
Alongside the look-up table, the other main
component in an FPGA is the flip-flop. Flip-

flops give FPGAs the ability to remember, or
store, state. In this chapter, we’ll explore how

flip-flops work and learn why they’re important to the
functioning of FPGAs.

Flip-flops make up for a shortcoming of look-up tables. LUTs generate
output as soon as they’re provided input. If all you had to work with was
LUTs, your FPGA could perform all the Boolean algebra you might want,
but your outputs would be determined solely based on the current inputs.
The FPGA would know nothing about its past state. This would be very
limiting. Implementing a counter would be impractical, since a counter
requires knowledge of a previous value that can be incremented; so would
storing the result of some math operation as a variable. Even something as
critical as having a concept of time is impractical with just LUTs; you can
only calculate values based on the now, not on anything in the past. The

4
S T O R I N G S T A T E W I T H T H E

F L I P - F L O P

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

46 Chapter 4

flip-flop enables these interesting capabilities, which is why it’s critical to
the operation of an FPGA.

How a Flip-Flop Works
A flip-flop stores state in the form of a high or low voltage, corresponding
to a binary 1 or 0 or a true/false value. It does this by periodically checking
the value on its input, passing that value along to its output, and holding
it there. Consider the basic diagram of a D flip-flop shown in Figure 4-1.
D flip-flops are the most common type of flip-flop in FPGAs, and they’re
the focus of this chapter. (I’ll drop the D in front of flip-flop going forward.)

D
En
>

Q

Figure 4-1: A diagram
of a D flip-flop

Notice that the component has three inputs on the left and one output
on the right. The top-left input, labeled D, is the data input to the flip-flop.
It’s where data, in the form of 1s or 0s, comes in. The bottom-left input,
labeled with what looks like a greater-than (>) sign, is the clock input, which
synchronizes the performance of the flip-flop. At regular intervals, the
clock input triggers the flip-flop to take the value from the data input and
pass it to the output (labeled Q in the diagram).

The middle-left input, labeled En, is the clock enable. As long as the clock
enable is high, the clock input will continue to trigger the flip-flop to update
its output. If the clock enable input goes low, however, the flip-flop will ignore
its clock and data inputs, essentially freezing its current output value.

To better understand how a flip-flop operates, we need to look more
closely at the signal coming in to the clock input.

F L IP-F LOP COMPONEN T T ER MINOLOG Y

The component presented in Figure 4-1, a flip-flop with a clock enable pin, isn’t
always called a flip-flop. FPGA manufacturers such as AMD and Intel do in fact
use that terminology in their reference information, but a more technically accu-
rate name is a clocked D latch. It’s not valuable getting into the details about
why one name is better than another; instead, for the purposes of this book,
we’ll use the real-world terminology that the FPGA manufacturers use and refer
to these components as flip-flops.

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 47

The Clock Signal
A clock signal, often just called a clock, is a digital signal that steadily alter-
nates between high and low, as shown in Figure 4-2. This signal is usually
provided via a dedicated electronic component external to the FPGA. A
clock is key to how FPGAs operate: it triggers other components, such as
flip-flops, to perform their tasks. If you think of an FPGA as a set of gears,
the clock is like the big gear that turns all the other gears. If the main
gear isn’t spinning, the others won’t spin either. You could also think of
the clock as the heart of the system, since it keeps the beat for the entire
FPGA. Every flip-flop in the FPGA will be updated on the pulse of the
clock’s heartbeat.

Rising edge Falling edge

One clock period 50% duty cycle

Time

0

1

Figure 4-2: A clock signal

Notice the vertical lines in the clock signal diagram, where the signal
jumps from low to high or high to low. These abrupt changes in the signal
are called edges. When the clock goes from low to high, it’s called a rising
edge, and when it goes from high to low, it’s called a falling edge. Flip-flops
are conventionally triggered on each rising edge of the clock: whenever the
clock signal changes from low to high, the flip-flop updates its output to
match its data input.

N O T E 	 It’s possible to trigger a flip-flop with the falling edges of a clock, but this is much less
common than using the rising edge.

Every clock has a duty cycle, the fraction of time that the signal is high.
For example, a signal with a 25 percent duty cycle is high one-quarter of
the time and low three-quarters of the time. Almost all clocks, including
the one shown in Figure 4-2, have a 50 percent duty cycle: they’re half-on,
half-off.

A clock also has a frequency, which is the number of repetitions from low
to high and back again (called a cycle) in a second. Frequency is measured
in hertz (Hz), or cycles per second. You may be familiar with your computer’s
CPU frequency, which can be measured in gigahertz (GHz), where 1 GHz
is 1 billion Hz. FPGAs don’t often run quite that quickly. More commonly,
FPGA clock signals run in the tens to hundreds of megahertz (MHz), where
1 MHz is 1 million Hz. As an example, the clock on the Go Board (discussed
in Appendix A) runs at 25 MHz, or 25 million cycles per second.

Another way to describe a clock’s speed is to refer to its period, the
duration of a single clock cycle. You can calculate the period by finding

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

48 Chapter 4

1 ÷ frequency. In the case of the Go Board, for instance, the clock period is
40 nanoseconds (ns).

