
I N D E X

Symbols
! (null-forgiving; dammit) operator,

66–67
!= operator, 150, 167–168, 215–217

arithmetic and nonarithmetic
types, 208

comparing generic variables, 162
equality behavior in derived

classes, 219
implementing custom vs.

generated behavior, 201
method overloading, 240
nonstandard operator behavior,

209
optimizing equality, 266–267
value-based equality for classes,

215–217
& (binary combination) operator, 122
&& (logical AND) operator, 216
* operator, 14–17
?? (null-coalescing) operator, 51,

151–152
| (binary combination) operator, 122
|| (logical OR) operator, 216
- operator, 17
+ (concatenation) operator, 241
+ operator, 122
+= operator, 76
< operator, 122, 206, 208, 229
== (equals-equals) operator, 122,

139–140, 150
boxing values and identity

comparison, 158–161
class equality, 151–152, 156
compiler-generated equality,

167–172
custom vs. generated behavior, 201
equality behavior in derived

classes, 219–220

floating-point values, 141–142, 145
generic variable comparison,

162–163
interface boxes, 161
method overloading, 240
nonstandard behavior, 209
optimizing equality, 266–270
reference equality, 146–148
struct equality, 157–158
value-based equality for classes,

215–217
value semantics vs. reference

semantics, 177
whole numbers, 140

=> (expression body) syntax, 7, 24, 32,
92, 151

> operator, 208, 229

A
abstraction

abstract types, 29, 36
composing, 199
encapsulation and cohesion,

192–193
missing abstractions, 15, 28
new expression, 50
performance, 279
vocabulary and, 191–192

accessors, read-only, 134–135
Action type, 93–94
actual parameters, 38. See also

arguments
address

of an object, 74–75
of a variable, 128

ad hoc polymorphism (method
overloading), 238–242

generic delegates for
polymorphism, 241–242

302 Index

symbolic polymorphism with
overloaded operators, 240–241

anemic domain model, 184, 192–193
AngleExtensions class, 26
angle parameter, 3–5, 11
Angle type

automatic vs. nonautomatic
properties, 129–133, 135

boxing, 161
composition, 199
encapsulation, 5–7, 10
floating-point fields, 155
unit conversions, 24–28

anonymous methods, 85, 242
anonymous types, 60, 91
ApproximatelyEqual method, 143, 155
Area type, implementation inheritance

and, 228–230
arguments, 69–103. See also methods;

actual parameters
by-reference parameters, 76–82,

102–103
checking for invalid, 8
copying, 118–123
custom types, 5–6
double type and, 4–5
method arguments, 70–75, 118–123
method calls, 38
named, 4–5, 7–8, 33
null-forgiving operator, 66–67
object initialization, 6
ordering, 5

ArgumentException and
ArgumentOutOfRange
Exception type, 8

overloading constructors, 54
parameterless constructors, 54–55
passing null as, 52, 61, 65–66
passing variables as, 37–38, 44, 47
private constructors, 57
properties as, for read-only

parameters, 127–128
read-only references, 92–102

arithmetic operators, 14–15, 208–209
array elements

accessibility, 38
default initialization, 56

identifiers, 38
instance storage, 41–42
variables, 38, 42, 147–148

asynchronous methods, 86–87
AutoAppend method, by-reference

parameters and, 76–77
automatic properties, 43, 58, 130–134,

213, 265–266
await keyword and statements, 86–87

B
BallisticRange method

address of a variable, 127–130
defensive copying, 132–133

benchmarking, 251–252, 271
binary combination (| and &)

operators, 122
bitwise comparison, 49, 141, 256–257,

259
bne instruction, 171
boxed values, 44–45

generic code and Equals method,
163

identifying unnecessary boxing,
115–118

identity comparisons, 158–162
lock statements, 47
optimizing equality, 263–265
passing values by reference, 79
performance and, 172–173

Brush type
returning by-reference, 101
value type member layout, 40–42
value type reassignment, 113

by-reference fields, 84–87
asynchronous methods, 86–87
closures, 84–85
iterator blocks, 85–86

by-reference parameters, 76–92, 99,
102–103

defined, 70
kinds of, 70
limitations of, 82–88
output parameters, 79–82
passing arguments by reference,

70–71
passing references by reference,

77–78

ad hoc polymorphism (continued)

Index 303

passing values by reference, 78–79
reference types vs., 70–71
reference type variables vs., 76–77
side effects and direct effects,

