
Alongside the look-up table, the other main 
component in an FPGA is the flip-flop. Flip-

flops give FPGAs the ability to remember, or 
store, state. In this chapter, we’ll explore how 

flip-flops work and learn why they’re important to the 
functioning of FPGAs.

Flip-flops make up for a shortcoming of look-up tables. LUTs generate 
output as soon as they’re provided input. If all you had to work with was 
LUTs, your FPGA could perform all the Boolean algebra you might want, 
but your outputs would be determined solely based on the current inputs. 
The FPGA would know nothing about its past state. This would be very 
limiting. Implementing a counter would be impractical, since a counter 
requires knowledge of a previous value that can be incremented; so would 
storing the result of some math operation as a variable. Even something as 
critical as having a concept of time is impractical with just LUTs; you can 
only calculate values based on the now, not on anything in the past. The 

4
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flip-flop enables these interesting capabilities, which is why it’s critical to 
the operation of an FPGA.

How a Flip-Flop Works
A flip-flop stores state in the form of a high or low voltage, corresponding 
to a binary 1 or 0 or a true/false value. It does this by periodically checking 
the value on its input, passing that value along to its output, and holding  
it there. Consider the basic diagram of a D flip-flop shown in Figure 4-1.  
D flip-flops are the most common type of flip-flop in FPGAs, and they’re 
the focus of this chapter. (I’ll drop the D in front of flip-flop going forward.)

D
En
>

Q

Figure 4-1: A diagram  
of a D flip-flop

Notice that the component has three inputs on the left and one output 
on the right. The top-left input, labeled D, is the data input to the flip-flop. 
It’s where data, in the form of 1s or 0s, comes in. The bottom-left input, 
labeled with what looks like a greater-than (>) sign, is the clock input, which 
synchronizes the performance of the flip-flop. At regular intervals, the 
clock input triggers the flip-flop to take the value from the data input and 
pass it to the output (labeled Q in the diagram).

The middle-left input, labeled En, is the clock enable. As long as the clock 
enable is high, the clock input will continue to trigger the flip-flop to update 
its output. If the clock enable input goes low, however, the flip-flop will ignore 
its clock and data inputs, essentially freezing its current output value.

To better understand how a flip-flop operates, we need to look more 
closely at the signal coming in to the clock input.

F L IP-F LOP COMPONEN T T ER MINOLOG Y

The component presented in Figure 4-1, a flip-flop with a clock enable pin, isn’t 
always called a flip-flop. FPGA manufacturers such as AMD and Intel do in fact 
use that terminology in their reference information, but a more technically accu-
rate name is a clocked D latch. It’s not valuable getting into the details about 
why one name is better than another; instead, for the purposes of this book, 
we’ll use the real-world terminology that the FPGA manufacturers use and refer 
to these components as flip-flops.
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The Clock Signal
A clock signal, often just called a clock, is a digital signal that steadily alter-
nates between high and low, as shown in Figure 4-2. This signal is usually 
provided via a dedicated electronic component external to the FPGA. A 
clock is key to how FPGAs operate: it triggers other components, such as 
flip-flops, to perform their tasks. If you think of an FPGA as a set of gears, 
the clock is like the big gear that turns all the other gears. If the main 
gear isn’t spinning, the others won’t spin either. You could also think of 
the clock as the heart of the system, since it keeps the beat for the entire 
FPGA. Every flip-flop in the FPGA will be updated on the pulse of the 
clock’s heartbeat.

Rising edge Falling edge

One clock period 50% duty cycle

Time

0

1

Figure 4-2: A clock signal

Notice the vertical lines in the clock signal diagram, where the signal 
jumps from low to high or high to low. These abrupt changes in the signal 
are called edges. When the clock goes from low to high, it’s called a rising 
edge, and when it goes from high to low, it’s called a falling edge. Flip-flops 
are conventionally triggered on each rising edge of the clock: whenever the 
clock signal changes from low to high, the flip-flop updates its output to 
match its data input.

N O T E 	 It’s possible to trigger a flip-flop with the falling edges of a clock, but this is much less 
common than using the rising edge.

Every clock has a duty cycle, the fraction of time that the signal is high. 
For example, a signal with a 25 percent duty cycle is high one-quarter of 
the time and low three-quarters of the time. Almost all clocks, including 
the one shown in Figure 4-2, have a 50 percent duty cycle: they’re half-on, 
half-off.

A clock also has a frequency, which is the number of repetitions from low 
to high and back again (called a cycle) in a second. Frequency is measured 
in hertz (Hz), or cycles per second. You may be familiar with your computer’s 
CPU frequency, which can be measured in gigahertz (GHz), where 1 GHz 
is 1 billion Hz. FPGAs don’t often run quite that quickly. More commonly, 
FPGA clock signals run in the tens to hundreds of megahertz (MHz), where 
1 MHz is 1 million Hz. As an example, the clock on the Go Board (discussed 
in Appendix A) runs at 25 MHz, or 25 million cycles per second.

Another way to describe a clock’s speed is to refer to its period, the  
duration of a single clock cycle. You can calculate the period by finding  
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1 ÷ frequency. In the case of the Go Board, for instance, the clock period is 
40 nanoseconds (ns).

