
5
V A R I A B L E S A N D T Y P E S

Some of the most pernicious misconcep-
tions about Python revolve around its

nuances regarding variables and data types.
Misunderstandings related to this one topic

cause countless frustrating bugs, and this is unfortu-
nate. Python’s way of handling variables is at the core
of its power and versatility. If you understand this,
everything else falls into place.

My own understanding of this topic was cemented by “Facts and Myths
About Python Names and Values,” Ned Batchelder’s now-legendary talk
at PyCon 2015. I recommend you watch the video of the presentation at
https://youtu.be/_AEJHKGk9ns, either now or after reading this chapter.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

https://youtu.be/_AEJHKGk9ns

2 Chapter 5

Variables According to Python: Names and Values
Many myths about Python variables stem from people’s attempts to describe
the language in terms of other languages. Perhaps most annoying to Python
experts is the misleading aphorism, “Python has no variables,” which is
really just the product of someone being overly clever about the fact that
the Python language uses the terms name and value, instead of variable.

Python developers still use the term variable on a regular basis, and it
even appears in the documentation, as it is part of understanding the over-
all system. However, for the sake of clarity, I’ll use the official Python terms
exclusively, throughout the rest of the book.

Python uses the term name to refer to what would conventionally be
called a variable. A name refers to a value or an object, in the same way
that your name refers to you but does not contain you. There may even be
multiple names for the same thing, just as you may have a given name and a
nickname. A value is a particular instance of data in memory. The term vari-
able refers to the combination of the two: a name that refers to a value. From
now on, I’ll only use the term variable in relation to this precise definition.

Assignment
Let’s look at what happens under the hood when I define a variable per the
above definitions like this:

answer = 42

Listing 5-1: simple_assignment.py:1

The name answer is bound to the value 42, meaning the name can now be
used to refer to the value in memory. This operation of binding is referred
to as an assignment.

Look at what happens behind the scenes when I assign the variable
answer to a new variable, insight:

insight = answer

Listing 5-2: simple_assignment.py:2

The name insight doesn’t refer to a copy of the value 42, but rather to
the same, original value. This is illustrated in Figure 5-1.

answer

insight

42

Figure 5-1: Multiple names can be
bound to the same value in memory.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 3

In memory, the name insight is bound to the value 42, which was already
bound to another name: answer. Both names are still usable as variables.
More importantly, insight is not bound to answer, but rather to the same
value that answer was already bound to when I assigned insight. A name
always points to a value.

Back in Chapter 3, I introduced the is operator, which compares identity
—the specific location in memory that a name is bound to. This means
is doesn’t check whether a name points to equivalent values, but rather
whether it points to the same value in memory.

When you make an assignment, Python makes its own decisions behind
the scenes about whether to create a new value in memory or bind to an
existing value. The programmer often has very little control over this
decision.

Consider this example:

spam = 123456789
maps = spam
eggs = 123456789

Listing 5-3: value_and_identity.py:1

I assign identical values to spam and eggs. I also bind maps to the same
value as spam. (In case you didn’t catch it, “maps” is “spam” backward. No
wonder GPS gets annoying.)

When I compare the names with the comparison operator (==) to check
whether the values are equivalent, both expressions return True, as one
would expect:

print(spam == maps) # prints True
print(spam == eggs) # prints True

Listing 5-4: value_and_identity.py:2

However, when I compare the identities of the names with is, some-
thing surprising happens:

print(spam is maps) # prints True
print(spam is eggs) # prints False

Listing 5-5: value_and_identity.py:3

The names spam and maps are both bound to the same value in memory,
but eggs is bound to a different but equivalent value. Thus, spam and eggs
don’t share an identity. This is illustrated in Figure 5-2.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

4 Chapter 5

spam

maps

eggs

123456789

123456789

Figure 5-2: spam and maps share an identity;
eggs is bound to an equivalent value, but it
does not share identity.

It just goes to show, spam by any other name is still spam.
Python isn’t guaranteed to behave exactly like this, and it may well

decide to reuse an existing value. For example:

answer = 42
insight = 42
print(answer is insight) # prints True

Listing 5-6: assign_reuse.py

When I assign the value 42 to insight, Python decides to bind that name
to the existing value. Now, answer and insight happen to be bound to the
same value in memory, and thus, they share an identity.

This is why the identity operator (is) can be sneaky. There are many
situations in which is appears to work like the comparison operator (==).

GOTCHA AL ERT	 The is operator checks identity. Unless you really know what you’re doing,
only use this to check if something is None.

As a final note, the built-in function id() returns an integer represent-
ing the identity of whatever is passed to it. These integers are the values
that the is operator compares. If you’re curious about how Python handles
names and values, try playing with id().

PEDANTIC NOTE	 In CPython, the value returned from the id() function is derived from the
memory address for the value.

Data Types
As you’ve likely noticed, Python does not require you, the programmer,
to declare a type for your variables. Back when I first picked up Python, I
joined the #python channel on IRC and jumped right in.

“How do you declare the data type of a variable in Python?” I asked, in
all the naivete of a first-year coder.