88–92
by-reference returns, 97, 99
by-reference variables (ref locals), 84,

94, 97–102, 104, 123, 133, 270
defined, 95
keeping within scope, 97–101
performance vs. simplicity,

101–102

C
callback delegate, mutating arguments

for read-only parameters and,
93–94

cancellation
defined, 142
mitigating limitations of, 142–144

ceq instruction, 141, 145–147, 151
bne instruction vs., 171–172
efficiency of, 216

Character class, default object hash
codes and, 153–154

CI (continuous integration) services,
251

classes, xx, xxiii
abstract, 36
records vs., 33, 200–201
default constructors, 52
defining, 33
embedded references, 42
embedded values, 40
equality behavior in derived

classes, 218–219
equality comparisons, 149–156
field assignment, 53
field initializers, 58
generics and null, 61, 63
immutability, 33, 35
inheritance, 34–35
iterator blocks, 85–86
memory allocation, 50
object initializers, 58–59
parameterless constructors, 54,

57, 59
protected members, 35

sealed, 35
value equality, 48, 214–218

class factory methods, 22–25, 57
custom vs. generated behavior,

201–202
returning types implied by units,

27
symmetry, 23–24, 196

class invariants
defined, 9
discarded, 13–14
establishing, 194–195
testing, 9

class keyword, 33, 45
Clone method

boxing, 115
of record types, 114, 165

clones (deep copies), 200
Close method, reference semantics

and, 75
closures

by-reference parameters and,
84–85

defined, 84–85
looping and iteration, 280–281

code craft, 3
coercion polymorphism, 242–247

conversions for purpose, 245–247
conversions for representation,

244–245
widening vs. narrowing

conversions, 244
cohesion, 192–196, 198

clarifying with symmetry, 196
eliminating duplication, 193–194
establishing class invariants,

194–195
collisions of hash table elements, 153
ColorBuilder type, as mutable

companion type, 246–247
ColorParser type, generic type

constraints and, 235–238
Color type

ad hoc polymorphism, 239–242
array elements, 41–42
boxed values, 44
classes, 33
coercion polymorphism, 243–247

304 Index

compiler-generated equality,
165–169

constructing value types, 112–113
constructor accessibility, 57
conversion to interfaces, 116–117
copying records like value type, 114
default and generated

constructors, 53
embedded values, 40–42
generic code and Equals method,

163
IEquatable interface, 164
inclusion polymorphism and

subtyping, 222–229, 231–232
init-only properties, 59
instance fields of value types, 98
measuring performance with

Equals, 253–259
non-destructive mutation, 60
ordering, 206
overloaded constructors, 54
overriding Equals for structs,

157–159
overriding generated methods, 203
parametric polymorphism with

generics, 233, 235–238
records, 33
record structs, 34
references to references, 100
sealed value types, 213–221
structs, 32–33
uniformity and consistency, 207
value-based comparisons, 181
value type initialization, 56–57

Combine method, of HashCode, 259–261
Command type

controller object role, 190
inheritance, 34–35
reference semantics, 74–75

Common Type System, 45–46
CompareTo method

boxing, 116–117
inheriting, 228–230
sorting, 204–208

comparison operators, 122, 205, 208
composition, 199
concatenation (+) operator, 241

concrete types, 36
conjunctive pattern, 195
constant pattern, 61, 145, 151–152,

195, 216
constants

enums, 19
hidden copies, 128
replacing magic numbers with

named constants, 10–11
constructors, 49–57

accessibility, 57
default and generated, 52–53
expression body syntax, 7, 32
field and property initializers, 58
new object creation, 110–111
object initializers, 58–59
overloaded, 53–54
parameterless, 54–55, 62–63
private, 57
replacing public constructors with

static methods, 22–23
structs and default values, 55–56
value type construction and

initialization, 56–57, 112–113
value validation, 8–9

continuous integration (CI) services,
251

contract for comparisons, 205–206
antisymmetric, 205
irreflexive, 205
safe, 206
stable, 206
transitive, 205

contract for equality, 217–218
breach of, 221
reflexive, 217
safe, 217
stable, 217
symmetric, 217
transitive, 217
upholding, 224–225

controllers
avoiding implementation

inheritance, 230–231
characteristics of, 190–191
defined, 185

conversion operators, 7, 12, 122–123,
243–246

Color type (continued)