A Flip-Flop in Action
A flip-flop operates on the transitions of its clock input. As mentioned
previously, when a flip-flop sees a rising edge of the clock, it checks the
state of the data input signal and replicates it at the output—assuming the
clock enable pin is set to high. This process is called registering, as in, “the
flip-flop registers the input data.” Thanks to this terminology, a group of
flip-flops is known as a register, and by extension, a single flip-flop can also
be called a one-bit register. One flip-flop by itself is able to register a single
bit of data.

To see how registering works in practice, we’ll examine a few example
inputs to a flip-flop and their corresponding outputs. First, consider
Figure 4-3.

Clk
D
Q

1 2 3

Figure 4-3: An example of
flip-flop behavior

This figure shows three waveforms: the top one (Clk) represents an
FPGA’s clock signal, the middle one (D) is the data input of a flip-flop, and
the bottom one (Q) is the flip-flop’s output. Let’s assume the clock enable
is high, so the flip-flop is always enabled. We can see the waveforms across
three cycles of the clock; the rising edge of each clock cycle is indicated
with the numbers 1, 2, and 3. In between the first and second rising edges
of the clock, the D input goes from low to high, but notice that the output
doesn’t immediately go high when the input does. Instead, it takes a bit
of time for the flip-flop to register the change in the input. Specifically,
it takes until the next rising clock edge for the flip-flop output to follow the
input.

The flip-flop looks at the input data and makes the output match the
input only at the rising edge of the clock, never between edges. In this case,
at the rising edge of the second clock cycle, the output Q sees that D has
gone from low to high. At this point, Q takes on the same value as D. On
the third rising edge, Q again checks the value of D and registers it. Since D
hasn’t changed, Q stays high. Q also registered D at the rising edge of the
first clock cycle, but since both D and Q were low at that point, Q didn’t
change.

Now consider Figure 4-4, which shows how a flip-flop responds to
another example scenario.

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 49

Clk
D
Q

1 2 3 4 5

Figure 4-4: Another example of flip-flop behavior

Here we again see a flip-flop operating over several cycles of the clock.
Again, let’s assume the flip-flop is always enabled. Between the clock’s first and
second rising edges, input D goes from low to high. On the second rising edge,
Q sees that D has gone high, so it toggles from low to high as well. On the third
rising edge, Q sees D has stayed high, so it stays high, too. Between the third
and fourth rising edges, D goes low, and the output similarly goes low on the
fourth rising edge. On the last rising edge, D is still low, so Q stays low as well.

The previous examples have all assumed the clock enable input is high.
Let’s now show what happens when the flip-flop’s clock enable isn’t always
high. Figure 4-5 shows the exact same Clk and D waveforms as Figure 4-4,
but instead of the clock enable remaining high the whole time, it’s only
high at the third rising edge.

Clk

D
Q

1 2 3 4 5

En

Figure 4-5: Flip-flop behavior with the clock
enable signal

With the clock enable (En) now in play, a completely different output
Q is generated. Q no longer “sees” that D has gone high on clock cycle two,
since the clock enable is low at that point. Instead, Q only changes its out-
put from low to high on clock cycle three, when the clock enable is high.
On clock cycle four, D has gone low, but Q doesn’t follow D. Instead, it stays
high. This is because the clock enable has gone low at that point, locking the
output in place. The flip-flop will no longer register any changes on D to Q.

These examples demonstrate flip-flop behavior, showing how a flip-flop’s
activity is coordinated by a clock. Additionally, we’ve seen how turning off
the clock enable pin allows flip-flops to retain state, even when the input D is
changing. This gives flip-flops the ability to store data for a long time.

A Chain of Flip-Flops
Flip-flops are commonly chained together, with the output from one flip-
flop going directly into the data input of another flip-flop. For example,
Figure 4-6 shows a chain of four flip-flops. For simplicity, let’s assume these
are always enabled.

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

50 Chapter 4

D Q

>

D Q

>

D Q

>

D Q

>

test1 test2 test3 test4

Clk

Figure 4-6: A chain of four flip-flops

The four flip-flops, labeled test1 through test4, are chained such that
the output of test1 goes to the input of test2, the output of test2 goes to the
input of test3, and so on. All four flip-flops are driven by the same clock.
The clock synchronizes their operation: with each rising edge of the clock,
all four flip-flops will check the value on their input and register that value
to their output.

Suppose the test1 flip-flop registers a change at its input. Figure 4-7
illustrates how that change will propagate through the flip-flop chain, all
the way to the output of test4.

Clk
test1_d

test1_q

test2_q

test3_q

test4_q

1 2 3 4 5 6

Figure 4-7: A change of input propagating through the
flip-flop chain

The figure shows waveforms for the clock signal, the input and output of
the test1 flip-flop (test1_d and test1_q, respectively), and the output of each
subsequent flip-flop. On the first clock cycle rising edge (labeled 1), test1_d is
low, so test1_q stays low as well. It’s not until the second rising clock edge that
the first flip-flop “sees” that the input has changed to high and registers that
to its output. The test1 flip-flop’s output is also the input to the test2 flip-flop,
but notice that the output of test2 doesn’t immediately change to high when
the output of test1 does. Instead, test2_q changes one clock cycle later, on the
third rising clock edge. Then, on the fourth rising edge, we see test3_q go
high, and finally on the fifth rising edge test4_q goes high and stays high.