Within moments, I received a response that I consider to be my
first true induction into the bizarre world of programming: “You’re a
data type.”

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 5

The room regulars went on to explain that Python is a dynamically
typed language, meaning I didn’t have to tell the language what sort of
information to put in a variable. Instead, Python would decide the type for
me. I didn’t even have to use a special “variable declaration” keyword. I just
had to assign like this:

answer = 42

Listing 5-7: types.py:1

At that precise moment, Python became my all-time favorite language.
It’s important to remember that Python is still a strongly typed lan-

guage. I touched on this concept, along with dynamic typing, in Chapter 3.
Ned Batchelder sums up Python’s type system quite brilliantly in his afore-
mentioned PyCon 2015 talk about names and values:

“Names have a scope—they come and go with functions—but
they have no type. Values have a type . . . but they have no scope.”

Although I haven’t touched on scope yet, this should already make sense.
Names are bound to values, and those values exist in memory, as long as
there is some reference to them. You can bind a name to literally any value you
want, but you are limited as to what you can do with any particular value.

The type() Function
If you ever need to know a value’s data type, you can use the built-in type()
function. Recall that everything in Python is an object, so this function will
really just return what class the value is an instance of:

type(answer) # prints <class 'int'>

Listing 5-8: types.py:2

Here, you can see that the value assigned to answer is an integer (int).
On rare occasions, you may want to check the data type before you do
something with a value. For that, you can pair the type() function with the
is operator, like this:

if type(answer) is int:
 print("What's the question?")

Listing 5-9: types.py:3a

In many cases where this sort of introspection is necessary, it may be
better to use isinstance() instead of type(), as it accounts for subclasses and
inheritance (see Chapter 13). The function itself returns True or False, so I
can use it as the condition in an if statement:

if isinstance(answer, int):
 print("What's the question?")

Listing 5-10: types.py:3b

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

6 Chapter 5

Truth be told, there is rarely a need for either. Instead, Python develop-
ers prefer a more dynamic approach.

Duck Typing
Python uses what is known (unofficially) as duck typing. This isn’t a technical
term at all; it comes from the old saying:

If it looks like a duck, walks like a duck, and quacks like a duck,
then it probably is a duck.

Python doesn’t care much about what a value’s data type is, but rather
it cares about the functionality of the value’s data type. For example, if an
object supports all the math operators and functions, and if it accepts floats
and integers as operands on the binary operators, then Python considers
the object to be a numeric type.

In other words, Python doesn’t care if it’s actually a robotic duck or a
moose in a duck costume. If it has the traits needed, the rest of the details
are usually moot.

If you’re familiar with object-oriented programming, particularly how
quickly inheritance can get out of hand, then this whole concept of duck
typing will probably be a breath of fresh air. If your class behaves as it
should, it usually won’t matter what it inherits from.

Scope and Garbage Collection
Scope is what defines where a variable can be accessed from. It might be
available to an entire module or limited to the suite (body) of a function.

As I mentioned already, names have scope, whereas values do not. A
name can be global, meaning it is defined by itself in a module, or it can be
local, meaning it only exists within a particular function or comprehension.

Local Scope and the Reference-Counting Garbage Collector
Functions (including lambdas) and comprehensions define their own
scope; they are the only structures in the language to do so. Modules and
classes don’t have their own scope in the strictest sense; they only have
their own namespace. When a scope reaches its end, all the names defined
within it are automatically deleted.

For any particular value, Python keeps a reference count, which is simply
a count of how many references exist for that value. Every time a value is
bound to a name, a reference is created (although there are other ways the
language may create references). When there are no more references, the
value is deleted. This is the reference-counting garbage collector, and it efficiently
handles most garbage collection scenarios.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 7

PEDANTIC NOTE	 Technically, Python’s garbage collection behaviors are an implementation
detail specific to CPython, the main “flavor” of Python. Other flavors of the
language may (or may not) handle this differently, but it probably won’t ever
matter to you, unless you’re doing something insanely advanced and weird.

You can see how this works with a typical function, like this:

def spam():
 message = "Spam"
 word = "spam"
 for _ in range(100):
 separator = ", "
 message += separator + word
 message += separator
 message += "spam!"

 return message

Listing 5-11: local_scope.py:1

I create a spam() function, inside of which I define the names message,
word, and separator. I can access any of these names inside the function; that is
their local scope. It doesn’t matter that separator is defined within a for loop,
as loops don’t have their own scope. I can still access it outside of the loop.

However, I cannot access any of these names outside of the function:

print(message) # NameError: name 'message' is not defined

Listing 5-12: local_scope.py:2

Trying to access message outside the context of the spam() function where
it was defined will raise a NameError. In this example, message doesn’t exist
in the outer scope. What’s more, as soon as the function spam() exits, the
names message, word, and separator are deleted. Because word and separator
each referred to values with a reference count of one (meaning only one
name was bound to each), the values are also deleted.

