
9
U s ing E x t r a s en s o r y

P e r cep t ion t o Wa r d O f f
Fog o f Wa r

Fog of war (often shortened to just fog) is
a mechanism that game developers com-

monly use to limit a player’s situational
awareness and hide information about the

game environment. Fog is often a literal lack of sight
in massive online battle arena (MOBA) games, but
the concept also includes any lack or obscurity of
pertinent gameplay information. Cloaked figures,
dark rooms, and enemies hiding behind walls are all
forms of fog.

Game hackers can reduce or even completely remove fog using an extra-
sensory perception (ESP) hack. An ESP hack uses hooking, memory manipula-
tion, or both to force a game to display hidden information. These hacks
take advantage of the fact that some types of fog are often implemented on
the client side, as opposed to the server side, meaning that the game clients
still contain information (partial or complete) about what is being hidden.

190 Chapter 9

In this chapter, you will learn how to implement different types of ESP
hacks. First, you’ll learn to light up dark environments. Next, you’ll use
x-ray vision to see through walls. Finally, you’ll learn about zoom hacking,
tweaking heads-up displays, and other simple ESP hacks that can reveal all
sorts of useful (but otherwise hidden) information about the game you’re
playing.

Background Knowledge
This chapter starts the transition from hacking, puppeteering, and reverse
engineering to coding. From here on out, you’ll be learning how to actually
code your own hacks. To keep on topic, everything I’ve talked about thus
far will be treated as background knowledge. If you see a technique used
that you don’t quite remember, such as memory scanning, setting memory
breakpoints, hooking, or writing memory, flip back to the relevant chapters
and study them a bit more before continuing. Throughout the text, you’ll
find notes to remind you where you can brush up on certain topics.

Specifically, this chapter will talk a lot about Direct3D. In “Applying
Jump Hooks and VF Hooks to Direct3D” on page 175, I explained
how to hook into a game’s Direct3D drawing loop. The example code
for that chapter includes a fully featured Direct3D hooking engine in
GameHackingExamples/Chapter8_Direct3DHook. A lot of the hacks in this
chapter build on that hook, and their example code can be found in the
main.cpp file of the Direct3D hook code. You can run the compiled appli-
cation from GameHackingExamples/Chapter8_Direct3DApplication to see the
hacks in action on a test application.

Revealing Hidden Details with Lighthacks
Lighthacks increase lighting in dark environments, allowing you to clearly
see enemies, treasure chests, pathways, and anything else that is normally
obscured by darkness. Lighting is often a cosmetic change that’s added at a
game’s graphical layer, and it can usually be directly modified with a hook
on the graphics layer.

Optimal lighting depends on camera orientation, environment layout,
and even specific traits of a game’s engine, and you can manipulate any of
these factors to create lighthacks. But the easiest way is simply to add more
light to a room.

Adding a Central Ambient Light Source
The online resources for this book include two small lighthack examples.
The first is the enableLightHackDirectional() function in main.cpp, which is
shown in Listing 9-1.

void enableLightHackDirectional(LPDIRECT3DDEVICE9 pDevice)
{
 D3DLIGHT9 light;

Using Extrasensory Perception to Ward Off Fog of War 191

 ZeroMemory(&light, sizeof(light));
 light.Type = D3DLIGHT_DIRECTIONAL;
 light.Diffuse = D3DXCOLOR(0.5f, 0.5f, 0.5f, 1.0f);
 light.Direction = D3DXVECTOR3(-1.0f, -0.5f, -1.0f);

 pDevice->SetLight(0, &light);
 pDevice->LightEnable(0, TRUE);
}

Listing 9-1: A directional lighthack

This code is called from the EndScene() hook, and it adds light to the
scene by creating a light source called light. The code sets light.Type to
directional, which means the light source will act like a spotlight and proj-
ect light in a specific direction. The code then sets the red, green, and blue
values of light.Diffuse to 0.5, 0.5, and 0.5, giving the light an off-white shine
when reflected from a surface. Next, it sets light.Direction to an arbitrary
point in the three-dimensional space. Finally, the code uses the game’s
Direct3D device to set up the light at index 0 and enable lighting effects.

N O T E 	 In the example application, the light shines up and to the right from the bottom left of
the scene. You may need to change this location depending on how your target game is
rendered.