By adding three flip-flops behind test1, we’ve delayed the output by
three clock cycles as the signal propagates through the chain. Each flip-flop
in the chain adds a single clock cycle of delay. This technique of delaying
signals by adding a chain of flip-flops is a useful design practice when work-
ing with FPGAs. Among other things, designers may chain flip-flops to

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 51

create circuits that can delay or remember data for some amount of time, or
to convert serial data to parallel data (or vice versa).

OT HER KINDS OF F L IP-F LOP S

In this chapter we’re focusing on the D flip-flop. If you’ve taken a digital electron-
ics course in college, there’s a good chance your professor spent time talking
about other types of flip-flops as well, including the T flip-flop and the JK flip-
flop. In practice, however, you’re unlikely to need to know anything about these
other types of flip-flops to use an FPGA, as most FPGAs are made with D flip-
flops. For this reason, I won’t burden you with information about how the other
kinds of flip-flops work, although it’s important to acknowledge that they exist.

Project #3: Blinking an LED
Now that you know how flip-flops work, we’ll make use of a couple of them
in a project where the FPGA must remember information about its own
state. Specifically, we’re going to toggle the state of an LED each time a
switch is released. If the LED was off before the switch is released, it should
turn on, and if the LED was on, it should turn off.

This project uses two flip-flops. The first is for remembering the state
of the LED: whether it’s on or off. Without this memory, the FPGA would
have no way of knowing whether to toggle the LED each time the switch is
released; it won’t know if the LED is on and needs to be turned off, or off
and needs to be turned on.

The second flip-flop allows the FPGA to detect when the switch is released.
Specifically, we’re looking for the falling edge of the switch’s electrical sig-
nal: its transition from high to low. A good way to look for a falling edge in
an FPGA is to register the signal in question by passing it through a flip-flop.
When the input value of the flip-flop (that is, the unregistered value) is equal
to 0 but the previous output value (the registered value) is equal to 1, then we
know that a falling edge has occurred. The falling edge of the switch is not to
be confused with the rising edge of the clock; we’re still using the rising edge of
the clock to drive all of our flip-flops. Figure 4-8 shows the pattern to look for.

i_Clk

i_Switch_1

r_Switch_1

Falling edge
 detection

Figure 4-8: Falling edge detection using flip-flop

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

52 Chapter 4

Here, i_Clk is the clock signal; i_Switch_1 represents the electrical sig-
nal from the switch, which passes into a flip-flop; and r_Switch_1 is the flip-
flop’s output. At the circled rising clock edge, we can see that i_Switch_1
is low, but r_Switch_1 is high. This pattern is how we can detect the falling
edge of a signal. One thing to note is that while r_Switch_1 does go low on
the rising clock edge, when the logic evaluates the state of r_Switch_1 at
that same rising clock edge, it will still “see” that r_Switch_1 is high. Only
after some small delay will the output of r_Switch_1 go low, following the
state of i_Switch_1.

This project will also require some logic between the two flip-flops,
which will be implemented in the form of a LUT. This will be your
first glimpse of how flip-flops and LUTs work together in an FPGA to
accomplish tasks. Figure 4-9 shows an overall block diagram for this
project.

SW1 D1

FPGA

Falling
edge

detection

Figure 4-9: The Project #3 block diagram

The output of one of the switches on your development board (SW1)
goes into the FPGA, where the falling edge detection logic is implemented.
The output of this logic drives one of the board’s LEDs (D1). Now we’ll look
at how to implement this design.

Writing the Code
We can write our LED-toggling code using Verilog or VHDL:

Verilog module LED_Toggle_Project(
	 input i_Clk,
	 input i_Switch_1,
	 output o_LED_1);

1 reg r_LED_1 = 1'b0;
	 reg r_Switch_1 = 1'b0;

2 always @(posedge i_Clk)
	 begin
	 3 r_Switch_1 <= i_Switch_1;

	 4 if (i_Switch_1 == 1'b0 && r_Switch_1 == 1'b1)
 begin
	 5 r_LED_1 <= ~r_LED_1;

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 53

	 end
	 end

	 assign o_LED_1 = r_LED_1;

endmodule

VHDL library ieee;
use ieee.std_logic_1164.all;

entity LED_Toggle_Project is
	 port (
		 i_Clk : in std_logic;
		 i_Switch_1 : in std_logic;
		 o_LED_1 : out std_logic
);
end entity LED_Toggle_Project;

architecture RTL of LED_Toggle_Project is

1 signal r_LED_1 : std_logic := '0';
	 signal r_Switch_1 : std_logic := '0';

begin

2 process (i_Clk) is
 begin
		 if rising_edge(i_Clk) then
		 3 r_Switch_1 <= i_Switch_1;
		 4 if i_Switch_1 = '0' and r_Switch_1 = '1' then
			 5 r_LED_1 <= not r_LED_1;
			 end if;
		 end if;
	 end process;

	 o_LED_1 <= r_LED_1;

end architecture RTL;

We begin by defining two inputs (the clock and the switch) and a single
output (the LED). Then we create two signals 1  : r_LED_1 and r_Switch_1. We
do this using the reg keyword (short for register) in Verilog, or the signal key-
word in VHDL. Ultimately these signals will be implemented as flip-flops,
or registers, so we prefix their names with the letter r. It’s good practice
to label any signals that you know will become registers r_signal_name, as it
helps keep your code organized and easy to search.