The value of message is not deleted when the function exits, however,
because of the return statement at the end of the function (see Listing 5-11)
and what I do with that value here:

output = spam()
print(output)

Listing 5-13: local_scope.py:3

I bind the value returned by spam() to output in the outer scope, meaning
that value still exists in memory and can be accessed outside of the function.
Assigning the value to output increases the reference count for that value, so
even though the name message is deleted when spam() exits, the value is not.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

8 Chapter 5

Interpreter Shutdown
When the Python interpreter is asked to shut down, such as when a Python
program terminates, it enters interpreter shutdown. During this phase, the
interpreter goes through the process of releasing all allocated resources,
calling the garbage collector multiple times, and triggering destructors in
objects.

You can use the atexit module from the standard library to add func-
tions to this interpreter shutdown process. This may be necessary in some
highly technical projects, although in general, you shouldn’t need to do
this. Functions added via atexit.register() will be called in a last-in-first-out
manner. However, be aware that it becomes difficult to work with modules,
including the standard library, during interpreter shutdown. It’s like trying
to work in a building as it’s being demolished: the janitor’s closet may disap-
pear at any time, without warning.

Global Scope
When a name is defined within a module but outside of any function, class,
or comprehension, it is considered to be in global scope. Although it’s okay
to have some global scope names, having too many usually leads to the cre-
ation of code that is difficult to debug and maintain. Therefore, you should
use global scope names sparingly for variables. There is often a cleaner solu-
tion, such as a class (see Chapter 7).

Properly using global scope names in the context of a more local scope,
such as a function, requires you to think ahead a little. Consider what I do
if I want a function that can modify a global variable storing a high score.
First, I define the global variable:

high_score = 10

Listing 5-14: global_scope.py:1

I’ll write this function the wrong way first:

def score():
 new_score = 465 # SCORING LOGIC HERE
 if new_score >1 high_score: # ERROR: UnboundLocalError
 print("New high score")
 2 high_score = new_score

score()
print(high_score)

Listing 5-15: global_scope.py:2

When I run this code, Python complains that I’m using a local vari-
able before I’ve assigned a value to it 1. The problem is, I’m assigning
to the name high_score within the scope of the function score() 2, and
that shadows, or hides, the global high_score name behind the new, local
high_score name. The fact that I’ve created a local high_score name anywhere

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 9

in the function makes it impossible for the function to ever “see” the global
high_score name.

To make this work, I need to declare that I’m going to use the global
name in the local scope, instead of defining a new local name. I can do this
with the global keyword:

def score():
 global high_score
 new_score = 465 # SCORING LOGIC HERE
 if new_score > high_score:
 print("New high score")
 high_score = new_score

score()
print(high_score) # prints 465

Listing 5-16: global_scope.py:3

Before I do anything else in my function, I must specify that I’m using
the global high_score name. This means that anywhere I assign a value to the
name high_score in score(), the function will use the global name, instead of
trying to create a new local name. The code now works as expected.

Every time you wish to rebind a global name from within a local scope,
you must use the global keyword first. If you’re only accessing the current
value bound to a global name, you don’t need to use the global keyword. It
is vital for you to cultivate this habit, because Python won’t always raise an
error if you handle scope incorrectly. Consider this example:

current_score = 0

def score():
 new_score = 465 # SCORING LOGIC HERE
 current_score = new_score

score()
print(current_score) # prints 0

Listing 5-17: global_scope_gotcha.py:1a

This code runs without raising any errors, but the output is wrong. A
new name, current_score, is being created in the local scope of the func-
tion score(), and it is bound to the value 465. This shadows the global name
current_score. When the function terminates, both the new_score and the
local current_score are deleted. In all of this, the global current_score has
remained untouched. It is still bound to 0, and that is what is printed out.

Once again, to resolve this problem, I need only use the global keyword:

current_score = 0

def score():
 global current_score
 new_score = 465 # SCORING LOGIC HERE

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

10 Chapter 5

 current_score = new_score

score()
print(current_score) # prints 465

Listing 5-18: global_scope_gotcha.py:1b

Because I specified that the global current_name is to be used in this func-
tion, the code now behaves precisely as expected, printing out the value 465.

The Dangers of Global Scope
There is one more major gotcha to account for with global scope. Modifying
any variable at a global level, as in rebinding or mutating on a name outside
the context of a function, can lead to confusing behavior and surprising
bugs—especially once you start dealing with multiple modules. It’s accept-
able for you to initially “declare” a name at a global scope, but you should
do all further rebinding and mutation of that global name at the local
scope level.

By the way, this does not apply to classes, which do not actually define
their own scope. I’ll return to this later in this chapter.

The nonlocal Keyword
Python allows you to write functions within functions. I’ll defer discussing
the practicality of this until Chapter 6. Here, I mainly want to explore this
functionality’s impact on scope. Consider the following example:

spam = True

def order():
 eggs = 12

 def cook():
 1 nonlocal eggs

 if spam:
 print("Spam!")

 if eggs:
 eggs -= 1
 print("...and eggs.")

 cook()

order()

Listing 5-19: nonlocal.py

The function order() contains another function: cook(). Each function
has its own scope.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 11

Remember, as long as a function only accesses a global name like spam,
you don’t need to do anything special. However, trying to assign to a global
name will actually define a new local name that shadows the global one.
The same behavior is true of the inner function using names defined in
the outer function, which is known as the nested scope or enclosing scope. To
get around this, I specify that eggs is nonlocal, meaning it can be found in
the enclosing scope, rather than in the local scope 1. The inner function
cook() has no trouble accessing the global name spam.

