
5
A U T O M A T I N G N E S S U S

Nessus is a popular and powerful vulner-

ability scanner that uses a database of known

vulnerabilities to assess whether a given sys-

tem on a network is missing any patches or is

vulnerable to known exploits. In this chapter, I’ll show

you how to write classes to interact with the Nessus API

to automate, configure, and run a vulnerability scan.
Nessus was first developed as an open source vulnerability scanner,

but it became closed source in 2005 after being purchased by Tenable
Network Security. As of this writing, Tenable offers a seven-day trial of
Nessus Professional and a limited version called Nessus Home. The biggest
difference between the two is that Nessus Home allows you to scan only
16 IP addresses at once, but Home should be sufficient for you to run the
examples in this chapter and become familiar with the program. Nessus is
particularly popular with professionals who help scan and manage other
companies’ networks. Follow the instructions on the Tenable site https://
www.tenable.com/products/nessus-home/ to install and configure Nessus Home.

104 Chapter 5

Many organizations require regular vulnerability and patch scanning
in order to manage and identify risks on their network, as well as for com-
pliance purposes. We’ll use Nessus to accomplish these goals by building
classes to help us perform unauthenticated vulnerability scans against hosts
on a network.

REST and the Nessus API

The advent of web applications and APIs has given rise to an architecture of
APIs called REST APIs. REST (representational state transfer) is a way of access-
ing and interacting with resources (such as user accounts or vulnerability
scans) on the server, usually over HTTP, using a variety of HTTP methods
(GET, POST, DELETE, and PUT). HTTP methods describe our intent in
making the HTTP request (for example, do we want to create a resource
or modify a resource?), kind of like CRUD (Create, Read, Update, Delete)
operations in databases.

For instance, take a look at the following simple GET HTTP request,
which is like a read operation for a database (like SELECT * FROM users WHERE
id = 1):

GET /users/ 1 HTTP/1.0
Host: 192.168.0.11

In this example, we’re requesting information for the user with an ID
of 1. To get the information for another user’s ID, you could replace the 1
at the end of the URI with that user’s ID.

To update the information for the first user, the HTTP request might
look like this:

POST /users/1 HTTP/1.0
Host: 192.168.0.11
Content-Type: application/json
Content-Length: 24

{"name": "Brandon Perry"}

In our hypothetical RESTful API, the preceding POST request would
update the first user’s name to Brandon Perry. Commonly, POST requests
are used to update a resource on the web server.

To delete the account entirely, use DELETE, like so:

DELETE /users/1 HTTP/1.0
Host: 192.168.0.11

The Nessus API will behave similarly. When consuming the API, we’ll
send JSON to and receive JSON from the server, as in these examples. The
classes we’ll write in this chapter are designed to handle the ways that we
communicate and interact with the REST API.

Automating Nessus 105

Once you have Nessus installed, you can find the Nessus REST API
documentation at https://<IP address>:8834/api. We’ll cover only a few of the
core API calls used to drive Nessus to perform vulnerability scans.

The NessusSession Class

To automate sending commands and receiving responses from Nessus, we’ll
create a session with the NessusSession class and execute API commands, as
shown in Listing 5-1.

public class NessusSession : IDisposable
{
 public NessusSession(string host, string username, string password)
 {

 ServicePointManager.ServerCertificateValidationCallback =
 (Object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors errors) => true;

 this.Host = host;

 if (!Authenticate(username, password))
 throw new Exception("Authentication failed");
 }

 public bool Authenticate(string username, string password)
 {
 JObject obj = new JObject();
 obj["username"] = username;
 obj["password"] = password;

 JObject ret = MakeRequest(WebRequestMethods.Http.Post, "/session", obj);

 if (ret ["token"] == null)
 return false;

 this. Token = ret["token"].Value<string>();
 this.Authenticated = true;

 return true;
 }

Listing 5-1: The beginning of the NessusSession class showing the constructor and Authenticate() method

As you can see in Listing 5-1, this class implements the IDisposable inter-
face so that we can use the NessusSession class within a using statement. As
you may recall from earlier chapters, the IDisposable interface allows us to
automatically clean up our session with Nessus by calling Dispose(), which
we’ll implement shortly, when the currently instantiated class in the using
statement is disposed during garbage collection.

At , we assign the Host property to the value of the host parameter
passed to the NessusSession constructor , and then we try to authen-
ticate since any subsequent API calls will require an authenticated

106 Chapter 5

session. If authentication fails, we throw an exception and print the alert
"Authentication failed". If authentication succeeds, we store the API key for
later use.

