
2
P r o g r a m m i n g i n t h e

In t e r a c t i v e S h e l l

Before you can write encryption programs,
you need to learn some basic programming

concepts. These concepts include values,
operators, expressions, and variables.

Topics Cov e r e d in T his Ch a p t e r

•	 Operators

•	 Values

•	 Integers and floating-point numbers

•	 Expressions

•	 Evaluating expressions

•	 Storing values in variables

•	 Overwriting variables

“The Analytical Engine has no pretensions
whatever to originate anything. It can do whatever

we know how to order it to perform.”
—Ada Lovelace, October 1842

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

12 Chapter 2

Let’s start by exploring how to do some simple math in Python’s inter-
active shell. Be sure to read this book next to your computer so you can
enter the short code examples and see what they do. Developing muscle
memory from typing programs will help you remember how Python code
is constructed.

Some Simple Math Expressions
Start by opening IDLE (see “Starting IDLE” on page xi). You’ll see the
interactive shell and the cursor blinking next to the >>> prompt. The inter
active shell can work just like a calculator. Type 2 + 2 into the shell and
press enter on your keyboard. (On some keyboards, this is the return key.)
The computer should respond by displaying the number 4, as shown in
Figure 2-1.

Figure 2-1: Type 2 + 2 into the shell.

In the example in Figure 2-1, the + sign tells the computer to add
the numbers 2 and 2, but Python can do other calculations as well, such
as subtract numbers using the minus sign (–), multiply numbers with an
asterisk (*), or divide numbers with a forward slash (/). When used in
this way, +, -, *, and / are called operators because they tell the computer to
perform an operation on the numbers surrounding them. Table 2-1 sum-
marizes the Python math operators. The 2s (or other numbers) are called
values.

Table 2-1: Math Operators in Python

Operator Operation

+ Addition
- Subtraction
* Multiplication
/ Division

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

Programming in the Interactive Shell 13

By itself, 2 + 2 isn’t a program; it’s just a single instruction. Programs
are made of many of these instructions.

Integers and Floating-Point Values
In programming, whole numbers, such as 4, 0, and 99, are called integers.
Numbers with decimal points (3.5, 42.1, and 5.0) are called floating-point
numbers. In Python, the number 5 is an integer, but if you wrote it as 5.0, it
would be a floating-point number.

Integers and floating points are data types. The value 42 is a value of the
integer, or int, data type. The value 7.5 is a value of the floating point, or
float, data type.

Every value has a data type. You’ll learn about a few other data types
(such as strings in Chapter 3), but for now just remember that any time we
talk about a value, that value is of a certain data type. It’s usually easy to
identify the data type just by looking at how the value is written. Ints are
numbers without decimal points. Floats are numbers with decimal points.
So 42 is an int, but 42.0 is a float.

Expressions
You’ve already seen Python solve one math problem, but Python can do a
lot more. Try typing the following math problems into the shell, pressing
the enter key after each one:

u >>> 2+2+2+2+2
10
>>> 8*6
48

v >>> 10-5+6
11

w >>> 2 + 2
4

These math problems are called expressions. Computers can solve millions
of these problems in seconds. Expressions are made up of values (the num-
bers) connected by operators (the math signs), as shown in Figure 2-2. You
can have as many numbers in an expression
as you want u, as long as they’re connected
by operators; you can even use multiple types
of operators in a single expression v. You can
also enter any number of spaces between the
integers and these operators w. But be sure
to always start an expression at the beginning
of the line, with no spaces in front, because
spaces at the beginning of a line change how
Python interprets instructions. You’ll learn
more about spaces at the beginning of a line
in “Blocks” on page 45.

Expression

Operator

ValueValue 2 + 2

Figure 2-2: An expression is
made up of values (like 2) and
operators (like +).

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

14 Chapter 2

Order of Operations
You might remember the phrase “order of operations” from your math class.
For example, multiplication is done before addition. The expression 2 + 4 * 3
evaluates to 14 because multiplication is done first to evaluate 4 * 3, and then
2 is added. Parentheses can make different operators go first. In the expres-
sion (2 + 4) * 3, the addition is done first to evaluate (2 + 4), and then that
sum is multiplied by 3. The parentheses make the expression evaluate to 18
instead of 14. The order of operations (also called precedence) of Python math
operators is similar to that of mathematics. Operations inside parentheses
are evaluated first; next the * and / operators are evaluated from left to right;
and then the + and - operators are evaluated from left to right.