Next, we initiate what’s known as an always block in Verilog or a process
block in VHDL 2. This type of code block is triggered by changes in one or
more signals, as specified by the code block’s sensitivity list, which is given in
parentheses when the block is declared. In this case, the block is sensitive to
the clock signal, i_Clk. Specifically, this block will be triggered any time the

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

54 Chapter 4

clock changes from a 0 to a 1; that is, at each rising clock edge. Remember,
when you use a clock to trigger logic within your FPGA, you’ll almost always
be using the clock’s rising edges. In Verilog, we indicate this with the key-
word posedge (short for positive edge, another term for rising edge) within the
sensitivity list itself: always @(posedge i_Clk). In VHDL, however, we only put
the signal name in the sensitivity list, and specify to watch for rising edges
two lines later, with if rising_edge(i_Clk) then.

Within the always or process block, we create the first flip-flop of this proj-
ect by taking the input signal i_Switch_1 and registering it into r_Switch_1 3.
This line of code will generate a flip-flop with i_Switch_1 on the D input,
r_Switch_1 on the Q output, and i_Clk going into the clock input. The output
of this flip-flop will generate a one-clock-cycle delay of any changes to the
input. This effectively gives us access to the previous state of the switch, which
we need to know in order to detect the falling edge of the switch’s signal.

We next check to see if the switch has been released 4. To do this, we
compare the current state of the switch with its previous state, using the
flip-flop we just created 3. If the current state (i_Switch_1) is 0 and the pre-
vious state (r_Switch_1) is 1, then we’ve detected a falling edge, meaning the
switch has been released. The and check will be accomplished with a LUT.

At this point, perhaps you’ve noticed something surprising. First we
assigned i_Switch_1 to r_Switch_1 3, then we checked if i_Switch_1 is 0 and
r_Switch_1 is 1 4. You might think that since we just assigned i_Switch_1 to
r_Switch_1, they’d always be equal, and the if statement would never be
true. Right? Wrong! Assignments in an always or process block that use
<= don’t occur immediately. Instead, they take place on each rising edge of
the clock and therefore are all executed at the same time. If at a rising clock edge
i_Switch_1 is 0 and r_Switch_1 is 1, the if statement will evaluate as true, even
as r_Switch_1 is simultaneously switching from a 1 to a 0 to match i_Switch_1.

Now we’re thinking in parallel instead of serially! We’ve generated
assignments that occur all at once, instead of one at a time. This is com-
pletely different from traditional programming languages like C and
Python, where assignments occur one after the other. To further drive this
point home, you could move the assignment of r_Switch_1 to the last line
of the always or process block, and everything would still work the same.
Formally, we call the <= assignment a non-blocking assignment, meaning it
doesn’t prevent (“block”) other assignments from taking place at the same
time. In Chapter 10, we’ll revisit this concept and compare non-blocking
assignments with blocking assignments.

Once we’re inside the if statement, we toggle the state of the LED 5.
Doing so generates the second flip-flop used in this project. We take the cur-
rent value of r_LED_1, invert it, and store the result back into the flip-flop. That
might sound impossible, but it’s perfectly valid. The output of the flip-flop will
pass through a LUT, acting here as a NOT gate, and then be fed back into the
flip-flop’s input. This way, if the LED was on it’ll turn off, and vice versa.

Adding Constraints
Once the code is ready, it’s time to run the tools to build the FPGA image
and program your board. First, since this project uses a clock, you need to

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 55

add a constraint telling the FPGA tool about the clock’s period. The clock
period tells the timing tool how much time is available to route wires between
flip-flops. As clock speed increases, it gets harder for the FPGA to meet timing,
or achieve all the desired tasks within each clock cycle. For slower clocks, with
frequencies on the order of tens of megahertz, you shouldn’t have any prob-
lems meeting timing. In general, it’s only when you deal with clocks that are
faster than 100 MHz that you may start to run into timing issues.

The clock period will vary from one development board to another,
and can be found in your board’s documentation. To tell Lattice iCEcube2
about the clock period, create a new text file with a .sdc file extension con-
taining something like the following:

create_clock -period 40.00 -name {i_Clk} [get_ports {i_Clk}]

This creates a clock with a 40 ns period (25 MHz frequency) and
assigns that constraint to the signal called i_Clk in your design. This con-
straint will work for the Go Board, as an example, but if your board has a
different clock period, replace 40.00 with the appropriate value.