A Flip-Flop in Action
A flip-flop operates on the transitions of its clock input. As mentioned 
previously, when a flip-flop sees a rising edge of the clock, it checks the 
state of the data input signal and replicates it at the output—assuming the 
clock enable pin is set to high. This process is called registering, as in, “the 
flip-flop registers the input data.” Thanks to this terminology, a group of 
flip-flops is known as a register, and by extension, a single flip-flop can also 
be called a one-bit register. One flip-flop by itself is able to register a single 
bit of data.

To see how registering works in practice, we’ll examine a few example 
inputs to a flip-flop and their corresponding outputs. First, consider 
Figure 4-3.

Clk
D
Q

1 2 3

Figure 4-3: An example of  
flip-flop behavior

This figure shows three waveforms: the top one (Clk) represents an 
FPGA’s clock signal, the middle one (D) is the data input of a flip-flop, and 
the bottom one (Q) is the flip-flop’s output. Let’s assume the clock enable 
is high, so the flip-flop is always enabled. We can see the waveforms across 
three cycles of the clock; the rising edge of each clock cycle is indicated 
with the numbers 1, 2, and 3. In between the first and second rising edges 
of the clock, the D input goes from low to high, but notice that the output 
doesn’t immediately go high when the input does. Instead, it takes a bit 
of time for the flip-flop to register the change in the input. Specifically, 
it takes until the next rising clock edge for the flip-flop output to follow the 
input.

The flip-flop looks at the input data and makes the output match the 
input only at the rising edge of the clock, never between edges. In this case, 
at the rising edge of the second clock cycle, the output Q sees that D has 
gone from low to high. At this point, Q takes on the same value as D. On 
the third rising edge, Q again checks the value of D and registers it. Since D 
hasn’t changed, Q stays high. Q also registered D at the rising edge of the 
first clock cycle, but since both D and Q were low at that point, Q didn’t 
change.

Now consider Figure 4-4, which shows how a flip-flop responds to 
another example scenario.
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Clk
D
Q

1 2 3 4 5

Figure 4-4: Another example of flip-flop behavior

Here we again see a flip-flop operating over several cycles of the clock. 
Again, let’s assume the flip-flop is always enabled. Between the clock’s first and 
second rising edges, input D goes from low to high. On the second rising edge, 
Q sees that D has gone high, so it toggles from low to high as well. On the third 
rising edge, Q sees D has stayed high, so it stays high, too. Between the third 
and fourth rising edges, D goes low, and the output similarly goes low on the 
fourth rising edge. On the last rising edge, D is still low, so Q stays low as well.

The previous examples have all assumed the clock enable input is high. 
Let’s now show what happens when the flip-flop’s clock enable isn’t always 
high. Figure 4-5 shows the exact same Clk and D waveforms as Figure 4-4, 
but instead of the clock enable remaining high the whole time, it’s only 
high at the third rising edge.

Clk

D
Q

1 2 3 4 5

En

Figure 4-5: Flip-flop behavior with the clock  
enable signal

With the clock enable (En) now in play, a completely different output 
Q is generated. Q no longer “sees” that D has gone high on clock cycle two, 
since the clock enable is low at that point. Instead, Q only changes its out-
put from low to high on clock cycle three, when the clock enable is high. 
On clock cycle four, D has gone low, but Q doesn’t follow D. Instead, it stays 
high. This is because the clock enable has gone low at that point, locking the 
output in place. The flip-flop will no longer register any changes on D to Q.

These examples demonstrate flip-flop behavior, showing how a flip-flop’s 
activity is coordinated by a clock. Additionally, we’ve seen how turning off 
the clock enable pin allows flip-flops to retain state, even when the input D is 
changing. This gives flip-flops the ability to store data for a long time.

A Chain of Flip-Flops
Flip-flops are commonly chained together, with the output from one flip-
flop going directly into the data input of another flip-flop. For example, 
Figure 4-6 shows a chain of four flip-flops. For simplicity, let’s assume these 
are always enabled.
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D Q

>

D Q

>

D Q

>

D Q

>

test1 test2 test3 test4

Clk

Figure 4-6: A chain of four flip-flops

The four flip-flops, labeled test1 through test4, are chained such that 
the output of test1 goes to the input of test2, the output of test2 goes to the 
input of test3, and so on. All four flip-flops are driven by the same clock. 
The clock synchronizes their operation: with each rising edge of the clock, 
all four flip-flops will check the value on their input and register that value 
to their output.

Suppose the test1 flip-flop registers a change at its input. Figure 4-7 
illustrates how that change will propagate through the flip-flop chain, all 
the way to the output of test4.

Clk
test1_d

test1_q

test2_q

test3_q

test4_q

1 2 3 4 5 6

Figure 4-7: A change of input propagating through the  
flip-flop chain

The figure shows waveforms for the clock signal, the input and output of 
the test1 flip-flop (test1_d and test1_q, respectively), and the output of each 
subsequent flip-flop. On the first clock cycle rising edge (labeled 1), test1_d is 
low, so test1_q stays low as well. It’s not until the second rising clock edge that 
the first flip-flop “sees” that the input has changed to high and registers that 
to its output. The test1 flip-flop’s output is also the input to the test2 flip-flop, 
but notice that the output of test2 doesn’t immediately change to high when 
the output of test1 does. Instead, test2_q changes one clock cycle later, on the 
third rising clock edge. Then, on the fourth rising edge, we see test3_q go 
high, and finally on the fifth rising edge test4_q goes high and stays high.