Evaluating Expressions
When a computer solves the expression 10 + 5 and gets the value 15, we say
it has evaluated the expression. Evaluating an expression reduces the expres-
sion to a single value, just like solving a math problem reduces the problem
to a single number: the answer.

The expressions 10 + 5 and 10 + 3 + 2 have the same value, because
they both evaluate to 15. Even single values are considered expressions: the
expression 15 evaluates to the value 15.

Python continues to evaluate an expression until it becomes a single
value, as in the following:

(5 - 1) * ((7 + 1) / (3 - 1))

4 * ((7 + 1) / (3 - 1))

4 * ((8) / (3 - 1))

4 * ((8) / (2))

4 * 4.0

16.0

Python evaluates an expression starting with the innermost, left-
most parentheses. Even when parentheses are nested in each other, the
parts of expressions inside them are evaluated with the same rules as
any other expression. So when Python encounters ((7 + 1) / (3 - 1)), it
first solves the expression in the leftmost inner parentheses, (7 + 1), and
then solves the expression on the right, (3 - 1). When each expression
in the inner parentheses is reduced to a single value, the expressions in
the outer parentheses are then evaluated. Notice that division evaluates
to a floating-point value. Finally, when there are no more expressions in
parentheses, Python performs any remaining calculations in the order of
operations.

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

Programming in the Interactive Shell 15

In an expression, you can have two or more values connected by opera-
tors, or you can have just one value, but if you enter one value and an opera-
tor into the interactive shell, you’ll get an error message:

>>> 5 +
SyntaxError: invalid syntax

This error happens because 5 + is not an expression. Expressions with
multiple values need operators to connect those values, and in the Python
language, the + operator expects to connect two values. A syntax error means
that the computer doesn’t understand the instruction you gave it because you
typed it incorrectly. This may not seem important, but computer program-
ming isn’t just about telling the computer what to do—it’s also about knowing
the correct way to give the computer instructions that it can follow.

E r rors A r e Ok ay !

It’s perfectly fine to make errors! You won’t break your computer by entering
code that causes errors. Python will simply tell you an error has occurred and
then display the >>> prompt again. You can continue entering new code into
the interactive shell.

Until you gain more programming experience, error messages might
not make a lot of sense to you. However, you can always google the error
message text to find web pages that explain that specific error. You can also
go to https://www.nostarch.com/crackingcodes/ to see a list of common
Python error messages and their meanings.

Storing Values with Variables
Programs often need to save values to use later in the program. You can
store values in variables by using the = sign (called the assignment operator).
For example, to store the value 15 in a variable named spam, enter spam = 15
into the shell:

>>> spam = 15

You can think of the variable like a box with the value 15 inside it (as
shown in Figure 2-3). The variable name spam is the label on the box (so we
can tell one variable from another), and the value stored in it is like a note
inside the box.

When you press enter, you won’t see anything except a blank line in
response. Unless you see an error message, you can assume that the instruc-
tion executed successfully. The next >>> prompt appears so you can enter
the next instruction.

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

https://www.nostarch.com/crackingcodes

16 Chapter 2

This instruction with the = assignment
operator (called an assignment statement)
creates the variable spam and stores the value
15 in it. Unlike expressions, statements are
instructions that don’t evaluate to any value;
instead, they just perform an action. This is
why no value is displayed on the next line in
the shell.

Figuring out which instructions are
expressions and which are statements might
be confusing. Just remember that if a Python
instruction evaluates to a single value, it’s an
expression. If it doesn’t, it’s a statement.

An assignment statement is written as a variable, followed by the = oper-
ator, followed by an expression, as shown in Figure 2-4. The value that the
expression evaluates to is stored inside the variable.

Assignment statement

Assignment operator

Expression

Variable name spam = 10 + 5

Figure 2-4: The parts of an assignment statement

Keep in mind that variables store single values, not the expressions
they are assigned. For example, if you enter the statement spam = 10 + 5,
the expression 10 + 5 is first evaluated to 15 and then the value 15 is stored
in the variable spam, as we can see by entering the variable name into the
shell:

>>> spam = 10 + 5
>>> spam
15

A variable by itself is an expression that evaluates to the value stored in
the variable. A value by itself is also an expression that evaluates to itself:

>>> 15
15

And here’s an interesting twist. If you now enter spam + 5 into the shell,
you’ll get the integer 20:

>>> spam = 15
>>> spam + 5
20

15

spam

Figure 2-3: Variables are like
boxes with names that can
hold value.