Note that inserting the light at index 0 works for this proof of con-
cept, but it won’t always work. Games typically have multiple light sources
defined, and setting your light at an index the game uses might override
critical lighting effects. In practice, you might try setting the index to an arbi-
trarily high number. There’s an issue with this type of lighthack, though:
directional lights will be blocked by objects such as walls, creatures, and
terrain, meaning shadows can still be cast. Directional lights work great
for wide-open spaces, but not so well for tightly wound corridors or under-
ground caves.

Increasing the Absolute Ambient Light
The other lighthack method, seen in the enableLightHackAmbient() function,
is far more aggressive than the one in Listing 9-1. It affects the light level
globally, rather than adding an extra light source. Here’s what the code
looks like:

void enableLightHackAmbient(LPDIRECT3DDEVICE9 pDevice)
{
 pDevice->SetRenderState(D3DRS_AMBIENT, D3DCOLOR_XRGB(100, 100, 100));
}

This lighthack sets the absolute ambient light (which you indicate
by passing D3DRS_AMBIENT to the SetRenderState() function) to a medium-
strength white. The D3DCOLOR_XRGB macro sets that strength, taking 100 as

192 Chapter 9

its parameters for the red, green, and blue levels. This lights up objects
using an omnidirectional white light, effectively revealing everything at
the cost of shadows and other lighting-based details.

Creating Other Types of Lighthacks
There are many other ways to create lighthacks, but they differ from game
to game. One creative way to affect the light in a game is to NOP the code
that the game uses to call the device->SetRenderState() function. Since this
function is used to set up the global ambient light strength, disabling calls
to it leaves Direct3D at the default light settings and makes everything vis-
ible. This is perhaps the most powerful type of lighthack, but it requires
your bot to know the address of the lighting code to NOP.

There are also memory-based lighthacks. In some games, players and
creatures emit light of different colors and strengths, often depending on
attributes like their equipment, mount, or active spells. If you understand
the structure of the game’s creature list, you can directly modify the values
that determine a creature’s light level.

For instance, imagine a game in which characters emit a bluish ball
of light when under a healing or strengthening spell. Somewhere in the
game’s memory are values associated with each creature that tell the game
the color and intensity of light the creature should emit. If you can locate
these values in memory, you can change them so that the creatures effec-
tively emit orbs of light. This type of lighthack is commonly used in games
with a 2D top-down style, since the orbs around individual creatures pro-
duce a cool artistic effect while shedding light on important parts of the
screen. In 3D games, however, this sort of hack just turns creatures into
blobs of light that run around.

You can also hook the SetLight() member function at index 51 in the
VF table of the game’s Direct3D device. Then, whenever your hook callback
is invoked, you can modify the properties of the intercepted D3DLIGHT9 light
structure before passing it to the original function. You might, for instance,
change all lights to the D3DLIGHT_POINT type, causing any existing light sources
in the game to radiate light in every direction like a light bulb. This type of
lighthack is very powerful and accurate, but it can produce some disturbing
visuals. It also tends to break in any environment that has no lighting, and
opaque obstacles still block point light sources.

Lighthacks are very powerful, but they don’t reveal anything. If infor-
mation is hidden behind an obstacle, rather than by darkness, you’ll need a
wallhack to reveal it.

Revealing Sneaky Enemies with Wallhacks
You can use wallhacks to show enemies that are hidden by walls, floors, and
other obstacles. There are a few ways to create these hacks, but the most com-
mon method takes advantage of a type of rendering known as z-buffering.

Using Extrasensory Perception to Ward Off Fog of War 193

Rendering with Z-Buffering
Most graphics engines, including Direct3D, support z-buffering, which is a
way to make sure that when there are overlapping objects in a scene, only
the top object is drawn. Z-buffering works by “drawing” the scene to a two-
dimensional array that describes how close the object at each pixel on the
screen is to the viewer. Think of the array’s indices as axes: they correspond
to the x-axis (right and left) and y-axis (up and down) for each pixel on the
screen. Each value stored in the array is the z-axis value for a pixel.

When a new object appears, whether it is actually drawn on the
screen is decided by the z-buffer array. If the spot at the object’s x- and
y-position is already filled in the array, that means there’s another object
at that pixel on the screen. The new object will appear only if it has a lower
z-axis value (that is, if it’s closer to the viewer) than the pixel already there.
When the scene is finished being drawn to the array, it is flushed to the
screen.

To illustrate this, imagine a three-dimensional space that needs to be
drawn to a two-dimensional canvas by some game with 4×4-pixel viewport.
The z-buffer for this scenario would look like Figure 9-1.

