense that memory 

circuits are important 
then.

...Now that that’s 
se$led, I think 
I’* go and have 
another cola.

She got thirsty? 
The power of 
su}estion...

ARle Ya-y!

Not that I reca*...

Didn’t I
 

jus
t put 

100 yen in??

Wha-at!!
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Flip-flop, the Basics of Memory Circuits

Ngh. I can’t even imagine a circuit that has memory. Even human memory is really compli-

cated you know...

Yeah. You have to think really simple. Computers can only use 1s and 0s right? That means 

that memory to a computer means somehow storing the states of 1s and 0s.

I’ve already explained that these 1s and 0s actually correspond to different voltage 

levels (low and high) (see page 37). This means that to save a 1, we would have to create 

something that can retain that state over a longer period of time, as in the graph below. 

We call storing data like this latching.

I see. But it’s probably not very useful if it just stays in that state forever...  What if I want it 

to go back to 0 later on or I want to overwrite the memory with something else? Wouldn’t 

it make sense to be able to store whatever I want, whenever I want?

Yeah, that’s right! For example, if you turned a room’s light switch on, it would stay that 

way until someone turned it off again, and then it would stay off until someone turned it 

off again. It would be great if we could create some kind of trigger condition to freely swap 

between the 1 and 0 states, just as we do with the light switch.

That is, we would like to be able to store 1s and 0s indefinitely while still being able to 

flip each bit individually whenever we want. This is exactly what memory circuits do!

State remains 1

Time

So this 
is a latch 

then!
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Uhm, that sounds a bit selfish, doesn’t it? I want to store 1s and 0s, but I also want to be 

able to flip them at will.

It is selfish, but flip-flop circuits grant us the ability to change states! Flip-flops are a basic 

component of any memory circuit.

Flip-flop...? That’s a cute name, but how are they useful? 

They’re super useful!! First take a look at the picture below. To make it easier to under-

stand, I’ve put the flip-flop in its own box. Using one of these, we can store one bit of data.

Yes. Pay special attention to the Q output! This is the output that will stay either 1 or 0. Q 

will always be the inverse of Q
−

. So, if Q is 1, then Q
−

 will be 0. Q
−

 can be very useful to have 

when designing a circuit, but we’re going to ignore it for now.

Uh-huh. Then, how does it work? Tell me what’s inside that box!

All in good time. First off, there are several types of flip-flops. Both the function and circuit 

depend on this type. Out of these, I’ll teach you about RS flip-flops, D flip-flops, and T 

flip-flops.

O-kay. There are inputs. . . . And two outputs Q and Q
−

. . . .

The reason why there are no concrete symbols for the inputs is that they change 

depending on the type of flip-flop we use.

Inputs

Important!

Outputs
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The RS Flip-flop

Okay, I guess RS flip-flops come first? So the box has two input signals, R and S. Rice... 

Sushi... Rice and sushi?!

Um, no. R means reset and S means set. The reset and set inputs are the two main fea-

tures of this type of circuit.

I might be giving away the main point too quickly here, but setting S to 1 will set Q to 

1 and setting R to 1 will reset Q to 0. Once Q has changed state, removing the input signal 

won’t change it back. It will keep that state until the countersignal (S for R and vice versa) is 

sent. As soon as that happens it will, of course, flip the saved state back though.

Yeah. It might seem a bit complicated here, but the circuit looks like the figure on the next 

page. In accordance with De Morgan’s laws (see page 60), it can be created using either 

NAND gates or NOR gates.

Whoa. It looks a bit weird... There are two NAND gates (or NOR gates), but they’re all 

tangled up in figure eights. 

Yep! The two circuits are interconnected with the output of one acting as one of the inputs 

to the other.

Hmm, so that means that it remembers which of the two got set to 1 last? If S got set 

to 1 most recently, then the latch remembers 1, and if R was the last 1, it remembers 0! 

Is that it?

They’re also sometimes 
ca*ed RS latches.

You can also flip the 
R and S and ca* them 

SR flip-flops.

� ✁ ✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✡ ✂ ☛ ☞ ✄ ✠ ✌ ✍ ☞ ✎ ✍ ☞ ✌ ✂ ✏ ✏ ☞ ✍ ✏ ✑ ✒ ☎ ✍ ✓ ✔ ✕ ✌ ✌ ✂ ✏ ✏ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✔ ✄ ✠ ✌ ✁ ✠ ☞ ✣ ✁ ✠ ✢ ✟ ✔ ☎ ✂ ☛ ☎ ✓ ✤



Circuits That Remember 77

It’s thanks to this figure eight that the circuit is able to retain either a 1 or a 0. We call 

this a latch. You could say that this figure eight is the most important characteristic of a 

memory circuit!

Hmm, even so, it’s pretty complex. If I look back and forth between the schematic and the 

truth table, I get the feeling I kind of get it, but still... 