By adding three flip-flops behind test1, we’ve delayed the output by 
three clock cycles as the signal propagates through the chain. Each flip-flop 
in the chain adds a single clock cycle of delay. This technique of delaying 
signals by adding a chain of flip-flops is a useful design practice when work-
ing with FPGAs. Among other things, designers may chain flip-flops to 
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create circuits that can delay or remember data for some amount of time, or 
to convert serial data to parallel data (or vice versa).

OT HER KINDS OF F L IP-F LOP S

In this chapter we’re focusing on the D flip-flop. If you’ve taken a digital electron-
ics course in college, there’s a good chance your professor spent time talking 
about other types of flip-flops as well, including the T flip-flop and the JK flip-
flop. In practice, however, you’re unlikely to need to know anything about these 
other types of flip-flops to use an FPGA, as most FPGAs are made with D flip-
flops. For this reason, I won’t burden you with information about how the other 
kinds of flip-flops work, although it’s important to acknowledge that they exist. 

Project #3: Blinking an LED
Now that you know how flip-flops work, we’ll make use of a couple of them 
in a project where the FPGA must remember information about its own 
state. Specifically, we’re going to toggle the state of an LED each time a 
switch is released. If the LED was off before the switch is released, it should 
turn on, and if the LED was on, it should turn off.

This project uses two flip-flops. The first is for remembering the state 
of the LED: whether it’s on or off. Without this memory, the FPGA would 
have no way of knowing whether to toggle the LED each time the switch is 
released; it won’t know if the LED is on and needs to be turned off, or off 
and needs to be turned on.

The second flip-flop allows the FPGA to detect when the switch is released. 
Specifically, we’re looking for the falling edge of the switch’s electrical sig-
nal: its transition from high to low. A good way to look for a falling edge in 
an FPGA is to register the signal in question by passing it through a flip-flop. 
When the input value of the flip-flop (that is, the unregistered value) is equal 
to 0 but the previous output value (the registered value) is equal to 1, then we 
know that a falling edge has occurred. The falling edge of the switch is not to 
be confused with the rising edge of the clock; we’re still using the rising edge of 
the clock to drive all of our flip-flops. Figure 4-8 shows the pattern to look for.

i_Clk

i_Switch_1

r_Switch_1

Falling edge 
  detection

Figure 4-8: Falling edge detection using flip-flop
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Here, i_Clk is the clock signal; i_Switch_1 represents the electrical sig-
nal from the switch, which passes into a flip-flop; and r_Switch_1 is the flip-
flop’s output. At the circled rising clock edge, we can see that i_Switch_1 
is low, but r_Switch_1 is high. This pattern is how we can detect the falling 
edge of a signal. One thing to note is that while r_Switch_1 does go low on 
the rising clock edge, when the logic evaluates the state of r_Switch_1 at 
that same rising clock edge, it will still “see” that r_Switch_1 is high. Only 
after some small delay will the output of r_Switch_1 go low, following the 
state of i_Switch_1.

This project will also require some logic between the two flip-flops, 
which will be implemented in the form of a LUT. This will be your  
first glimpse of how flip-flops and LUTs work together in an FPGA to  
accomplish tasks. Figure 4-9 shows an overall block diagram for this 
project.

SW1 D1

FPGA

Falling
edge

detection

Figure 4-9: The Project #3 block diagram

The output of one of the switches on your development board (SW1) 
goes into the FPGA, where the falling edge detection logic is implemented. 
The output of this logic drives one of the board’s LEDs (D1). Now we’ll look 
at how to implement this design. 

Writing the Code
We can write our LED-toggling code using Verilog or VHDL:

Verilog module LED_Toggle_Project(
	 input  i_Clk,
	 input  i_Switch_1,
	 output o_LED_1);

1 reg r_LED_1    = 1'b0;
	 reg r_Switch_1 = 1'b0;

2 always @(posedge i_Clk)
	 begin
	 3 r_Switch_1 <= i_Switch_1;

	 4 if (i_Switch_1 == 1'b0 && r_Switch_1 == 1'b1)
    begin
	   5 r_LED_1 <= ~r_LED_1;
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	   end
	 end

	 assign o_LED_1 = r_LED_1;

endmodule

VHDL library ieee;
use ieee.std_logic_1164.all;

entity LED_Toggle_Project is
	 port (
		  i_Clk      : in  std_logic;
		  i_Switch_1 : in  std_logic;
		  o_LED_1    : out std_logic
	 );
end entity LED_Toggle_Project;

architecture RTL of LED_Toggle_Project is

1 signal r_LED_1    : std_logic := '0';
	 signal r_Switch_1 : std_logic := '0';

begin

2 process (i_Clk) is
  begin
		  if rising_edge(i_Clk) then
		  3 r_Switch_1 <= i_Switch_1;
		  4 if i_Switch_1 = '0' and r_Switch_1 = '1' then
			   5 r_LED_1 <= not r_LED_1;
			   end if;
		  end if;
	 end process;

	 o_LED_1 <= r_LED_1;

end architecture RTL;