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

(0,0)

(0,3) (3,3)

(3,0)

Figure 9-1: An empty z-buffer

To start, the game draws a blue background that completely fills the
viewport and is located as far away on the z-axis as possible; let’s say the
highest z-value is 100. Next, the game draws a 2×2-pixel red rectangle at

194 Chapter 9

position (0,0) with a z-position of 5. Finally, the game draws a 2×2-pixel
green rectangle at position (1,1) with a z-position of 3. The z-buffer would
now look like Figure 9-2.

z = 5
Red

z = 5
Red

z = 100
Blue

z = 100
Blue

z = 5
Red

z = 100
Blue

z = 100
Blue

z = 3
Green

z = 3
Green

z = 100
Blue

z = 3
Green

z = 3
Green

z = 100
Blue

z = 100
Blue

z = 100
Blue

z = 100
Blue

(0,0)

(0,3) (3,3)

(3,0)

Figure 9-2: A filled z-buffer

The z-buffer neatly handled overlapping objects based on their z-posi-
tions. The green square that’s closest on the z-axis overlaps the red square
that’s a bit farther away, and both squares overlap the blue background,
which is very far away.

This behavior allows a game to draw its map, players, creatures, details,
and particles without worrying about what is actually visible to the player.
This is a huge optimization for game developers, but it exposes a large area
of attack. Since all game models are always given to the graphics engine,
you can use hooks to detect objects that the player can’t actually see.

Creating a Direct3D Wallhack
You can create wallhacks that manipulate z-buffering in Direct3D using a
hook on the DrawIndexedPrimitive() function, which is called when a game
draws a 3D model to the screen. When an enemy player model is drawn,
a wallhack of this type disables z-buffering, calls the original function to
draw the model, and then reenables z-buffering. This causes the enemy
model to be drawn on top of everything else in the scene, regardless of
what’s in front of it. Some wallhacks can also render specific models in a
solid color, such as red for enemies and green for allies.

Using Extrasensory Perception to Ward Off Fog of War 195

Toggling Z-Buffering

The Direct3D hook in main.cpp from GameHackingExamples/Chapter8_
Direct3DHook has this example wallhack in the onDrawIndexedPrimitive()
function:

void onDrawIndexedPrimitive(
 DirectXHook* hook,
 LPDIRECT3DDEVICE9 device,
 D3DPRIMITIVETYPE primType,
 INT baseVertexIndex, UINT minVertexIndex,
 UINT numVertices, UINT startIndex, UINT primCount)
{
 if (numVertices == 24 && primCount == 12) {
 // it's an enemy, do the wallhack
 }
}

This function is used as a callback for a hook on DrawIndexedPrimitive()
at VF index 82 of the game’s Direct3D device. Every model the game draws
passes through this function, accompanied by some model-specific proper-
ties. By inspecting a subset of the properties, namely the numVertices and
primCount values, the hook detects when an enemy model is drawn and com-
mences the wallhack. In this example, the values representing an enemy
model are 24 and 12.

The magic happens inside the if() statement. Using just a few lines
of code, the wallhack draws the model in a way that ignores z-buffering,
like so:

device->SetRenderState(D3DRS_ZENABLE, false); // disable z-buffering
DirectXHook::origDrawIndexedPrimitive(// draw model
 device, primType, baseVertexIndex,
 minVertexIndex, numVertices, startIndex, primCount);
device->SetRenderState(D3DRS_ZENABLE, true); // enable z-buffering

Simply put, this code disables z-buffering when drawing the enemy
model and reenables it afterward. With z-buffering off, the enemy is drawn
in front of everything.

Changing an Enemy Texture

When a model is rendered onscreen, a texture is used to skin the model.
Textures are 2D images that are stretched around 3D models to apply the
colors and patterns that make up the model’s 3D artwork. To change the
way an enemy looks when it’s drawn in your wallhack, you can set it to be
drawn with a different texture, as in this example:

// when hook initializes
LPDIRECT3DTEXTURE9 red;
D3DXCreateTextureFromFile(device, "red.png", &red);

196 Chapter 9

// just before drawing the primitive
device->SetTexture(0, red);

The first block of this code loads the texture from a file and is executed
only once—when the hook is initialized. The full example code does this in
an initialize() function, which gets called the first time the EndScene() hook
callback is invoked. The second block of this code happens right before the
call to the original DrawIndexedPrimitive() function in the wallhack, and it
causes the model to be drawn with the custom texture.