The nonlocal keyword starts looking for the indicated name in the inner-
most nested scope, and if it doesn’t find it, it moves to the next enclosing
scope above that. It repeats this until it either finds the name or determines
that the name does not exist in a nonglobal enclosing scope.

Scope Resolution
Python’s rule about which scopes it searches for a name, and in what order,
is called the scope resolution order. The easiest way to remember the scope
resolution order is with the acronym LEGB—for which my colleague Ryan
gave me the handy mnemonic “Lincoln Eats Grant’s Breakfast”:

Local

Enclosing-function locals (that is, anything found via nonlocal)

Global

Built-in

Python will look in these scopes, in order, until it finds a match or
reaches the end. The nonlocal and global keywords adjust the behavior of
this scope resolution order.

The Curious Case of the Class
Classes have their own way of dealing with scope. Technically speaking,
classes don’t directly factor into the scope resolution order. Every name
declared directly within a class is known as an attribute, and it is accessed
through the dot (.) operator on the class (or object) name.

To demonstrate this, I’ll define a class with a single attribute:

class Nutrimatic:
 1 output = "Something almost, but not quite, entirely unlike tea."

 def request(self, beverage):
 return2 self.output

machine = Nutrimatic()
mug = machine.request("Tea")
print(mug) # prints "Something almost, but not quite, entirely unlike tea."

print(3 machine.output)
print(4 Nutrimatic.output)

Listing 5-20: class_attributes.py

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

12 Chapter 5

Those three print statements all output the same thing. Running that
code gives me this:

Something almost, but not quite, entirely unlike tea.
Something almost, but not quite, entirely unlike tea.
Something almost, but not quite, entirely unlike tea.

The name output is a class attribute 1, belonging to the Nutrimatic class.
Even within that class, I would not be able to refer to it merely as output. I
must access it through self.output 2, as self refers to the class instance the
function (instance method) request() is being called on. I can also access it
via machine.output 3 or Nutrimatic.output 4 anywhere the object machine or
the class Nutrimatic is, respectively, in scope. All of those names point to the
exact same attribute: output. Especially in this case, there’s no real differ-
ence between them.

Generational Garbage Collector
Behind the scenes, Python also has a more robust generational garbage col-
lector that handles all of the odd situations a reference-counting garbage
collector cannot, such as reference cycles (when two values reference one
another). All of these situations, and the ways they’re handled by the gar-
bage collector, are far beyond the scope of this book.

Moving forward, the most important takeaway to remember is that the
generational garbage collector incurs some performance costs. Thus, it’s
sometimes worthwhile to avoid reference cycles. One way to do this is with
weakref, which creates a reference to a value without increasing that value’s
reference count. This feature was defined in PEP 205, and the documenta-
tion exists at https://docs.python.org/library/weakref.

The Immutable Truth
Values in Python can be either immutable or mutable. The difference hinges
on whether the values can be modified in place, meaning they can be changed
right where they are in memory.

Immutable types cannot be modified in place. For example, integers (int),
floating-point numbers (float), strings (str), and tuples (tuple) are all immu-
table. If you attempt to mutate an immutable value, you’ll wind up with a
completely different value being created:

eggs = 12
carton = eggs
print(eggs is carton) # prints True
eggs += 1
print(eggs is carton) # prints False
print(eggs) # prints 13
print(carton) # prints 12

Listing 5-21: immutable_types.py

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

https://docs.python.org/library/weakref

Variables and Types 13

Initially, eggs and carton are both bound to the same value, and thus,
they share an identity. When I modify eggs, it is rebound to a new value, so
it no longer shares an identity with carton. You can see that the two names
now point to different values.

Mutable types, on the other hand, can be modified in place. Lists consti-
tute one example of a mutable type:

temps = [87, 76, 79]
highs = temps
print(temps is highs) # prints True
1 temps += [81]
print(temps is highs) # prints True
print(highs) # prints [87, 76, 79, 81]
print(temps) # prints [87, 76, 79, 81]

Listing 5-22: mutable_types.py

Because the list is aliased to both temps and highs, any modifications
made to the list value 1 are visible through either name. Both names are
bound to the original value, as demonstrated by the is comparisons. This
remains the case, even after that value is mutated.

Passing by Assignment
Another frequent question from programmers new to the language is,
“Does Python pass by value or by reference?”

The answer is, “Effectively, neither.” More accurately, as Ned Batchelder
describes it, Python passes by assignment.

Neither the values nor the names bound to them are moved. Instead,
each value is bound to the parameter via assignment. Consider a simple
function:

def greet(person):
 print(f"Hello, {person}.")

my_name = "Jason"
greet(my_name)

Here, there is one copy of the string value "Jason" in memory, and that
is bound to the name my_name. When I pass my_name to the greet() function—
specifically, to the person parameter—it’s the same as if I had said (person =
my_name).