Right-click Constraint Files under Synthesis Tool and select the
 .sdc file to add it to your project in iCEcube2. Remember from Chapter 2
that we previously had a single .pcf constraint file telling the tools which
signals to map to which pins. Now we have an additional constraint
file just for the clock. Both are critical for getting your FPGA to work
correctly.

We also need to update the .pcf file to include the pin corresponding
to the new clock signal. On the Go Board, for example, the clock is con-
nected to pin 15 of the FPGA, so you would need to add the following pin
constraint:

set_io i_Clk 15

Check the schematic for your development board to see which pin has
the clock as an input, and replace the 15 as appropriate.

Building and Programming the FPGA
You’re now ready to run the build. When you do this, the tools will generate
some reports. The synthesis report should look something like this:

--snip--
Resource Usage Report for LED_Toggle_Project

Mapping to part: ice40hx1kvq100
Cell usage:
SB_DFF 2 uses
SB_LUT4 1 use

I/O ports: 3
I/O primitives: 3

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

56 Chapter 4

SB_GB_IO 1 use
SB_IO 2 uses

I/O Register bits: 0
1 Register bits not including I/Os: 2 (0%)
Total load per clock:
 2 LED_Toggle_Project|i_Clk: 1
Mapping Summary:
3 Total LUTs: 1 (0%)

This report tells us that we’re using two register bits 1, meaning our
design includes two flip-flops. This is exactly what we expected. The report
also shows that we’re using one LUT 3. This single LUT will be able to per-
form both the AND and NOT operations required in the code. Notice, too,
that the tools identified the signal i_Clk as a clock 2.

Now let’s look at the place and route reports, which you can view in
iCEcube2 by going to P&R FlowOutput FilesReports. There are two
reports here. The first is a pin report, which tells you which signals were
mapped to which pins. You can use this to confirm that your signals were
mapped correctly. The second is the timing report. It has a section labeled
“Clock Frequency Summary” that should look something like this:

--snip--
 1::Clock Frequency Summary
==
Number of clocks: 1
Clock: i_Clk | Frequency: 654.05 MHz | Target: 25.00 MHz |
--snip--

This section tells you if the constraint file was accepted correctly. Here
we see that the tools have found our clock, i_Clk. The Target property indi-
cates the tools have recognized a 25 MHz constraint placed on the clock
(your number will vary, depending on your development board), while
the Frequency property tells us the maximum frequency at which the FPGA
could theoretically run our code successfully. In this case, we could run
this FPGA at 654.05 MHz and it would still be guaranteed to work correctly.
That’s quite fast! As long as the Frequency property is higher than the Target
property, you shouldn’t have any issues running your code. A problem
would show up here in the form of a timing error, which happens when the
target clock speed is greater than the frequency that the tools can achieve.
In Chapter 7, we’ll take a deeper look at what causes timing errors and how
to fix them.

Now that you’ve successfully built the FPGA design, you can program
your board and test the project. Try pushing the switch several times.
You should see the LED toggle on or off each time the switch is released.
Congratulations, you’ve got your first flip-flop working!

However, you may notice something strange going on. The LED may
not appear to change its state with each release. You might think that the
FPGA isn’t registering the releases of the switch, but in fact the LED is

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 57

toggling two or more times with each release, so quickly that your eyes
don’t see it. The cause is related to the physical workings of the switch itself.
To solve this issue, the switch needs to be debounced. You’ll learn what this
means and how to do it in the next chapter.

Combinational Logic vs. Sequential Logic
There are two kinds of logic that can take place inside an FPGA: combi-
national logic and sequential logic. Combinational logic is logic for which
the outputs are determined by the present inputs, with no memory of the
previous state. This kind of logic is achieved with LUTs, which you’ll recall
generate their output based only on their current inputs. Sequential logic, on
the other hand, is logic for which the outputs are determined both by pres-
ent inputs and previous outputs. Sequential logic is achieved with flip-flops,
since flip-flops don’t immediately register changes on their inputs to their
outputs, but rather wait until the rising edge of the clock to act on the new
input data.

N O T E 	 You may also see combinational logic and sequential logic referred to as combinato-
rial logic and synchronous logic, respectively.

It might not be obvious that a flip-flop’s output depends on its previous
output, so let’s explore an example to make this more concrete. Suppose
the flip-flop is enabled, its input is low, its clock is low, and the output is low.
Then suddenly the input goes high, then back low again quickly. What will
the output do? Nothing! It stays low, since there was no clock edge to trig-
ger a change. Now, what happens if that same flip-flop has the same initial
conditions, except the output is high? In this case, of course, the output will
stay high. But if we only looked at the inputs (D, En, and Clk), we would be
unable to predict the output state. You need to know what the output of the flip-
flop was (its previous state) to determine the flip-flop’s current state. That’s
why a flip-flop is sequential.