Fingerprinting the Model You Want to Reveal
The trickiest part to creating a good wallhack is finding the right values for
numVertices and primCount. To do this, you can create a tool that logs every
unique combination of the two variables and allows you to iterate over the
list using your keyboard. Working example code for this tool won’t be use-
ful in the example application provided with this chapter, but I’ll give you
some high-level implementation details.

First, in the global scope, you’d declare a structure that has members to
store the following:

•	 numVertices and primCount

•	 A std::set of this structure (let’s call it seenParams)

•	 An instance of that structure (let’s call it currentParams)

The std::set requires a comparator for this structure, so you’d also
declare a comparison functor that calls memcmp() to compare two of the
structures using memcmp(). Each time the DrawIndexedPrimitive() callback is
invoked, your hack could create a structure instance with the intercepted
values and pass it to a seenParams.insert() function, which should insert the
parameter pair into the list only if the pair isn’t already there.

Using the GetAsyncKeyState() Windows API function, you could then
detect when the spacebar is pressed and execute something similar to this
pseudocode:

auto current = seenParams.find(currentParam);
if (current == seenParams.end())
 current = seenParams.begin();
else
 current++;
currentParams = *current;

This would set currentParams to the next pair in seenParams when the space-
bar is pressed. With this code in place, you could use code similar to a wall-
hack to change the texture of models matching currentParams.numVertices
and currentParams.primCount. The tool could also draw those values on the
screen so you could see them and write them down.

With a tool like this, finding the proper models is as easy as starting
up a game in a mode where your character won’t die (against a friend, in

Using Extrasensory Perception to Ward Off Fog of War 197

a customization mode, and so on), running the bot, and pressing the space-
bar until each model you need is highlighted. Once you have the values
for your target models, you’ll modify the numVertices and primCount check in
your wallhack so it knows which models to highlight.

N o t e 	 Character models are commonly made up of smaller models for individual body seg-
ments, and games often show different models of a character at different distances.
That means a game may have 20 or more models for one type of character. Even in
that case, selecting only one model (say, the enemy’s torso) to show in your wallhack
may be enough.

Getting a Wider Field of Vision with Zoomhacks
Many games in the MOBA and real-time strategy (RTS) genres use a 3D
top-down style that makes them immune to wallhacks. They also use dark-
ness on the map as a type of fog, but showing the dark areas using a light-
hack doesn’t give any extra information; models hidden inside the fog are
known only to the game server, not to the client.

This style makes most types of ESP hacks useless: there’s little unknown
information to reveal, so these hacks only augment your view of the infor-
mation you can already see. One type of ESP hack, however, can still be
helpful. Zoomhacks let you zoom out much farther than a game normally
allows, effectively revealing large portions of the map that you couldn’t see
otherwise—and thus getting around the game’s wallhack and lighthack
immunity.

Using NOPing Zoomhacks
MOBA and RTS games typically allow players a variable but limited amount
of zoom. The simplest type of zoomhack finds the value of the zoom factor
(a multiplier that changes as the zoom level changes, typically a float or
double) and overwrites it with a larger value.

To find the zoom factor, fire up Cheat Engine and search for a float
with an unknown initial value. (To brush up on Cheat Engine, head over
to “Cheat Engine’s Memory Scanner” on page 5.) For rescans, repeat
the following process until there are only a few values left to find the zoom
factor:

1.	 Go to the game window and zoom in.

2.	 Search for an increased value in Cheat Engine.

3.	 Go to the game window and zoom out.

4.	 Search for a decreased value in Cheat Engine.

Try to get the value list down to one option. To confirm that the
remaining value is the zoom factor, freeze it in Cheat Engine and see how
zoom behaves in-game; freezing the proper value will disable zooming. If
you fail to find the zoom factor using a float search, retry the search using

198 Chapter 9

a double. If both searches fail, try them again but correspond zooming in
with decreased values and zooming out with increased values instead. Once
you’ve found the zoom factor in memory, you can write a small bot to over-
write it to the zoom factor that best suits you.