We begin by defining two inputs (the clock and the switch) and a single 
output (the LED). Then we create two signals 1  : r_LED_1 and r_Switch_1. We 
do this using the reg keyword (short for register) in Verilog, or the signal key-
word in VHDL. Ultimately these signals will be implemented as flip-flops, 
or registers, so we prefix their names with the letter r. It’s good practice 
to label any signals that you know will become registers r_signal_name, as it 
helps keep your code organized and easy to search.

Next, we initiate what’s known as an always block in Verilog or a process 
block in VHDL 2. This type of code block is triggered by changes in one or 
more signals, as specified by the code block’s sensitivity list, which is given in 
parentheses when the block is declared. In this case, the block is sensitive to 
the clock signal, i_Clk. Specifically, this block will be triggered any time the 
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clock changes from a 0 to a 1; that is, at each rising clock edge. Remember, 
when you use a clock to trigger logic within your FPGA, you’ll almost always 
be using the clock’s rising edges. In Verilog, we indicate this with the key-
word posedge (short for positive edge, another term for rising edge) within the 
sensitivity list itself: always @(posedge i_Clk). In VHDL, however, we only put 
the signal name in the sensitivity list, and specify to watch for rising edges 
two lines later, with if rising_edge(i_Clk) then.

Within the always or process block, we create the first flip-flop of this proj-
ect by taking the input signal i_Switch_1 and registering it into r_Switch_1 3. 
This line of code will generate a flip-flop with i_Switch_1 on the D input, 
r_Switch_1 on the Q output, and i_Clk going into the clock input. The output 
of this flip-flop will generate a one-clock-cycle delay of any changes to the 
input. This effectively gives us access to the previous state of the switch, which 
we need to know in order to detect the falling edge of the switch’s signal.

We next check to see if the switch has been released 4. To do this, we 
compare the current state of the switch with its previous state, using the 
flip-flop we just created 3. If the current state (i_Switch_1) is 0 and the pre-
vious state (r_Switch_1) is 1, then we’ve detected a falling edge, meaning the 
switch has been released. The and check will be accomplished with a LUT.

At this point, perhaps you’ve noticed something surprising. First we 
assigned i_Switch_1 to r_Switch_1 3, then we checked if i_Switch_1 is 0 and 
r_Switch_1 is 1 4. You might think that since we just assigned i_Switch_1 to  
r_Switch_1, they’d always be equal, and the if statement would never be 
true. Right? Wrong! Assignments in an always or process block that use  
<= don’t occur immediately. Instead, they take place on each rising edge of 
the clock and therefore are all executed at the same time. If at a rising clock edge 
i_Switch_1 is 0 and r_Switch_1 is 1, the if statement will evaluate as true, even 
as r_Switch_1 is simultaneously switching from a 1 to a 0 to match i_Switch_1.

Now we’re thinking in parallel instead of serially! We’ve generated 
assignments that occur all at once, instead of one at a time. This is com-
pletely different from traditional programming languages like C and 
Python, where assignments occur one after the other. To further drive this 
point home, you could move the assignment of r_Switch_1 to the last line 
of the always or process block, and everything would still work the same. 
Formally, we call the <= assignment a non-blocking assignment, meaning it 
doesn’t prevent (“block”) other assignments from taking place at the same 
time. In Chapter 10, we’ll revisit this concept and compare non-blocking 
assignments with blocking assignments.

Once we’re inside the if statement, we toggle the state of the LED 5. 
Doing so generates the second flip-flop used in this project. We take the cur-
rent value of r_LED_1, invert it, and store the result back into the flip-flop. That 
might sound impossible, but it’s perfectly valid. The output of the flip-flop will 
pass through a LUT, acting here as a NOT gate, and then be fed back into the 
flip-flop’s input. This way, if the LED was on it’ll turn off, and vice versa.

Adding Constraints
Once the code is ready, it’s time to run the tools to build the FPGA image 
and program your board. First, since this project uses a clock, you need to 
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add a constraint telling the FPGA tool about the clock’s period. The clock 
period tells the timing tool how much time is available to route wires between 
flip-flops. As clock speed increases, it gets harder for the FPGA to meet timing, 
or achieve all the desired tasks within each clock cycle. For slower clocks, with 
frequencies on the order of tens of megahertz, you shouldn’t have any prob-
lems meeting timing. In general, it’s only when you deal with clocks that are 
faster than 100 MHz that you may start to run into timing issues.

The clock period will vary from one development board to another, 
and can be found in your board’s documentation. To tell Lattice iCEcube2 
about the clock period, create a new text file with a .sdc file extension con-
taining something like the following:

create_clock  -period 40.00 -name {i_Clk} [get_ports {i_Clk}]

This creates a clock with a 40 ns period (25 MHz frequency) and 
assigns that constraint to the signal called i_Clk in your design. This con-
straint will work for the Go Board, as an example, but if your board has a 
different clock period, replace 40.00 with the appropriate value.