Again, assignment never makes a copy of a value. The name person is
now bound to the value "Jason".

This concept of passing by assignment gets tricky when you start work-
ing with mutable values, such as lists. To demonstrate this often-unexpected

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

14 Chapter 5

behavior, I’ve written a function that finds the lowest temperature in a list
passed to it:

def find_lowest(temperatures):
 temperatures.sort()
 print(temperatures[0])

Listing 5-23: lowest_temp.py:1a

At first glance, you may assume that passing a list to the temperatures
parameter will make a copy, so it shouldn’t matter if you modify the value
bound to the parameter. However, lists are mutable, meaning the value itself
can be modified:

temps = [85, 76, 79, 72, 81]
find_lowest(temps)
print(temps)

Listing 5-24: lowest_temp.py:2

When I passed temps to the function’s temperatures parameter, I only
aliased the list, so any changes made on temperatures are visible from all the
other names bound to that same list value—namely, from temps.

You can see this in action when I run this code and get the following
output:

72
[72, 76, 79, 81, 85]

When find_lowest() sorted the list passed to temperatures, it actually
sorted the one mutable list that both temps and temperatures aliased. This is
a clear case of a function having side effects, which are changes to values that
existed before the function call.

An awe-inspiring number of bugs originate from this one type of mis-
understanding. In general, functions should not have side effects, meaning
that any values passed to the function as arguments should not be directly
mutated. To avoid mutating the original value, I have to explicitly make a
copy of it. Here’s how I’d do that in the find_lowest() function:

def find_lowest(temperatures):
 sorted_temps =1 sorted(temperatures) # sorted returns a new list
 print(sorted_temps[0])

Listing 5-25: lowest_temp.py:1b

The sorted() function has no side effects; it creates a new list using the
items in the list passed to it 1. It then sorts this new list and returns it. I
bind this new list to sorted_temps. Thus, the original list (bound to temps and
temperatures) is untouched.

If you’re coming from C and C++, it may be helpful to remember the
potential hang-ups related to pass-by-pointer or pass-by-reference. Although

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 15

Python’s assignment is scarcely similar from a technical standpoint, the
risks of side effects and unintended mutations are the same.

Collections and References
All collections, including lists, employ a clever little semantic detail that
can become a royal pain if you don’t know to expect it: Individual items are
references. Just as a name is bound to a value, so also are items in collections
bound to values, in the same manner. This binding is called a reference.

A simple example involves trying to create a tic-tac-toe board. This first
version won’t work quite how you’d expect.

I’ll start by creating the game board:

board = [["-"]1 * 3] * 3 # Create a board

Listing 5-26: tic_tac_toe.py:1a

I’m trying to create a two-dimensional board. You can fill a collection,
like a list, with several items, all with the same repeating value, using the
multiplication operator 1, as I’ve done here. I enclose the repeating value
in square brackets and multiply it by the number of repetitions I want. A
single row of my board is defined with ["-"] * 3, which makes a list of three
"-" strings.

Unfortunately, this won’t work the way you’d expect. The problem
begins when I attempt to define the second dimension of the array—three
copies of the [["-"] * 3] list—using multiplication. You can see the problem
manifest when I try to make a move:

2 board[1][0] = "X" # Make a move

Print board to screen
for row in board:
 print(f"{row[0]} {row[1]} {row[2]}")

Listing 5-27: tic_tac_toe.py:2

When I mark a move on the board 2, I want to see that change in only
one spot on the board, like this:

- - -
X - -
- - -

Instead, I get this nasty surprise:

X - -
X - -
X - -

Cue the weeping and gnashing of teeth. Somehow, that one change has
propagated to all three rows. Why?

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

16 Chapter 5

Initially, I created a list with three "-" values as items 1. Since strings
are immutable and thus cannot be modified in place, this works as
expected. Rebinding the first item in the list to "X" does not affect the other
two items.

The outer dimension of the list is composed of three list items. Because
I defined one list and used it three times, I now have three aliases for one
mutable value! By changing that list through one reference (the second
row), I’m mutating that one shared value 2, so all three references see the
change.

There are a few ways to fix this, but all of them work by ensuring each
row references a separate value, like so:

board = [["-"] * 3 for _ in range(3)]

Listing 5-28: tic_tac_toe.py:1b

I only needed to change how I defined the game board initially. I now
use a list comprehension to create the rows. In short, this list comprehen-
sion will define a separate list value from ["-"] * 3 three different times.
(List comprehensions get complicated; they’ll be explained in depth in
Chapter 10.) Running the code now results in the expected behavior:

- - -
X - -
- - -

Long story short, whenever you’re working with a collection, remember
that an item is no different from any other name. Here is one more example
to drive this point home:

scores_team_1 = [100, 95, 120]
scores_team_2 = [45, 30, 10]
scores_team_3 = [200, 35, 190]

scores = (scores_team_1, scores_team_2, scores_team_3)