More advanced zoomhacks NOP the game code responsible for mak-
ing sure the zoom factor is within a set range. You should be able to find
this code with OllyDbg. Set a memory on-write breakpoint on the zoom
factor, zoom in-game to trigger the breakpoint, and inspect the code at
the breakpoint. (To hone your OllyDbg memory breakpoint skills, flip to
“Controlling OllyDbg Through the Command Line” on page 43.) You
should see the code that modified the zoom factor. Zoom limitation code
is typically easy to spot: constants that match the minimum and maximum
zoom values are a dead giveaway.

If you can’t find the limitation code using this method, then the limita-
tion may be applied when the graphics are redrawn at a new zoom level,
rather than when the zoom factor changes. In this case, switch your break-
point to memory on-read and look for the same clues.

Scratching the Surface of Hooking Zoomhacks
You can also create zoomhacks by using a Direct3D hook on the function
device->SetTransform(type, matrix), but this requires a deep understanding of
how a game sets up the player’s perspective. There are a few different ways
to manage perspective, but you control zoom level using either view (trans-
form type D3DTS_VIEW) or projection (transform type D3DTS_PROJECTION).

Properly manipulating transform matrices that control view and projec-
tion requires some pretty extensive knowledge of the mathematics behind
3D graphics, though, so I stay away from this method at all costs—and I’ve
never had trouble simply manipulating the zoom factor. If you’re interested
in this kind of hack, though, I recommend reading a 3D game program-
ming book to learn more about 3D mathematics first.

But sometimes, even a zoomhack isn’t enough. Some useful informa-
tion may remain hidden as a part of a game’s internal state or may simply
be hard for a player to determine at a moment’s glance. For these situations,
a heads-up display is the tool for the job.

Displaying Hidden Data with HUDs
A heads-up display (HUD) is a type of ESP hack that displays critical game
information in an overlay. HUDs often resemble a game’s existing interface
for displaying information like your remaining ammunition, a mini-map,
your current health level, any active ability cooldowns, and so on. HUDs
typically display either historical or aggregated information, and they’re
mostly used on MMORPGs. They are often text based, but some also con-
tain sprites, shapes, and other small visual effects.

Using Extrasensory Perception to Ward Off Fog of War 199

The HUDs you can create depend on what data is available in the
game. Common data points are these:

•	 Experience gain per hour (exp/h)

•	 Creature kills per hour (KPH)

•	 Damage per second (DPS)

•	 Gold looted per hour (GPH)

•	 Healing per minute

•	 Estimated time until next level

•	 Amount of gold spent on supplies

•	 Overall gold value of items looted

More advanced custom HUDs may display large tables containing items
looted, supplies used, the number of kills for each type of creature, and the
names of players that have recently been seen.

Beyond what you’ve already learned about reading memory, hooking
graphics engines, and displaying customized data, there’s not much else
I can teach you about how to create a HUD. Most games have a simple
enough architecture that you can easily obtain most of the information you
need from memory. Then, you can run some basic hourly, percentage, or
summation calculations to get the data into a usable format.

Creating an Experience HUD
Imagine you want a HUD that displays your current level, hourly experi-
ence, and how long you’ll have to play before your character levels up. First,
you could use Cheat Engine to find the variables that contain your level and
experience. When you know those values, you can use either a game-specific
algorithm or a hardcoded experience table to calculate the experience
required to reach the next level.

When you know how much experience you need to level up, you can
calculate your hourly experience. Put into pseudocode, that process might
look like this:

// this example assumes the time is stored in milliseconds
// for seconds, remove the "1000 * "
timeUnitsPerHour = 1000 * 60 * 60
timePassed = (currentTime - startTime)

u timePassedToHourRatio = timeUnitsPerHour / timePassed
v expGained = (currentExp - startExp)

hourlyExp = expGained * timePassedToHourRatio

w remainingExp = nextExp - currentExp
x hoursToGo = remainingExp / hourlyExp

200 Chapter 9

To find your hourly experience, hourlyExp, you’d store your experience
and the time when your HUD first starts; these are startExp and startTime,
respectively. This example also assumes currentLevel and currentExp are pre-
viously defined, where currentLevel is the character’s level and currentExp is
the current amount of experience.

With these values, hourlyExp can be calculated by multiplying a ratio u
of the time units in an hour to the time that has passed by the experience
gained since startTime v. In this case, the time unit is a millisecond, so the
time units get multiplied by 1,000.

Next, currentExp is subtracted from nextExp to determine the remaining
experience w to level up. To calculate how many hours are left to level up,
your remaining experience is divided by your hourly experience x.