Right-click Constraint Files under Synthesis Tool and select the 
 .sdc file to add it to your project in iCEcube2. Remember from Chapter 2 
that we previously had a single .pcf constraint file telling the tools which 
signals to map to which pins. Now we have an additional constraint 
file just for the clock. Both are critical for getting your FPGA to work 
correctly.

We also need to update the .pcf file to include the pin corresponding 
to the new clock signal. On the Go Board, for example, the clock is con-
nected to pin 15 of the FPGA, so you would need to add the following pin 
constraint:

set_io i_Clk 15

Check the schematic for your development board to see which pin has 
the clock as an input, and replace the 15 as appropriate.

Building and Programming the FPGA
You’re now ready to run the build. When you do this, the tools will generate 
some reports. The synthesis report should look something like this:

--snip--
Resource Usage Report for LED_Toggle_Project

Mapping to part: ice40hx1kvq100
Cell usage:
SB_DFF 2 uses
SB_LUT4 1 use

I/O ports: 3
I/O primitives: 3
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SB_GB_IO 1 use
SB_IO 2 uses

I/O Register bits: 0
1 Register bits not including I/Os: 2 (0%)
Total load per clock:
 2 LED_Toggle_Project|i_Clk: 1
Mapping Summary:
3 Total LUTs: 1 (0%)

This report tells us that we’re using two register bits 1, meaning our 
design includes two flip-flops. This is exactly what we expected. The report 
also shows that we’re using one LUT 3. This single LUT will be able to per-
form both the AND and NOT operations required in the code. Notice, too, 
that the tools identified the signal i_Clk as a clock 2.

Now let’s look at the place and route reports, which you can view in 
iCEcube2 by going to P&R FlowOutput FilesReports. There are two 
reports here. The first is a pin report, which tells you which signals were 
mapped to which pins. You can use this to confirm that your signals were 
mapped correctly. The second is the timing report. It has a section labeled 
“Clock Frequency Summary” that should look something like this:

--snip--
 1::Clock Frequency Summary
==========================================================
Number of clocks: 1
Clock: i_Clk | Frequency: 654.05 MHz | Target: 25.00 MHz |
--snip--

This section tells you if the constraint file was accepted correctly. Here 
we see that the tools have found our clock, i_Clk. The Target property indi-
cates the tools have recognized a 25 MHz constraint placed on the clock 
(your number will vary, depending on your development board), while 
the Frequency property tells us the maximum frequency at which the FPGA 
could theoretically run our code successfully. In this case, we could run 
this FPGA at 654.05 MHz and it would still be guaranteed to work correctly. 
That’s quite fast! As long as the Frequency property is higher than the Target 
property, you shouldn’t have any issues running your code. A problem 
would show up here in the form of a timing error, which happens when the 
target clock speed is greater than the frequency that the tools can achieve. 
In Chapter 7, we’ll take a deeper look at what causes timing errors and how 
to fix them.

Now that you’ve successfully built the FPGA design, you can program 
your board and test the project. Try pushing the switch several times. 
You should see the LED toggle on or off each time the switch is released. 
Congratulations, you’ve got your first flip-flop working!

However, you may notice something strange going on. The LED may 
not appear to change its state with each release. You might think that the 
FPGA isn’t registering the releases of the switch, but in fact the LED is 
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toggling two or more times with each release, so quickly that your eyes 
don’t see it. The cause is related to the physical workings of the switch itself. 
To solve this issue, the switch needs to be debounced. You’ll learn what this 
means and how to do it in the next chapter.

Combinational Logic vs. Sequential Logic
There are two kinds of logic that can take place inside an FPGA: combi-
national logic and sequential logic. Combinational logic is logic for which 
the outputs are determined by the present inputs, with no memory of the 
previous state. This kind of logic is achieved with LUTs, which you’ll recall 
generate their output based only on their current inputs. Sequential logic, on 
the other hand, is logic for which the outputs are determined both by pres-
ent inputs and previous outputs. Sequential logic is achieved with flip-flops, 
since flip-flops don’t immediately register changes on their inputs to their 
outputs, but rather wait until the rising edge of the clock to act on the new 
input data.

N O T E 	 You may also see combinational logic and sequential logic referred to as combinato-
rial logic and synchronous logic, respectively.

It might not be obvious that a flip-flop’s output depends on its previous 
output, so let’s explore an example to make this more concrete. Suppose 
the flip-flop is enabled, its input is low, its clock is low, and the output is low. 
Then suddenly the input goes high, then back low again quickly. What will 
the output do? Nothing! It stays low, since there was no clock edge to trig-
ger a change. Now, what happens if that same flip-flop has the same initial 
conditions, except the output is high? In this case, of course, the output will 
stay high. But if we only looked at the inputs (D, En, and Clk), we would be 
unable to predict the output state. You need to know what the output of the flip-
flop was (its previous state) to determine the flip-flop’s current state. That’s 
why a flip-flop is sequential.