Knowing if your code is going to instantiate LUTs (combinational logic)
or flip-flops (sequential logic) is critical to being a good FPGA designer,
but sometimes it can be hard to tell the difference. In particular, an always
block (in Verilog) or process block (in VHDL) can define a block of either
combinational logic or sequential logic. We’ll consider examples of each to
see how they differ.

First, here’s an example of a combinational implementation in Verilog
and VHDL:

Verilog always @ (input_1 or input_2)
	 begin
		 and_gate <= input_1 & input_2;
	 end

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

58 Chapter 4

VHDL process (input_1, input_2)
begin
	 and_gate <= input_1 and input_2;
end process;

Here we’ve created an always or process block with a sensitivity list (the
signals in the parentheses) that includes two signals: input_1 and input_2.
The code block performs an AND operation on the two signals.

This block of Verilog or VHDL code will only generate LUTs; it won’t
generate any flip-flops. For our purposes, flip-flops require a clock input,
and there is no clock. Since no flip-flops are generated, this is combina-
tional logic.

Now consider a slight modification to the examples just shown:

Verilog always @ (posedge i_Clk)
	 begin
		 and_gate <= input_1 & input_2;
	 end

VHDL process (i_Clk)
begin
	 if rising_edge(i_Clk) then
		 and_gate <= input_1 and input_2;
	 end if;
end process;

This code looks very similar to the previous examples, except now the
always or process block’s sensitivity list has changed to be sensitive to the
signal i_Clk. Since the block is sensitive to a clock, it’s now considered
sequential logic. This block will actually still require a LUT to perform
the AND operation, but in addition to that the output will utilize a flip-
flop, since the clock is gating the output from updating all the time.

While all the examples in this section are valid code, I’m going to
make a suggestion, especially for FPGA beginners: when writing your
code, only create sequential always blocks (in Verilog) or process blocks
(in VHDL). The way to do this is to ensure that the block’s sensitivity
list only has a clock in it. (A clock and a reset is OK too, as we’ll discuss
later in the chapter.) Combinational always blocks and process blocks can
get you into trouble: you can generate a latch by accident. We’ll explore
latches in the next section, but basically, they’re bad. Additionally, I find
code is more readable if you know that every time you come across an
always block or process block, it will always be generating sequential logic.

As for combinational-only logic, write it outside of an always block or
process block. In Verilog, the keyword assign is useful. In VHDL, you can
simply use the <= assignment to create combinational logic.

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 59

The Dangers of Latches
A latch is a digital component that can store state without the use of a
clock. In this way, latches perform a similar function as flip-flops (namely,
storing state), but the method they use is different since there’s no clock
involved. Latches are dangerous and can be inadvertently generated when
working with combinational code. In my career, I’ve never once gener-
ated a latch on purpose, only by accident. It’s highly unlikely that you’d ever
actually want to generate a latch either, so it’s important to understand
how to avoid them.

You always want your FPGA designs to be predictable. Latches are
dangerous because they violate this principle. FPGA tools have a very dif-
ficult time understanding the timing relationship of a latch and how other
components connected to it will perform. If you do manage to create a
latch with your code, the FPGA tools will scream at you with warnings
about the fact that you’ve done a horrible thing. Please don’t ignore these
warnings.

So how can this happen? A latch is created when you write a combina-
tional process block or conditional assignment (in VHDL) or a combina-
tional always block (in Verilog) with an incomplete assignment, meaning the
output isn’t assigned under all possible input conditions. This is bad and
should be avoided. Table 4-1 shows an example of a truth table that would
generate a latch.

Table 4-1: A Truth Table That Creates a Latch

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 Undefined

This truth table has two inputs and one output. The output is 0 when
both inputs are 0, and it’s 1 when input A is 0 and input B is 1, or when
input A is 1 and input B is 0. But what happens when both inputs are 1? We
haven’t explicitly stated what will occur. In this case, the FPGA tools assume
that the output should retain its previous state, much like a flip-flop is capa-
ble of doing, but without the use of a clock. For example, if the output is 0
and both inputs go high, the output will stay 0. If the output is 1 and both
inputs go high, the output will stay 1. This is the behavior that a latch cre-
ates: the ability to store state without a clock.

Let’s take a look at how this truth table could be created in Verilog and
VHDL. Don’t write code like this!

Verilog 1 always @ (i_A or i_B)
begin
	 if (i_A == 1'b0 && i_B == 1'b0)
		 o_Q <= 1'b0;

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

60 Chapter 4

		     else if (i_A == 1'b0 && i_B == 1'b1)
			   o_Q <= 1'b1;
		     else if (i_A == 1'b1 && i_B == 1'b0)
			   o_Q <= 1'b1;
	 2 // Missing one last ELSE statement!
end

VHDL 1 process (i_A, i_B)
begin
	 if i_A = '0' and i_B = '0' then
		 o_Q <= '0';
	 elsif i_A = '0' and i_B = '1' then
		 o_Q <= '1';
	 elsif i_A = '1' and i_B = '0' then
		 o_Q <= '1';
2 -- Missing one last ELSE statement!
	 end if;
end process;

Here, our always or process block is combinational because there’s no
clock in the sensitivity list 1 or the block itself, just two inputs, i_A and i_B.
We mimic the incomplete truth table assignment of the output o_Q using
conditional checks. Notice that we don’t explicitly check the condition
where i_A and i_B are both 1. Big mistake!