Oh, I see. So just follow the traffic, er, circuit rules, right?  

Let’s see, the part of the truth table that says “does not change” means that output Q 

either stays a 1 or a 0 indefinitely, right? But what does the “not allowed” on the bottom 

mean? What’s not allowed?!

Ah, yeah. That just means that you are not allowed to trigger both set and reset at the 

same time. Remember that since the circuit is active-low, this means that both outputs 

can’t be 0 at the same time. If you were to set both to 0, this would make both Q and 

Q
−

 output 1 until you changed one of them back—but the outputs are always supposed to 

be either 0 and 1, or 1 and 0. It’s not allowed to invalidate the rules we set for this logic 

circuit.

RS flip-flop

FunctionOutputsInputs

Does not  
change

Retains its  
cu;ent output

Set

Not a*owed

Reset

Note that S and  
R have negation 

symbols! This is ca*ed 
active-low, and it means 
they are activated when 

the input voltage is  
low (0) instead of  

high (1).
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The D Flip-flop and the Clock

Let’s see. The next one is the D flip-flop, I think. The inputs are D and... what’s this triangle 

next to the C?! It looks like that piece of cloth Japanese ghosts wear on their headbands!! 

That observation is pretty far removed from the computer world. But I suppose it’s a bit 

cryptic and warrants an explanation. First off, it’s easiest to think of the D as being for 

data. That triangle is the symbol for a rising edge, and the C stands for clock.

That’s right! Computers need some kind of fixed-interval digital signal to synchronize all 

the operational states in their circuits. That’s what the clock does!

Just like a normal clock measuring time, it flips between high and low voltage (1 

and 0) in fixed intervals. It has nothing to do with the circuit’s input or output though— 

it’s completely separate.

Um... Rising edge?? And the clock—is that just a normal clock?

An edge is when a signal 
transitions betw%n two levels 

(0 and 1 for example).

A clock

Time
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Hmm. It really reminds me of a clock... Ticktock, ticktock... Just like we plan our days with 

the help of clocks, I guess circuits need them, too.

Yeah. When a circuit needs to take some action, the clock can sometimes act as its cue. 

And inside the clock, what is known as the rising edge acts as that action signal. Have 

a look!

Ohh! Those arrows are at even intervals on the clock graph.

When the clock goes from low to high (0 to 1), we see a rising edge, and when it goes back 

from high to low (1 to 0), we see a falling edge.

Oho, I think I get it. So the rising and falling edges are like ringing bells on the clock, right? 

When the bell rings, it acts like a signal to take action. Like at the start and end of class, for 

example.

That’s just it! That’s a pretty good analogy coming from you.

When the clock goes 
from high to low

Fa*ing edge

When the clock goes 
from low to high

Rising edge
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Okay, let’s get back to the problem. In a D flip-flop, every time a rising edge passes, the 

input 1 or 0 at the D input is copied directly to the output Q. 

It might be easier to understand by looking at the timing diagram below. A timing 

diagram is a good way to see how signals change their state over time.

Mmmh. It’s a bit complicated, but I think I get it now that I’ve looked over the timing 

diagram. In any case, the main characteristic of the D flip-flop seems to be that it acts in 

sync with the clock’s rising edges! Hmm, it seems like clocks are super important both to 

modern man and circuits.

The important lesson here is that the input D can change as much as it wants, 

but Q won’t change until a rising edge arrives!

Copy!
Clock
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The T Flip-flop and Counters

So the last one is the T flip-flop? Wait, it only has one input! Did you forget to draw 

the rest?

Fuhahaha! Like I would ever forget! The T flip-flop only has one input, as you can see, and 

is pretty simple. Whenever the input T changes from 0 to 1, or 1 to 0, the output stored in 

Q flips state. It looks something like this time chart. 

Oh, this was super easy to understand! It’s a memory circuit even though it has only one 

input.

There are T 
flip-flops that 
activate just on 
fa*ing edges 
instead (1 to 0).

Output Q

Input T

FlipFlipFlip
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By the way, flipping between 1 and 0 is called toggling. The T in T flip-flop actually stands 

for toggle! Also, by connecting several T flip-flops together as in the schematic below, you 

can make a circuit that can count—a counter circuit.

This circuit shows how several T flip-flops 
to}led by the fa*ing edge of an input signal 

can act as a counter. 

Looking at the time chart, do you see that each output signal has half as many toggles as 

its input signal? This means that the period of the output signals is twice as long as the 

period of the input signals. I’ve put all three of the flip-flops in the schematic above into 

this time chart so you can see all of their individual outputs next to each other when they 

are connected.  

Umm, but why do we say that the circuit can count?