Knowing if your code is going to instantiate LUTs (combinational logic) 
or flip-flops (sequential logic) is critical to being a good FPGA designer, 
but sometimes it can be hard to tell the difference. In particular, an always 
block (in Verilog) or process block (in VHDL) can define a block of either 
combinational logic or sequential logic. We’ll consider examples of each to 
see how they differ.

First, here’s an example of a combinational implementation in Verilog 
and VHDL:

Verilog always @ (input_1 or input_2)
	 begin
		  and_gate <= input_1 & input_2;
	 end
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VHDL process (input_1, input_2)
begin
	 and_gate <= input_1 and input_2;
end process;

Here we’ve created an always or process block with a sensitivity list (the 
signals in the parentheses) that includes two signals: input_1 and input_2. 
The code block performs an AND operation on the two signals.

This block of Verilog or VHDL code will only generate LUTs; it won’t 
generate any flip-flops. For our purposes, flip-flops require a clock input, 
and there is no clock. Since no flip-flops are generated, this is combina-
tional logic.

Now consider a slight modification to the examples just shown:

Verilog always @ (posedge i_Clk)
	 begin
		  and_gate <= input_1 & input_2;
	 end

VHDL process (i_Clk)
begin
	 if rising_edge(i_Clk) then
		  and_gate <= input_1 and input_2;
	 end if;
end process;

This code looks very similar to the previous examples, except now the 
always or process block’s sensitivity list has changed to be sensitive to the  
signal i_Clk. Since the block is sensitive to a clock, it’s now considered 
sequential logic. This block will actually still require a LUT to perform 
the AND operation, but in addition to that the output will utilize a flip-
flop, since the clock is gating the output from updating all the time.

While all the examples in this section are valid code, I’m going to 
make a suggestion, especially for FPGA beginners: when writing your 
code, only create sequential always blocks (in Verilog) or process blocks 
(in VHDL). The way to do this is to ensure that the block’s sensitivity 
list only has a clock in it. (A clock and a reset is OK too, as we’ll discuss 
later in the chapter.) Combinational always blocks and process blocks can 
get you into trouble: you can generate a latch by accident. We’ll explore 
latches in the next section, but basically, they’re bad. Additionally, I find 
code is more readable if you know that every time you come across an 
always block or process block, it will always be generating sequential logic.

As for combinational-only logic, write it outside of an always block or 
process block. In Verilog, the keyword assign is useful. In VHDL, you can 
simply use the <= assignment to create combinational logic. 
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The Dangers of Latches
A latch is a digital component that can store state without the use of a 
clock. In this way, latches perform a similar function as flip-flops (namely, 
storing state), but the method they use is different since there’s no clock 
involved. Latches are dangerous and can be inadvertently generated when 
working with combinational code. In my career, I’ve never once gener-
ated a latch on purpose, only by accident. It’s highly unlikely that you’d ever 
actually want to generate a latch either, so it’s important to understand 
how to avoid them.

You always want your FPGA designs to be predictable. Latches are 
dangerous because they violate this principle. FPGA tools have a very dif-
ficult time understanding the timing relationship of a latch and how other 
components connected to it will perform. If you do manage to create a 
latch with your code, the FPGA tools will scream at you with warnings 
about the fact that you’ve done a horrible thing. Please don’t ignore these 
warnings.

So how can this happen? A latch is created when you write a combina-
tional process block or conditional assignment (in VHDL) or a combina-
tional always block (in Verilog) with an incomplete assignment, meaning the 
output isn’t assigned under all possible input conditions. This is bad and 
should be avoided. Table 4-1 shows an example of a truth table that would 
generate a latch.

Table 4-1: A Truth Table That Creates a Latch

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 Undefined

This truth table has two inputs and one output. The output is 0 when 
both inputs are 0, and it’s 1 when input A is 0 and input B is 1, or when 
input A is 1 and input B is 0. But what happens when both inputs are 1? We 
haven’t explicitly stated what will occur. In this case, the FPGA tools assume 
that the output should retain its previous state, much like a flip-flop is capa-
ble of doing, but without the use of a clock. For example, if the output is 0 
and both inputs go high, the output will stay 0. If the output is 1 and both 
inputs go high, the output will stay 1. This is the behavior that a latch cre-
ates: the ability to store state without a clock.

Let’s take a look at how this truth table could be created in Verilog and 
VHDL. Don’t write code like this!

Verilog 1 always @ (i_A or i_B)
begin
	 if (i_A == 1'b0 && i_B == 1'b0)
		  o_Q <= 1'b0;
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		       else if (i_A == 1'b0 && i_B == 1'b1)
			     o_Q <= 1'b1;
		       else if (i_A == 1'b1 && i_B == 1'b0)
			     o_Q <= 1'b1;
	 2 // Missing one last ELSE statement!
end

VHDL 1 process (i_A, i_B)
begin
	 if i_A = '0' and i_B = '0' then
		  o_Q <= '0';
	 elsif i_A = '0' and i_B = '1' then
		  o_Q <= '1';
	 elsif i_A = '1' and i_B = '0' then
		  o_Q <= '1';
2 -- Missing one last ELSE statement!
	 end if;
end process;

Here, our always or process block is combinational because there’s no 
clock in the sensitivity list 1 or the block itself, just two inputs, i_A and i_B. 
We mimic the incomplete truth table assignment of the output o_Q using 
conditional checks. Notice that we don’t explicitly check the condition 
where i_A and i_B are both 1. Big mistake!