In the Authenticate() method , we create a JObject to hold the cre-
dentials passed in as arguments. We’ll use these to attempt to authenticate,
and then we’ll call the MakeRequest() method (discussed next) and pass
the HTTP method, the URI of the target host, and the JObject. If authen-
tication succeeds, MakeRequest() should return a JObject with an authentica-
tion token; if authentication fails, it should return an empty JObject.

When we receive the authentication token, we assign its value to the
Token property , assign the Authenticated property to true, and return true
to the caller method to tell the programmer that authentication succeeded.
If authentication fails, we return false.

Making the HTTP Requests

The MakeRequest() method makes the actual HTTP requests and then
returns the responses, as shown in Listing 5-2.

public JObject MakeRequest(string method, string uri, JObject data = null, string token = null)
{
 string url = "https://" + this.Host + ":8834" + uri;
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request. Method = method;

 if (!string.IsNullOrEmpty(token))
 request.Headers ["X-Cookie"] = "token=" + token;

 request. ContentType = "application/json";

 if (data != null)
 {
 byte[] bytes = System.Text.Encoding.ASCII. GetBytes(data.ToString());
 request.ContentLength = bytes.Length;
 using (Stream requestStream = request.GetRequestStream())
 requestStream. Write(bytes, 0, bytes.Length);
 }
 else
 request.ContentLength = 0;

 string response = string.Empty;
 try
 {
 using (StreamReader reader = new StreamReader(request.GetResponse().GetResponseStream()))
 response = reader.ReadToEnd();
 }
 catch
 {
 return new JObject();
 }

 if (string.IsNullOrEmpty(response))
 return new JObject();

Automating Nessus 107

 return JObject. Parse(response);
}

Listing 5-2: The MakeRequest() method from the NessusSession class

The MakeRequest() method has two required parameters (HTTP and
URI) and two optional ones (the JObject and the authentication token).
The default value for each is null.

To create MakeRequest(), we first create the base URL for the API calls
by combining the host and URI parameters and passing in the result as the
second argument; then we use HttpWebRequest to build the HTTP request and
set the property of HttpWebRequest Method to the value of the method variable
passed into MakeRequest() method. Next, we test whether the user supplied
an authentication token in JObject. If so, we assign the HTTP request header
X-Cookie to the value of the token parameter , which Nessus will look for
when we authenticate. We set the ContentType property of the HTTP request
to application/json to ensure that the API server knows how to deal with the
data we are sending in the body of the request (otherwise, it will refuse to
accept the request).

If a JObject is passed to MakeRequest() in the third argument , we convert
it to a byte array using GetBytes() , because the Write() method can only
write bytes. We assign the ContentLength property to the size of the array and
then use Write() to write the JSON to the request stream. If the JObject
passed to MakeRequest() is null, we simply assign the value 0 to ContentLength
and move on, since we will not be putting any data in the request body.

Having declared an empty string to hold the response from the server,
we begin a try/catch block at to receive the response. Within a using state-
ment, we create a StreamReader to read the HTTP response by passing the
server’s HTTP response stream to the StreamReader constructor; then we call
ReadToEnd() to read the full response body into our empty string. If reading
the response causes an exception, we can expect that the response body is
empty, so we catch the exception and return an empty JObject to ReadToEnd().
Otherwise, we pass the response to Parse() and return the resulting
JObject.

Logging Out and Cleaning Up

To finish the NessusSession class, we’ll create LogOut() to log us out of the
server and Dispose() to implement the IDisposable interface, as shown in
Listing 5-3.

 public void LogOut()
 {
 if (this.Authenticated)
 {
 MakeRequest("DELETE", "/session", null, this.Token);
 this.Authenticated = false;
 }
 }

108 Chapter 5

 public void Dispose()
 {
 if (this.Authenticated)
 this.LogOut();
 }

 public string Host { get; set; }
 public bool Authenticated { get; private set; }
 public string Token { get; private set; }
}

Listing 5-3: The last two methods of the NessusSession class, as well as the Host,
Authenticated, and Token properties

The LogOut() method tests whether we’re authenticated with the
Nessus server. If so, we call MakeRequest() by passing DELETE as the HTTP
method; /session as the URI; and the authentication token, which sends
a DELETE HTTP request to the Nessus server, effectively logging us out.
Once the request is complete, we set the Authenticated property to false. In
order to implement the IDisposable interface, we create Dispose() to log
us out if we are authenticated.