When you have all this information, you can finally display it onscreen.
Using the Direct3D hooking engine provided in this book’s example code,
you’d draw the text using this call inside the EndScene() hook callback:

hook->drawText(
 10, 10,
 D3DCOLOR_ARGB(255, 255, 0, 0),
 "Will reach level %d in %0.20f hours (%d exp per hour)",
 currentLevel, hoursToGo, hourlyExp);

That’s all you need for a working, experience-tracking HUD. Variations
of these same equations can be used to calculate KPH, DPS, GPH, and other
useful time-based measures. Furthermore, you can use the drawText() func-
tion of the Direct3D hook to display any information you can locate and
normalize. The hook also contains addSpriteImage() and drawSpriteImage()
functions that you can use to draw your own custom images, allowing you
to make your HUDs as fancy as you want.

Using Hooks to Locate Data
Memory reading isn’t the only way to get data for a custom HUD. You can
also gather information by counting the number of times a specific model
is drawn by the DrawIndexedPrimitive() function, hooking the game’s internal
functions responsible for drawing certain types of text, or even intercept-
ing function calls responsible for processing data packets from the game
server. The methods you use to do this will be drastically different for
every game, and finding those methods will require you to pair everything
you’ve learned from this book with your own ingenuity and programming
instincts.

For instance, to create a HUD that displays how many enemies are on
the map, you could use the model-fingerprinting methods used by wallhacks
to count the number of enemies and output that number to the screen. This
method is better than creating a way to read the list of enemies from mem-
ory, since it doesn’t require new memory addresses every time the game
patches.

Using Extrasensory Perception to Ward Off Fog of War 201

Another example is displaying a list of enemy cooldowns, which would
require you to intercept incoming packets that tell the client which spell
effects to display. You could then correlate certain spells with certain
enemies based on spell and enemy location, spell type, and so on, and use
that information to track spells each enemy has used. If you correlate the
data with a database of cooldown times, you can display exactly when each
enemy spell can be used again. This is especially powerful because most
games don’t store enemy cooldowns in memory.

An Overview of Other ESP Hacks
In addition to the hacks discussed in this chapter, there are a number of
ESP hacks that don’t have common names and are specific to certain genres
or even certain games. I’ll quickly take you through the theory, background,
and architecture of some of these hacks.

Range Hacks
Range hacks use a method similar to wallhacks to detect when the
models for different types of champions or heroes are drawn. Then
they draw circles on the ground around each hero model. The radius
of each circle corresponds to the maximum attack range of the cham-
pion or hero it surrounds, effectively showing you areas where you can
be damaged by each enemy.

Loading-Screen HUDs
Loading-screen HUDs are common in MOBA and RTS games that
require all players to sit through a loading screen while everyone’s game
is starting up. These hacks take advantage of the fact that such games
often have websites where historical player statistics can be queried. You
can write a bot that automatically queries the statistics of each player in
the game and seamlessly displays the information as an overlay on your
loading screen, allowing you to study your enemies before launching
into battle.

Pick-Phase HUDs
Pick-phase HUDs are similar to their loading-screen cousins, but they
are displayed during the pregame phase when each player is picking
a champion or hero to play. Instead of showing enemy statistics, pick-
phase HUDs show statistics about allies. This allows you to quickly assess
the strengths and weaknesses of your allies so you can make better deci-
sions about which character to play.

Floor Spy Hacks
Floor spy hacks are common in older 2D top-down games that have dif-
ferent distinct floors or platforms. If you’re on the top floor, you might
want to know what’s going on downstairs before you go charging in.
You can write floor spy hacks that modify the current floor value (typi-
cally an unsigned int) to a different floor above or below you, allowing
you to spy on other floors.

202 Chapter 9

Games often recalculate the current floor value every frame based on
player position, so NOPs are sometimes required to keep the value from
being reset every time a frame is redrawn. Finding the current floor value
and the code to NOP would be similar to finding the zoom factor, as dis-
cussed in “Using NOPing Zoomhacks” on page 197.

Closing Thoughts
ESP hacks are powerful ways to obtain extra information about a game.
Some of them can be done pretty easily through Direct3D hooks or simple
memory editing. Others require you to learn about a game’s internal data
structures and hook proprietary functions, giving you a reason to employ
your reverse engineering skills.

If you want to experiment with ESP hacks, study and tweak the example
code for this chapter. For practice with more specific ESP hacks, I encour-
age you to go out and find some games to play around with.