If you were to try to synthesize this faulty code, the FPGA tools would
generate a latch and warn you about it in the synthesis report. The warning
would look something like this:

@W: CL118 :"C:\Test.v":8:4:8:5|Latch generated from always block for signal
o_Q; possible missing assignment in an if or case statement.

The tools are pretty good. They tell you that there’s a latch, they tell you
which signal it is (o_Q), and they tell you why it might be occurring.

To avoid generating a latch, we could add an else statement 2, which
will cover all remaining possibilities. As long as the output is defined for
all possible inputs, we’ll be safe. An even better solution, however, would
be not to use a combinational always or process block at all. I discourage
the use of combinational always or process blocks precisely because it’s easy
to make this mistake of omitting an else statement. Instead, we can use a
sequential always or process block. Here’s what that looks like:

Verilog 1 always @ (posedge i_Clk)
begin
	 if (i_A == 1'b0 && i_B == 1'b0)
		 o_Q <= 1'b0;
	 else if (i_A == 1'b0 && i_B == 1'b1)
		 o_Q <= 1'b1;
	 else if (i_A == 1'b1 && i_B == 1'b0)
		 o_Q <= 1'b1;
end

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 61

VHDL 1 process (i_Clk)
begin
	 if rising_edge(i_Clk) then
		 if i_A = '0' and i_B = '0' then
			 o_Q <= '0';
		 elsif i_A = '0' and i_B = '1' then
			 o_Q <= '1';
		 elsif i_A = '1' and i_B = '0' then
			 o_Q <= '1';
		 end if;
	 end if;
end process;

We now have a sequential always or process block, because we’re using a
clock in the sensitivity list 1 and within the block itself. As a result, o_Q will
create a flip-flop rather than a latch. Flip-flops don’t have the same unpre-
dictable timing issues that latches do. Remember that the flip-flop can
utilize its en input to retain a value. The flip-flop’s en input will be disabled
when i_A and i_B are both high. This will retain the flip-flop’s output with
whatever state it had previously, performing the same behavior as the latch,
but in a safe, predictable way.

One side effect of switching to a sequential always or process block is
that it now takes a single clock cycle for the output to be updated. If it’s
critical that this logic be combinational—with the output updating as soon
as one of the inputs changes, with no clock delay—then you need to ensure
that the output is specified for all possible input conditions.

There’s one other way to generate latches in VHDL. VHDL has the key-
word when, which can be used in a conditional assignment. Verilog has no
equivalent syntax, so this code snippet is for VHDL only:

o_Q <= '0' when (i_A = '0' and i_B = '0') else
	 '1' when (i_A = '0' and i_B = '1') else
	 '1' when (i_A = '1' and i_B = '0');

This code exists outside of a process block, and again we haven’t explic-
itly stated what o_Q should be assigned to when i_A and i_B are both 1, so the
FPGA tools will infer a latch here. The latch will enable the output to keep
its previous state, but that’s likely not what we intended. Instead, we should
be specific with our code and ensure that we have an else condition that
sets o_Q for all possible inputs.

Resetting a Flip-Flop
Flip-flops have an additional input that we haven’t discussed yet, called
set/reset, or often just reset. This pin resets the flip-flop back to an initial
state, which could be 0 or 1. Resetting flip-flops is useful when the FPGA
first powers up and initializes. For example, you might want to reset your
flip-flops that control a state machine to the initial state (we’ll discuss state
machines in Chapter 8). You might also want to reset a counter to some

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

62 Chapter 4

initial value, or reset a filter back to zero. Resetting flip-flops is one method
to ensure your flip-flops are in a specific state prior to operation.

There are two types of resets: synchronous and asynchronous. Synchronous
resets occur at the same time as the clock edge, whereas asynchronous resets
can occur at any time. You might trigger an asynchronous reset with a but-
ton press external to the FPGA, for example, since the button press can
come at any point in time. Let’s look at how to code a reset, starting with a
synchronous one:

Verilog 1 always @ (posedge i_Clk)
begin
2 if (i_Reset)
	 o_Q <= 1'b1;
3 else
--snip--

VHDL 1 process (i_Clk)
begin
	 if rising_edge(i_Clk) then
	 2 if i_Reset = '1' then
		 o_Q <= '1';
	 3 else
--snip--

Here we have an always or process block with a normal sensitivity list; it’s
only sensitive to changes of the clock 1. Inside the block, we first check the
state of i_Reset 2. If it’s high, then we reset the signal o_Q to 1. This is our
synchronous reset, since it’s happening on the edge of the clock. If i_Reset
is low, we proceed with the else branch of the block 3, where we’d write
whatever code we want to be executed under normal operating (non-reset)
conditions.

Notice that in this example we’re checking if the reset is high. Sometimes
resets can be active low, however, which is usually indicated by _L or _n at
the end of the signal name. If this were an active low reset, we would check
for the signal being 0 rather than 1.