Listing 5-29: team_scores.py:1

I create three lists, assigning each to a name. Then, I pack all three
into the tuple scores. You may remember from earlier that tuples cannot
be modified directly, because they’re immutable. That same rule does not
necessarily apply to a tuple’s items. You can’t change the tuple itself, but you
can (indirectly) modify the values its items refer to:

scores_team_1[0] = 300
print(scores[0]) # prints [300, 95, 120]

Listing 5-30: team_scores.py:2

When I mutate the list scores_team_1, that change appears in the first
item of the tuple, because that item only aliased a mutable value.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 17

I could also directly mutate a mutable list in the scores tuple through
two-dimensional subscription, like this:

scores[0][0] = 400
print(scores[0]) # prints [400, 95, 120]

Listing 5-31: team_scores.py:3

Tuples don’t give you any sort of security about things being modi-
fied. Immutability exists mainly for efficiency, not for any sort of security.
Mutable values are always going to be mutable, no matter where they live or
how they’re referred to.

The problems in the two examples above may seem relatively easy to
spot, but things start getting troublesome when the related code is spread
out across a large file or multiple files. Mutating on a name in one module
may unexpectedly modify an item of a collection in a completely different
module, and you might never have expected it.

Shallow Copy
There are many ways to ensure you are binding a name to a copy of a muta-
ble value, instead of aliasing the original; the most explicit of these ways is
with the copy() function. This is sometimes also known as a shallow copy, in
contrast to the deep copy I’ll cover later.

To demonstrate this, I’ll create a Taco class (see Chapter 7) that allows
you to define the class with various toppings and then add a sauce after-
ward. This first version has a bug:

class Taco:

 def __init__(self, toppings):
 self.ingredients = toppings

 def add_sauce(self, sauce):
 self.ingredients.append(sauce)

Listing 5-32: mutable_ tacos.py:1a

In the Taco class, the initializer __init__() accepts a list of toppings,
which it stores as the ingredients list. The add_sauce() method will add the
specified sauce string to the ingredients list.

(Can you anticipate the problem?)
I use the class as follows:

default_toppings = ["Lettuce", "Tomato", "Beef"]
hot_taco = Taco(default_toppings)
mild_taco = Taco(default_toppings)
hot_taco.add_sauce("Salsa")

Listing 5-33: mutable_ tacos.py:2a

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

18 Chapter 5

I define a list of toppings I want on all my tacos, and then I define two
tacos: hot_taco and mild_taco. I pass the default_toppings list to the initializer
for each taco. Then I add "Salsa" to the list of toppings to hot_taco, but I
don’t want any "Salsa" on mild_taco.

To make sure this is working, I print out the list of ingredients for the
two tacos, as well as the default_toppings list I started with:

print(f"Hot: {hot_taco.ingredients}")
print(f"Mild: {mild_taco.ingredients}")
print(f"Default: {default_toppings}")

Listing 5-34: mutable_ tacos.py:3

That outputs the following:

Hot: ['Lettuce', 'Tomato', 'Beef', 'Salsa']
Mild: ['Lettuce', 'Tomato', 'Beef', 'Salsa']
Default: ['Lettuce', 'Tomato', 'Beef', 'Salsa']

Waiter, there’s a bug in my taco!
The trouble is, when I created my hot_taco and mild_taco object by pass-

ing default_toppings to the Taco initializer, I bound both hot_taco.ingredients
and mild_taco.ingredients to the same list value as default_toppings. These
are now all aliases of the same value in memory. Then, when I call the func-
tion hot_taco.add_sauce(), I mutate that list value. The addition of "Salsa" is
visible not only in hot_taco.ingredients, but also (unexpectedly) in mild_taco
.ingredients and in the default_toppings list. This is definitely not the desired
behavior; adding "Salsa" to one taco should only affect that one taco.

One way to resolve this is to ensure I’m assigning a copy of the mutable
value. In the case of my Taco class, I will rewrite the initializer so it assigns a
copy of the specified list to self.ingredients, instead of aliasing:

import copy

class Taco:

 def __init__(self, toppings):
 self.ingredients =1 copy.copy(toppings)

 def add_sauce(self, sauce):
 self.ingredients.append(sauce)

Listing 5-35: mutable_ tacos.py:1b

I make a copy with the copy.copy() function 1, which is imported
from copy.

I make a copy of the list passed to toppings within Taco.__init__(), assign-
ing that copy to self.ingredients. Any changes made to self.ingredients

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 19

don’t affect the others; adding "Salsa" to hot_taco does not change mild_taco
.ingredients, nor does it change default_toppings:

Hot: ['Lettuce', 'Tomato', 'Beef', 'Salsa']
Mild: ['Lettuce', 'Tomato', 'Beef']
Default: ['Lettuce', 'Tomato', 'Beef']

Deep Copy
A shallow copy is all well and good for lists of immutable values, but as pre-
viously mentioned, when a mutable value contains other mutable values,
changes to those values can appear to replicate in weird ways.