If you were to try to synthesize this faulty code, the FPGA tools would 
generate a latch and warn you about it in the synthesis report. The warning 
would look something like this:

@W: CL118 :"C:\Test.v":8:4:8:5|Latch generated from always block for signal
o_Q; possible missing assignment in an if or case statement.

The tools are pretty good. They tell you that there’s a latch, they tell you 
which signal it is (o_Q), and they tell you why it might be occurring.

To avoid generating a latch, we could add an else statement 2, which 
will cover all remaining possibilities. As long as the output is defined for 
all possible inputs, we’ll be safe. An even better solution, however, would 
be not to use a combinational always or process block at all. I discourage 
the use of combinational always or process blocks precisely because it’s easy 
to make this mistake of omitting an else statement. Instead, we can use a 
sequential always or process block. Here’s what that looks like:

Verilog 1 always @ (posedge i_Clk)
begin
	 if (i_A == 1'b0 && i_B == 1'b0)
		  o_Q <= 1'b0;
	 else if (i_A == 1'b0 && i_B == 1'b1)
		  o_Q <= 1'b1;
	 else if (i_A == 1'b1 && i_B == 1'b0)
		  o_Q <= 1'b1;
end
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VHDL 1 process (i_Clk)
begin
	 if rising_edge(i_Clk) then
		  if i_A = '0' and i_B = '0' then
			   o_Q <= '0';
		  elsif i_A = '0' and i_B = '1' then
			   o_Q <= '1';
		  elsif i_A = '1' and i_B = '0' then
			   o_Q <= '1';
		  end if;
	 end if;
end process;

We now have a sequential always or process block, because we’re using a 
clock in the sensitivity list 1 and within the block itself. As a result, o_Q will 
create a flip-flop rather than a latch. Flip-flops don’t have the same unpre-
dictable timing issues that latches do. Remember that the flip-flop can 
utilize its en input to retain a value. The flip-flop’s en input will be disabled 
when i_A and i_B are both high. This will retain the flip-flop’s output with 
whatever state it had previously, performing the same behavior as the latch, 
but in a safe, predictable way.

One side effect of switching to a sequential always or process block is 
that it now takes a single clock cycle for the output to be updated. If it’s 
critical that this logic be combinational—with the output updating as soon 
as one of the inputs changes, with no clock delay—then you need to ensure 
that the output is specified for all possible input conditions.

There’s one other way to generate latches in VHDL. VHDL has the key-
word when, which can be used in a conditional assignment. Verilog has no 
equivalent syntax, so this code snippet is for VHDL only:

o_Q <= '0' when (i_A = '0' and i_B = '0') else
	 '1' when (i_A = '0' and i_B = '1') else
	 '1' when (i_A = '1' and i_B = '0');

This code exists outside of a process block, and again we haven’t explic-
itly stated what o_Q should be assigned to when i_A and i_B are both 1, so the 
FPGA tools will infer a latch here. The latch will enable the output to keep 
its previous state, but that’s likely not what we intended. Instead, we should 
be specific with our code and ensure that we have an else condition that 
sets o_Q for all possible inputs. 

Resetting a Flip-Flop
Flip-flops have an additional input that we haven’t discussed yet, called  
set/reset, or often just reset. This pin resets the flip-flop back to an initial 
state, which could be 0 or 1. Resetting flip-flops is useful when the FPGA 
first powers up and initializes. For example, you might want to reset your 
flip-flops that control a state machine to the initial state (we’ll discuss state 
machines in Chapter 8). You might also want to reset a counter to some 
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initial value, or reset a filter back to zero. Resetting flip-flops is one method 
to ensure your flip-flops are in a specific state prior to operation.

There are two types of resets: synchronous and asynchronous. Synchronous  
resets occur at the same time as the clock edge, whereas asynchronous resets 
can occur at any time. You might trigger an asynchronous reset with a but-
ton press external to the FPGA, for example, since the button press can 
come at any point in time. Let’s look at how to code a reset, starting with a 
synchronous one:

Verilog 1 always @ (posedge i_Clk)
begin
2 if (i_Reset)
	 o_Q <= 1'b1;
3 else
--snip--

VHDL 1 process (i_Clk)
begin
	 if rising_edge(i_Clk) then
	 2 if i_Reset = '1' then
		  o_Q <= '1';
	 3 else
--snip--

Here we have an always or process block with a normal sensitivity list; it’s 
only sensitive to changes of the clock 1. Inside the block, we first check the 
state of i_Reset 2. If it’s high, then we reset the signal o_Q to 1. This is our 
synchronous reset, since it’s happening on the edge of the clock. If i_Reset 
is low, we proceed with the else branch of the block 3, where we’d write 
whatever code we want to be executed under normal operating (non-reset) 
conditions.