Now let’s take a look at an asynchronous reset:

Verilog 1 always @ (posedge i_Clk or i_Reset)
begin
2 if (i_Reset)
	 o_Q <= 1'b1;
3 else
--snip--

VHDL 1 process (i_Clk, i_Reset)
begin
2 if (i_Reset = '1') then
	 o_Q <= '1';

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 63

3 elsif rising_edge(i_Clk) then
--snip--

Notice that we’ve added i_Reset into the always or process block’s sensi-
tivity list 1. Now, rather than checking the clock state first, we check the
reset state first 2. If it’s high, then we perform whatever reset conditions we
want, in this case setting o_Q to 1. Otherwise, we proceed normally 3.

The choice between synchronous and asynchronous resets should be
documented in the user guide for your specific FPGA—some FPGAs are opti-
mized to handle one or the other. Additionally, resets can create strange bugs
if they’re not treated properly. Therefore, I strongly recommend consulting the
documentation to make sure you’re resetting flip-flops correctly for your device.

Look-Up Tables and Flip-Flops on a Real FPGA
Now you understand that LUTs and flip-flops exist on FPGAs, but they may
still seem a bit abstract. To get a more concrete picture, let’s look at how
LUTs and flip-flops are actually wired together in a real FPGA. The image
in Figure 4-10 is taken from the datasheet for the Lattice iCE40 LP/HX
family of FPGAs, the type of FPGA compatible with iCEcube2.

Datasheets are used throughout the electronics industry to explain
the details of how a component works. Each FPGA will have at least a few
unique datasheets with different pieces of information, and more compli-
cated FPGAs can have dozens of them.

Figure 4-10: LUTs and flip-flops in a real FPGA

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

64 Chapter 4

Every FPGA, whether from Lattice, AMD, Intel, or whoever else, will
have an image very similar to Figure 4-10 in its specific family datasheet.
This particular image shows the basic building block of Lattice iCE40
FPGAs, which Lattice calls the Programmable Logic Block (PLB). Each FPGA
company has its own unique name for these basic building blocks; for
example, AMD calls them Configurable Logic Blocks (CLBs), while Intel uses
Adaptive Logic Modules (ALMs). We’ll look at the details of how the PLB from
Lattice works as an example.

Looking at the left side of the image, we see there are eight logic cells in
each PLB. The right side shows a zoomed-in version of a single logic cell. Inside
it, notice that there’s a rectangle labeled LUT4. This is a four-input look-up
table! There’s also a dark gray box labeled DFF. This is a D flip-flop! The LUT
and the flip-flop truly are the two most critical components inside an FPGA.

This diagram is telling us that at the most fundamental level there’s one
LUT and one flip-flop inside each logic cell, and there are eight logic cells
in a PLB. The PLB is copy-pasted hundreds or thousands of times inside the
FPGA to provide enough LUTs and flip-flops to do all the required work.

On the left side of the DFF component (the flip-flop), notice the same
three inputs we originally saw in Figure 4-1: data (D), clock enable (EN),
and clock (>). The fourth input at the bottom of the component is the
set/reset (SR) input we discussed in the previous section.

As you’ve seen, the clock enable input allows the flip-flop to keep its
output state for multiple clock cycles. Without the En input, the output
would just follow the input with one clock cycle of delay. Adding the En
input lets the flip-flop store a state for a longer duration.

The last thing to notice in the diagram is the carry logic block, shown
above and to the left of the LUT4. This block is mostly used to speed up
arithmetic functions, such as addition, subtraction, and comparison.

While reviewing this diagram gave us an interesting look inside an
FPGA and highlighted the central role of the LUT and the flip-flop, it isn’t
critical to memorize every detail of the PLB’s architecture. You don’t need
to remember all the connections and how each is wired to its neighbor. In
the real world, you write your Verilog or VHDL, and the FPGA tools take
care of mapping that code onto the FPGA’s resources. This is particularly
useful if you want to switch from one type of FPGA to another (say, from
a Lattice to an AMD). The beauty of Verilog and VHDL is that the code is
generally portable; the same code works on different FPGAs, provided they
have enough LUTs and flip-flops to do what you want.

Summary
In this chapter you learned about the flip-flop, which, along with the LUT,
is one of the two most important components in an FPGA. You saw how flip-
flops allow FPGAs to keep state, or remember past values, by only register-
ing data from the input to the output on the positive edges of a clock signal.
You learned how logic driven by flip-flops and clock signals is sequential, in
contrast to the combinational logic of LUTs, and you got your first glimpse

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

Storing State with the Flip-Flop 65

of how flip-flops and LUTs work together through a project toggling an
LED. You also learned how to avoid generating latches and how to reset a
flip-flop to a default state.

In future chapters, as you build more complex blocks of code, you’ll
become more familiar with how flip-flops and LUTs interact and see how
you can use just these two kinds of components to create large, sophisti-
cated FPGA designs. You’ll also see the role flip-flops play in keeping track
of counters and state machines.

Getting Started with PFGAs (Sample Chapter) © 8/16/23 by Russell Merrick