Counter circuits

The first flip-flop will toggle its output state every time the input on the far left 

changes from high to low. Consequently, the second flip-flop will toggle its output when-

ever the first flip-flop’s output changes from high to low. All following outputs will keep 

toggling in this pattern. If the input signal is connected to a clock, then each flip-flop in 

the series will toggle every 2(n − 1) clock cycles if n is the flip-flop’s position in the series. Put 

another way, the period of each flip-flop’s output signal will be 2n of the original signal’s 

period. Counters that work this way are called asynchronous counters, since not all flip-

flops are connected to the same clock but, instead, each flip-flop’s clock after the first is 

the output signal of the flip-flop that came before. In contrast, there is a circuit commonly 

found in CPUs called a synchronous counter. As the name here implies, all flip-flops in this 

type of counter trigger on the signal from the same clock, meaning they all toggle at the 

same time, in parallel. It’s worth mentioning that I’ve simplified these descriptions to make 

them easier to understand.

If you look at each column in this graph individually, you should see that the digits from 

Q
2
, Q

1
, and Q

0
 form binary numbers! Isn’t it cool that every time we have a falling edge on 

the input of the first T flip-flop, this binary number increases by 1? It’s counting!

Input
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Wow, you’re right! Q
2
 corresponds to the 22 digit, Q

1
 to 21, and Q

0
 to 20, right?

If you look at Q
2
, Q

1
, and Q

0
 in order, the first column forms 000 (the number 0), the 

second one 001 (1), the third 010 (2), and the fourth 011 (3) in binary. So using this tech-

nique, you can actually make the circuit count! That’s a really smart design.

Yeah. In this example, we used three flip-flops, so that lets us express 23 (8) numbers, 

meaning we can count from zero to seven.

Yeah, well that’s it for flip-flops. Just don’t forget what I said at the start, that flip-flops are 

the foundation of any memory circuit!

Haha, so they’re the base for a lot of different devices, basically. And even though they have 

a cute name, they’re super useful circuits we can’t do without!

Oh, that seems like it could be really useful for a lot of things.

You can actually make counters from other types of flip-flops, like D flip-flops, for 

example. Using some other tricks, you can also make circuits that count down if you want.

This means that both primary memory and CPU registers use flip-flops at their core. 

And flip-flops are also the basis of any counter circuit, just like what we just talked about.
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Thanks for today! 
I learned a lot!

Heh, we* the things 
we talked about 

today are sti* just 
the basics.

Don’t forget 
them, though.

Don’t wo;y!! There’s no 
way that someone with 
my exceptional memory 
and inte*igence would 

forget anything!

Exceptional 
memory, huh...

So that means that 
you remember every 

shogi o2onent 
you’ve ever played 

then?

We***, you 
know, it’s like, 

s%...

It’s not like the heroine 
of the story remembers 

every slimeba* she’s 
slain, right...?

...you fe* right into 
that one, wow......

I-I can’t help it if I 
don’t remember!!!!
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Multipurpose integrated circuit design is surprisingly similar to software development 

these days. It’s usually accomplished using a hardware description language (HDL) to 

define the operation of a circuit. 

In the past, circuits were drawn using logical circuit symbols, much like the 1s we 

have shown in this book, but these symbols are now used mostly just for very simple cir-

cuits. The development of computer-aided design (CAD) programs allows people to design 

complicated circuits with relative ease.

But, it’s important to learn the basics since it can be useful to know these sym-

bols when trying to figure out how data flows through a digital circuit or when trying to 

understand a particular feature of some schematic.

At the dawn of CPU development, it was common to create reference circuits con-

sisting of many AND, OR, and NOT gates. These were then used when iterating, proto-

typing, and evaluating new generations of CPUs and other ICs.

By doing this, it was possible to test each function of the advanced circuit individually 

and even hardwire the circuits together to try to work out problems in the design if some 

error was detected.

Nowadays, reference circuits like these are rarely used in development. Instead 

much more flexible field-programmable gate array (FPGA) circuits are preferred.

FPGAs consist of a series of logic blocks, which can be wired together in different 

ways depending on the programming. Some of these blocks contain lookup tables to map 

the usually available 4–6 bits of input to output in a truth table–like format. The number 

of lookup tables in an FPGA can range anywhere from a couple of hundred to more than 

several millions, depending on the FPGA model.

And of course, it’s possible to reprogram all of the tables whenever needed. In this 

way, the same FPGA circuit can be used to perform the functions of many different types 

of ICs. You can simulate the function of a CPU using an FPGA if you want to, but it’s a 

lot cheaper and easier to mass-produce a dedicated circuit instead. Even so, since the 

price of FPGAs is dropping and development costs for new ICs are high, if the life span or 

projected sales of a particular IC are not high enough, it might be more cost-effective to 

simply use an FPGA.

FPGAs can, just as the name su}ests, be reprogra+ed 
“in the field” to change the function of the IC completely. 

They are indispensable to circuit designers.

CLA
CK

CLA
CK

Awesome, 
I’m going 
to tailor 
this to my 

n%ds!
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