For example, consider what happens when I try to make a copy of a
Taco object before changing one of the two tacos. My first attempt results
in some undesired behavior. Building on the same Taco class as before (see
Listing 5-35), I’ll use the copy of one taco to define another:

default_toppings = ["Lettuce", "Tomato", "Cheese", "Beef"]
mild_taco = Taco(default_toppings)
hot_taco = 1copy.copy(mild_taco)
hot_taco.add_sauce("Salsa")

Listing 5-36: mutable_ tacos.py:2b

I want to create a new taco (hot_taco) that is initially identical to mild_taco,
but with added "Salsa". I’m attempting this by binding a copy of mild_taco 1
to hot_taco.

Running the revised code (including Listing 5-34) produces the
following:

Hot: ["Lettuce", "Tomato", "Cheese", "Beef", "Salsa"]
Mild: ["Lettuce", "Tomato", "Cheese", "Beef", "Salsa"]
Default: ["Lettuce", "Tomato", "Cheese", "Beef"]

I might not expect any changes made to hot_taco to reflect in mild_taco,
but unexpected changes have clearly happened.

The issue is that, when I make a copy of the Taco object value itself, I am
not making a copy of the self.ingredients list within the object. Both Taco
objects contain references to the same list value.

To fix this problem, I can use deep copy to ensure that any mutable val-
ues inside the object are copied as well. In this case, a deep copy of a Taco
object will create a copy of the Taco value, as well as a copy of the any muta-
ble values that Taco contains references to—namely, the list self.ingredients.
Listing 5-37 shows that same program, using deep copy:

default_toppings = ["Lettuce", "Tomato", "Beef"]
mild_taco = Taco(default_toppings)
hot_taco =1 copy.deepcopy(mild_taco)
hot_taco.add_sauce("Salsa")

Listing 5-37: mutable_ tacos.py:2c

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

20 Chapter 5

The only change is that I’m using copy.deepcopy(), instead of copy
.copy() 1. Now when I mutate the list inside hot_taco, it doesn’t affect
mild_taco:

Hot: ["Lettuce", "Tomato", "Cheese", "Beef", "Salsa"]
Mild: ["Lettuce", "Tomato", "Cheese", "Beef"]
Default: ["Lettuce", "Tomato", "Cheese", "Beef"]

I don’t know about you, but I’m getting hungry for tacos.
Copying is the most generic way to solve the problem of passing around

mutable objects. However, depending on what you’re doing, there may be
an approach better suited to the particular collection you’re using. For
example, many collections, like lists, have functions that return a copy of
the collection with some specific modification. When you’re solving these
sorts of issues with mutability, you can start by employing copy and deep
copy. Then, you can exchange that for a more domain-specific solution
later.

Coercion and Conversion
Names do not have types. Therefore, Python has no need of type casting, at
least in the typical sense of the term.

Allowing Python to figure out the conversions by itself, such as when
adding together an integer (int) and a float, is called coercion. Here are a
few examples:

print(42.5) # coerces to a string
x = 5 + 1.5 # coerces to a float (6.5)
y = 5 + True # coerces to an int (6)...and is also considered a bad idea

Listing 5-38: coercion.py

Even so, there are potential situations in which you may need to use one
value to create a value of a different type, such as when you are creating a
string from an integer. Conversion is the process of explicitly casting a value
of one type to another type.

Every type in Python is an instance of a class. Therefore, the class of the
type you want to create only needs to have an initializer that can handle the
data type of the value you’re converting from. (This is usually done through
duck typing.)

One of the more common scenarios is to convert a string containing a
number into a numeric type, such as a float:

life_universe_everything = "42"

answer = float(life_universe_everything)

Listing 5-39: conversion.py:1

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 21

Here, I start with a piece of information as a string value, which is bound
to the name life_universe_everything. Imagine I want to do some complex
mathematical analysis on this data; to do this, I must first convert the data
into a floating-point number. The desired type would be an instance of the
class float. That particular class has an initializer (__init__()) that accepts a
string as an argument, which is something I know from the documentation.

I initialize a float() object, pass life_universe_everything to the initial-
izer, and bind the resulting object to the name answer.

I’ll print out the type and value of answer:

print(type(answer))
print(answer)

Listing 5-40: conversion.py:2

That outputs the following:

<class 'float'>
42.0

Since there were no errors, you can see that the result is a float with
value 42.0, bound to answer.

Every class defines its own initializers. In the case of float(), if the
string passed to it cannot be interpreted as a floating-point number, a
ValueError will be raised. Always consult the documentation for the object
you’re initializing.

A Note About Systems Hungarian Notation
If you’re coming from a statically typed language like C++ or Java, you’re
probably used to working with data types. Thus, when picking up a dynami-
cally typed language such as Python, it might be tempting to employ some
means of “remembering” what type of value every name is bound to. Don’t
do this! You will find the most success using Python if you learn to take full
advantage of dynamic typing, weak binding, and duck typing.

I will confess: the first year I used Python, I used Systems Hungarian
notation—the convention of appending a prefix denoting data type to every
variable name—to try to “defeat” the language’s dynamic typing system. My
code was littered with such debris as intScore, floatAverage, and boolGameOver. I
picked up the habit from my time using Visual BASIC.NET, and I thought I
was brilliant. In fact, I was depriving myself of many opportunities to refactor.