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

Programming in the Interactive Shell 17

As you can see, variables can be used in expressions the same way
values can. Because the value of spam is 15, the expression spam + 5 evaluates
to the expression 15 + 5, which then evaluates to 20.

Overwriting Variables
You can change the value stored in a variable by entering another assign-
ment statement. For example, enter the following:

>>> spam = 15
u >>> spam + 5
v 20
w >>> spam = 3
x >>> spam + 5
y 8

The first time you enter spam + 5 u, the expression evaluates to 20 v
because you stored the value 15 inside the variable spam. But when you enter
spam = 3 w, the value 15 is overwritten (that is, replaced) with the value 3,
as shown in Figure 2-5. Now when you enter spam + 5 x, the expression
evaluates to 8 y because spam + 5 evaluates to 3 + 5. The old value in spam is
forgotten.

spam

3 15

Figure 2-5: The value 15 in spam is over-
written by the value 3.

You can even use the value in the spam variable to assign spam a new value:

>>> spam = 15
>>> spam = spam + 5
>>> spam
20

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

18 Chapter 2

The assignment statement spam = spam + 5 tells the computer that “the
new value of the spam variable is the current value of spam plus five.” The vari-
able on the left side of the = sign is assigned the value of the expression on
the right side. You can keep increasing the value in spam by 5 several times:

>>> spam = 15
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam
30

The value in spam is changed each time spam = spam + 5 is executed.
The value stored in spam ends up being 30.

Variable Names
Although the computer doesn’t care what you name your variables, you
should. Giving variables names that reflect what type of data they contain
makes it easier to understand what a program does. You could give your
variables names like abrahamLincoln or monkey even if your program had
nothing to do with Abraham Lincoln or monkeys—the computer would
still run the program (as long as you consistently used abrahamLincoln or
monkey). But when you return to a program after not seeing it for a long
time, you might not remember what each variable does.

A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes Stuff. You’d never
find anything! The variable names spam, eggs, bacon, and so on (inspired by the
Monty Python “Spam” sketch) are used as generic names for the examples in
this book and in much of Python’s documentation, but in your programs, a
descriptive name helps make your code more readable.

Variable names (as well as everything else in Python) are case sensitive.
Case sensitive means the same variable name in a different case is considered
an entirely different variable. For example, spam, SPAM, Spam, and sPAM are con-
sidered four different variables in Python. They each can contain their own
separate values and can’t be used interchangeably.

Summary
So when are we going to start making encryption programs? Soon. But before
you can hack ciphers, you need to learn just a few more basic programming
concepts so there’s one more programming chapter you need to read.

In this chapter, you learned the basics of writing Python instructions in
the interactive shell. Python needs you to tell it exactly what to do in a way it
expects, because computers only understand very simple instructions. You
learned that Python can evaluate expressions (that is, reduce the expres-
sion to a single value) and that expressions are values (such as 2 or 5) com-
bined with operators (such as + or -). You also learned that you can store
values inside variables so your program can remember them to use later on.

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

Programming in the Interactive Shell 19

The interactive shell is a useful tool for learning what Python instruc-
tions do because it lets you enter them one at a time and see the results.
In Chapter 3, you’ll create programs that contain many instructions that
are executed in sequence rather than one at a time. We’ll discuss some
more basic concepts, and you’ll write your first program!

Pr ac t ice Que s t ions

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1.	 Which is the operator for division, / or \ ?

2.	 Which of the following is an integer value, and which is a floating-point
value?

42
3.141592

3.	 Which of the following lines are not expressions?

4 x 10 + 2
3 * 7 + 1
2 +
42
2 + 2
spam = 42

4.	 If you enter the following lines of code into the interactive shell, what do
lines u and v print?

spam = 20
u spam + 20

SPAM = 30
v spam

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

https://www.nostarch.com/crackingcodes/

Cracking Codes with Python (Early Access), © 2017 by Al Sweigart