Notice that in this example we’re checking if the reset is high. Sometimes 
resets can be active low, however, which is usually indicated by _L or _n at 
the end of the signal name. If this were an active low reset, we would check 
for the signal being 0 rather than 1.

Now let’s take a look at an asynchronous reset:

Verilog 1 always @ (posedge i_Clk or i_Reset)
begin
2 if (i_Reset)
	 o_Q <= 1'b1;
3 else
--snip--

VHDL 1 process (i_Clk, i_Reset)
begin
2 if (i_Reset = '1') then
	 o_Q <= '1';
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3 elsif rising_edge(i_Clk) then
--snip--

Notice that we’ve added i_Reset into the always or process block’s sensi-
tivity list 1. Now, rather than checking the clock state first, we check the 
reset state first 2. If it’s high, then we perform whatever reset conditions we 
want, in this case setting o_Q to 1. Otherwise, we proceed normally 3.

The choice between synchronous and asynchronous resets should be 
documented in the user guide for your specific FPGA—some FPGAs are opti-
mized to handle one or the other. Additionally, resets can create strange bugs 
if they’re not treated properly. Therefore, I strongly recommend consulting the 
documentation to make sure you’re resetting flip-flops correctly for your device.

Look-Up Tables and Flip-Flops on a Real FPGA
Now you understand that LUTs and flip-flops exist on FPGAs, but they may 
still seem a bit abstract. To get a more concrete picture, let’s look at how 
LUTs and flip-flops are actually wired together in a real FPGA. The image 
in Figure 4-10 is taken from the datasheet for the Lattice iCE40 LP/HX 
family of FPGAs, the type of FPGA compatible with iCEcube2.

Datasheets are used throughout the electronics industry to explain 
the details of how a component works. Each FPGA will have at least a few 
unique datasheets with different pieces of information, and more compli-
cated FPGAs can have dozens of them.

Figure 4-10: LUTs and flip-flops in a real FPGA
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Every FPGA, whether from Lattice, AMD, Intel, or whoever else, will 
have an image very similar to Figure 4-10 in its specific family datasheet. 
This particular image shows the basic building block of Lattice iCE40 
FPGAs, which Lattice calls the Programmable Logic Block (PLB). Each FPGA 
company has its own unique name for these basic building blocks; for 
example, AMD calls them Configurable Logic Blocks (CLBs), while Intel uses 
Adaptive Logic Modules (ALMs). We’ll look at the details of how the PLB from 
Lattice works as an example.

Looking at the left side of the image, we see there are eight logic cells in 
each PLB. The right side shows a zoomed-in version of a single logic cell. Inside 
it, notice that there’s a rectangle labeled LUT4. This is a four-input look-up 
table! There’s also a dark gray box labeled DFF. This is a D flip-flop! The LUT 
and the flip-flop truly are the two most critical components inside an FPGA.

This diagram is telling us that at the most fundamental level there’s one 
LUT and one flip-flop inside each logic cell, and there are eight logic cells 
in a PLB. The PLB is copy-pasted hundreds or thousands of times inside the 
FPGA to provide enough LUTs and flip-flops to do all the required work.

On the left side of the DFF component (the flip-flop), notice the same 
three inputs we originally saw in Figure 4-1: data (D), clock enable (EN), 
and clock (>). The fourth input at the bottom of the component is the  
set/reset (SR) input we discussed in the previous section.

As you’ve seen, the clock enable input allows the flip-flop to keep its 
output state for multiple clock cycles. Without the En input, the output 
would just follow the input with one clock cycle of delay. Adding the En 
input lets the flip-flop store a state for a longer duration.

The last thing to notice in the diagram is the carry logic block, shown 
above and to the left of the LUT4. This block is mostly used to speed up 
arithmetic functions, such as addition, subtraction, and comparison.

While reviewing this diagram gave us an interesting look inside an 
FPGA and highlighted the central role of the LUT and the flip-flop, it isn’t 
critical to memorize every detail of the PLB’s architecture. You don’t need 
to remember all the connections and how each is wired to its neighbor. In 
the real world, you write your Verilog or VHDL, and the FPGA tools take 
care of mapping that code onto the FPGA’s resources. This is particularly 
useful if you want to switch from one type of FPGA to another (say, from 
a Lattice to an AMD). The beauty of Verilog and VHDL is that the code is 
generally portable; the same code works on different FPGAs, provided they 
have enough LUTs and flip-flops to do what you want.

Summary
In this chapter you learned about the flip-flop, which, along with the LUT, 
is one of the two most important components in an FPGA. You saw how flip-
flops allow FPGAs to keep state, or remember past values, by only register-
ing data from the input to the output on the positive edges of a clock signal. 
You learned how logic driven by flip-flops and clock signals is sequential, in 
contrast to the combinational logic of LUTs, and you got your first glimpse 
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of how flip-flops and LUTs work together through a project toggling an 
LED. You also learned how to avoid generating latches and how to reset a 
flip-flop to a default state.

In future chapters, as you build more complex blocks of code, you’ll 
become more familiar with how flip-flops and LUTs interact and see how 
you can use just these two kinds of components to create large, sophisti-
cated FPGA designs. You’ll also see the role flip-flops play in keeping track 
of counters and state machines.
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