Systems Hungarian notation will quickly render code obtuse. For
example:

def calculate_age(intBirthYear, intCurrentYear):
 intAge = intCurrentYear - intBirthYear
 return intAge

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

22 Chapter 5

def calculate_third_age_year(intCurrentAge, intCurrentYear):
 floatThirdAge = intCurrentAge / 3
 floatCurrentYear = float(intCurrentYear)
 floatThirdAgeYear = floatCurrentYear - floatThirdAge
 intThirdAgeYear = int(floatThirdAgeYear)
 return intThirdAgeYear

strBirthYear = "1985" # get from user, assume data validation
intBirthYear = int(strBirthYear)

strCurrentYear = "2010" # get from system
intCurrentYear = int(strCurrentYear)

intCurrentAge = calculate_age(intBirthYear, intCurrentYear)
intThirdAgeYear = calculate_third_age_year(intCurrentAge, intCurrentYear)
print(intThirdAgeYear)

Listing 5-41: evils_of_systems_hungarian.py

Needless to say, this code is quite painful to read. On the other hand,
if you make full use of Python’s typing system (and resist the urge to store
every intermediate step), the code will be decidedly more compact:

def calculate_age(birth_year, current_year):
 return (current_year - birth_year)

def calculate_third_age_year(current_age, current_year):
 return int(current_year - (current_age / 3))

birth_year = "1985" # get from user, assume data validation
birth_year = int(birth_year)

current_year = "2010" # get from system
current_year = int(current_year)

current_age = calculate_age(birth_year, current_year)
third_age_year = calculate_third_age_year(current_age, current_year)
print(third_age_year)

Listing 5-42: duck_typing_feels_better.py

My code became far cleaner once I stopped treating Python like a stati-
cally typed language. Python’s typing system is a big part of what makes it
such a readable and compact language.

Terminology Review
I’ve introduced a lot of important new words in this section. Since I’ll be
using this vocabulary frequently throughout the rest of the book, doing a
quick recap here is prudent.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

Variables and Types 23

alias (v.)   To bind a mutable value to more than one name. Mutations
performed on a value bound to one name will be visible on all names
bound to that mutable value.

assignment (n.)   The act of binding a value to a name. Assignment
never copies data.

bind (v.)   To create a reference between a name and a value.

coercion (n.)   The act of implicitly casting a value from one type to
another.

conversion (n.)   The act of explicitly casting a value from one type to
another.

copy (v.)   To create a new value in memory from the same data as
another value.

data (n.)    Information stored in a value. You may have copies of any
given data stored in other values.

deep copy (v.)   To both copy an object to a new value and copy all the
data from values referenced within that object to new values.

identity (n.)    The specific location in memory that a name is bound
to. When two names share an identity, they are bound to the same
value in memory.

immutable (adj.)   Of or relating to a value that cannot be modified in
place.

mutable (adj.)    Of or relating to a value that can be modified in place.

mutate (v.)    To change a value in place.

name (n.)   A reference to a value in memory, commonly thought of as
a “variable” in Python. A name must always be bound to a value. Names
have scope, but not type.

rebind (v.)    To bind an existing name to a different value.

reference (n.)   The association between a name and a value.

scope (n.)   A property that defines what section of the code a name is
accessible from, such as from within a function or within a module.

shallow copy (v.)   To copy an object to a new value but not copy the
data from values referenced within that object to new values.

type (n.)   A property that defines how a raw value is interpreted, for
example, as an integer or a boolean.

value (n.)   A unique copy of data in memory. There must be a refer-
ence to a value, or else the value is deleted. Values have type, but not
scope.

variable (n.)    A combination of a name and the value the name refers to.

weakref (n.)   A reference that does not increase the reference count
on the value.

To help keep us grounded in these concepts, we usually use the term
name instead of variable. Instead of changing something, we (re)bind a name or

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

24 Chapter 5

mutate a value. Assignment never copies—it literally always binds a name to
a value. Passing to a function is just assignment.

By the way, if you ever have trouble wrapping your head around these
concepts and how they play out in your code, try the visualizer at http://
pythontutor.com/.

Wrapping Up
It’s easy to take something like variables for granted, but by understanding
Python’s unique approach, you can better avail yourself of the power that
is available through dynamic typing. I must admit, Python has somewhat
spoiled me. When I work in statically typed languages, I find myself pining
for the expressiveness of duck typing.

Still, working with Python-style dynamic typing can take getting used to
if you have a background in other languages. It’s like learning how to speak
a new human language: only with time and practice will you begin to think
in the new tongue.

If all this is making your head swim, let me reiterate the single most
important principles. Names have scope, but no type. Values have type, but
no scope. A name can be bound to any value, and a value can be bound to
any number of names. It really is that dead simple! If you remember that
much, you’ll go a long way.

Dead Simple Python (Sample Chapter) © 4/13/22 by Jason C. McDonald

D E A D S I M P L E P Y T H O N
J A S O N C . M C D O N A L D

4/13/22

http://pythontutor.com/
http://pythontutor.com/