Testing the NessusSession Class

We can easily test the NessusSession class with a small Main() method, as
shown in Listing 5-4.

public static void Main(string[] args)
{
 using (NessusSession session = new NessusSession("192.168.1.14", "admin", "password"))
 {
 Console. WriteLine("Your authentication token is: " + session.Token);
 }
}

Listing 5-4: Testing the NessusSession class to authenticate with NessusManager

In the Main() method , we create a new NessusSession and pass the
IP address of the Nessus host, the username, and the Nessus password as
the arguments. With the authenticated session, we print the authentication
token Nessus gave us on successful authentication and then exit.

N O T E The NessusSession is created in the context of a using statement , so the Dispose()
method we implemented in the NessusSession class will be automatically called when
the using block ends. This logs out the NessusSession, invalidating the authentica-
tion token we were given by Nessus.

Running this code should print an authentication token similar to the
one in Listing 5-5.

Automating Nessus 109

$ mono ./ch5_automating_nessus.exe
Your authentication token is: 19daad2f2fca99b2a2d48febb2424966a99727c19252966a
$

Listing 5-5: Running the NessusSession test code to print the authentication token

The NessusManager Class

Listing 5-6 shows the methods we need to implement in the NessusManager
class, which will wrap common API calls and functionality for Nessus in
easy-to-use methods we can call later.

public class NessusManager : IDisposable
{
 NessusSession _session;
 public NessusManager(NessusSession session)
 {
 _session = session;
 }

 public JObject GetScanPolicies()
 {
 return _session. MakeRequest("GET", "/editor/policy/templates", null, _session.Token);
 }

 public JObject CreateScan(string policyID, string cidr, string name, string description)
 {
 JObject data = new JObject();
 data["uuid"] = policyID;
 data["settings"] = new JObject();
 data["settings"]["name"] = name;
 data["settings"]["text_targets"] = cidr;
 data["settings"]["description"] = description;

 return _session. MakeRequest("POST", "/scans", data, _session.Token);
 }

 public JObject StartScan(int scanID)
 {
 return _session.MakeRequest("POST", "/scans/" + scanID + "/launch", null, _session.Token);
 }

 public JObject GetScan(int scanID)
 {
 return _session.MakeRequest("GET", "/scans/" + scanID, null, _session.Token);
 }

 public void Dispose()
 {
 if (_session.Authenticated)
 _session. LogOut();

110 Chapter 5

 _session = null;
 }
}

Listing 5-6: The NessusManager class

The NessusManager class implements IDisposable so that we can
use NessusSession to interact with the Nessus API and log out automati-
cally if necessary. The NessusManager constructor takes one argument, a
NessusSession, and assigns it to the private _session variable , which any
method in NessusManager can access.

Nessus is preconfigured with a few different scan policies. We’ll sort
through these policies using GetScanPolicies() and MakeRequest() to
retrieve a list of policies and their IDs from the /editor/policy/templates URI.
The first argument to CreateScan() is the scan policy ID, and the second is
the CIDR range to scan. (You can also enter a newline-delimited string of
IP addresses in this argument.)

The third and fourth arguments can be used to hold a name and
description of the scan, respectively. We’ll use a unique Guid (globally unique
ID, long strings of unique letters and numbers) for each names since our
scan is only for testing purposes, but as you build more sophisticated auto-
mation, you may want to adopt a system of naming scans in order to make
them easier to track. We use the arguments passed to CreateScan() to create
a new JObject containing the settings for the scan to create. We then pass
this JObject to MakeRequest() , which will send a POST request to the /scans
URI and return all relevant information about the particular scan, show-
ing that we successfully created (but did not start!) a scan. We can use the
scan ID to report the status of a scan.

Once we’ve created the scan with CreateScan(), we’ll pass its ID to the
StartScan() method, which will create a POST request to the /scans/<scanID>/
launch URI and return the JSON response telling us whether the scan was
launched. We can use GetScan() to monitor the scan.

To complete NessusManager, we implement Dispose() to log out of the ses-
sion and then clean up by setting the _session variable to null.

Performing a Nessus Scan

Listing 5-7 shows how to begin using NessusSession and NessusManager to run a
scan and print the results.

public static void Main(string[] args)
{
 ServicePointManager. ServerCertificateValidationCallback =
 (Object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors errors) => true;

 using (NessusSession session = new NessusSession("192.168.1.14", "admin", "password"))
 {
 using (NessusManager manager = new NessusManager(session))
 {

Automating Nessus 111

 JObject policies = manager. GetScanPolicies();
 string discoveryPolicyID = string.Empty;
 foreach (JObject template in policies["templates"])
 {
 if (template ["name"].Value<string>() == "basic")
 discoveryPolicyID = template ["uuid"].Value<string>();
 }

Listing 5-7: Retrieving the list of scan policies so we can start a scan with the correct scan policy

We begin our automation by first disabling SSL certificate verification
(because the Nessus server’s SSL keys are self-signed, they will fail verifi-
cation) by assigning an anonymous method that only returns true to the
ServerCertificateValidationCallback . This callback is used by the HTTP
networking libraries to verify an SSL certificate. Simply returning true
causes any SSL certificate to be accepted. Next, we create a NessusSession
and pass it the IP address of the Nessus server as well as the username and
password for the Nessus API. If authentication succeeds, we pass the new
session to another NessusManager.

Once we have an authenticated session and a manager, we can begin
interacting with the Nessus server. We first get a list of the scan policies
available with GetScanPolicies() and then create an empty string with
string.Empty to hold the scan policy ID for the basic scan policy and iterate
over the scan policy templates. As we iterate over the scan policies, we check
whether the name of the current scan policy equals the string basic ; this
is a good starting point for a scan policy that allows us to perform a small
set of unauthenticated checks against hosts on the network. We store the ID
for the basic scan policy for later use.

Now to create and start the scan with the basic scan policy ID, as shown
in Listing 5-8.

 JObject scan = manager. CreateScan(discoveryPolicyID, "192.168.1.31",
 "Network Scan", "A simple scan of a single IP address.");
 int scanID = scan["scan"]["id"].Value<int>();
 manager. StartScan(scanID);
 JObject scanStatus = manager.GetScan(scanID);

 while (scanStatus["info"]["status"].Value<string>() != "completed")
 {
 Console.WriteLine("Scan status: " + scanStatus["info"]
 ["status"].Value<string>());
 Thread.Sleep(5000);
 scanStatus = manager. GetScan(scanID);
 }

 foreach (JObject vuln in scanStatus["vulnerabilities"])
 Console.WriteLine(vuln.ToString());
 }
}

Listing 5-8: The second half of the Nessus automation Main() method

112 Chapter 5

At , we call CreateScan(), passing in a policy ID, IP address, name, and
description of the method, and we store its response in a JObject. We then
pull the scan ID out of the JObject so that we can pass the scan ID to
StartScan() to start the scan.

We use GetScan() to monitor the scan by passing it the scan ID, stor-
ing the result in a JObject and using a while loop to continually check
whether the current scan status has completed . If the scan has not com-
pleted, we print its status, sleep for five seconds, and call GetScan() again.
The loop repeats until the scan reports completed, at which point we iterate
over and print each vulnerability returned by GetScan() in a foreach loop,
which may look something like Listing 5-9. A scan might take several min-
utes to complete, depending on your computer and network speed.

$ mono ch5_automating_nessus.exe
Scan status: running
Scan status: running
Scan status: running
--snip--
{
 "count": 1,
 "plugin_name": "SSL Version 2 and 3 Protocol Detection",
 "vuln_index": 62,
 "severity": 2,
 "plugin_id": 20007,
 "severity_index": 30,
 "plugin_family": "Service detection"
}
{
 "count": 1,
 "plugin_name": "SSL Self-Signed Certificate",
 "vuln_index": 61,
 "severity": 2,
 "plugin_id": 57582,
 "severity_index": 31,
 "plugin_family": "General"
}
{
 "count": 1,
 "plugin_name": "SSL Certificate Cannot Be Trusted",
 "vuln_index": 56,
 "severity": 2,
 "plugin_id": 51192,
 "severity_index": 32,
 "plugin_family": "General"
}

Listing 5-9: Partial output from an automated scan using the Nessus vulnerability scanner

The scan results tell us that the target is using weak SSL modes (proto-
cols 2 and 3) and a self-signed SSL certificate on an open port . We can
now ensure that the server’s SSL configurations are using fully up-to-date

Automating Nessus 113

SSL modes and then disable the weak modes (or disable the service alto-
gether). Once finished, we can rerun our automated scan to ensure
that Nessus no longer reports any weak SSL modes in use.

Conclusion

This chapter has shown you how to automate various aspects of the Nessus
API in order to complete an unauthenticated scan of a network-attached
device. In order to achieve this, we needed to be able to send API requests
to the Nessus HTTP server. To do so, we created the NessusSession class;
then, once we were able to authenticate with Nessus, we created the
NessusManager class to create, run, and report the results of a scan. We
wrapped everything with code that used these classes to drive the Nessus
API automatically based on user-provided information.

This isn’t the extent of the features Nessus provides, and you’ll find
more detail in the Nessus API documentation. Many organizations require
performing authenticated scans against hosts on the network in order to
get full patch listings to determine host health, and upgrading our automa-
tion to handle this would be a good exercise.