Index 305

Coordinate type
boxing, 115–116
value type memory layout, 71–72
value tuples, 102–103

copying, 46–48, 105–137
copy-by-value semantics, 73–74
defensive copies, 128–133
identifying unnecessary boxing,

115–118
large instances, 272
locks and reference semantics,

46–47
measuring cost of, 270–271
method parameters and

arguments, 118–123
modifying return type instances,

123–128
new object creation, 110–115
references vs. instances, 105–106
simple assignment, 106–110
value equality, 47–48
value semantics vs. reference

semantics, 177–181
CPU sampling, 254, 271
CreateColor method, returning by

reference and, 100
CrossGen utility, 250

D
dammit (!; null-forgiving) operator,

66–67
dangling references, 84, 99
DataAdapter type, generic type

constraints and, 234–238
DataStore type, reference semantics

and, 74–75
DateTime type

boxing, 118
IComparable interface, 206
TryXXX idiom, 79–80

decimal type, 143
declaration patterns, 150, 157
declarative code

defined, 89
immutability, 89
performance and, 91–92
vs. procedural code, 89, 284

Deconstruct method, 102–103

deep copies (clones), 200
default constructor, 52–54, 58
default keyword, 62–63
default values

avoiding pitfalls of default
variables, 200–201

default initialization, 50, 56
generics and, 62–63
null, 64
object initializers, 59
valid, 63

defensive copies, 128–133
automatic vs. nonautomatic

properties, 130–131
avoiding, 133–136
causes of, 133
defending against mutation,

133–134, 136
mutable value types and in

parameters, 129–130
read-only fields, 132–133
read-only reference variables,

131–132
definite assignment, 39

generics, 62
ref and out parameters, 79
static fields, 58
struct variables, 56–57

deferred execution (lazy enumeration),
85

delegates
callback delegate, 93–94
defined, 93, 241
generic, for polymorphism,

241–242
derived type, 34
Difference method, memory layout of

method parameters and, 72
digit separators, 262
Direction property, nondestructive

mutation and, 90–91, 127–128
discard pattern, 20–21, 195, 284–285
Disconnect method, reference

semantics and, 178–179, 181
disjunctive pattern, 195
Displacement method, 2–29

custom types, 5–6
encoding units, 18–28

306 Index

importance and value of good
names, 2–3

named arguments, 4–5
refactoring implementation, 9–18
value validation, 8–9

DistanceInKm method
read-only reference parameters,

92–93
user-defined conversions, 122–123

Distance type, refactoring and, 16–18
domain-specific types, 9
double argument, 12, 25
double values

custom types vs., 4–5
equality comparisons, 141–142,

145, 155, 229

E
embedded values, 40–43

array elements, 41–42
embedded references, 42–43
field and property layout, 43

encapsulation, 6–7, 25–26, 28, 192–196
abstracting types, 29
clarifying with symmetry, 196
cohesion and, 192
eliminating duplication, 193–194
establishing class invariants,

194–195
public interface and, 196–199
testing, 9

entities
characteristics of, 188–189
defined, 184–185

Enumerable class, 262, 282
enum (enumerated types)

Common Type System, 45
defined, 19
itemizing units with, 19–22

EqualityComparer class, 263
IEquatable interface and, 164–166
performance of, 277–278

equality comparisons, 139–172
boxing, 158–161, 163
built-in, 140–149
classes, 149–156
compiler-generated, 165–172

contract, 217
equality behavior in derived

classes, 218–219
equivalence vs., 203–205
floating-point numbers, 141–142,

144–145
generics, 162–165
records, 165–168
reference-based, 47–48, 146–152,

177–178
strings, 148–149
structs, 156–162
transitivity, 155
type safe, 152
type substitution, 220–221
value-based equality for classes,

214–218
value semantics vs. reference

semantics, 177–181
EqualityContract property, 226–228,

247
equals-equals operator. See == operator
Equals method, 33, 44, 46, 64, 139–140,

150–151
boxing values and identity

comparison, 158–159, 161
canonical form of, 215–217
class equality, 151–152, 155–156
compiler-generated equality,

165–166, 172, 277–279
copying large instances, 272
custom vs. generated behavior, 201
equality behavior in derived

classes, 219, 221
floating-point values, 145
generic variable comparison,

163–164
GetHashCode method and, 152–156,

259–261
IEquatable interface, 164–165
inheriting classes, 218–221
inheriting record types, 225–228
input and output types of virtual

methods, 223, 225
measuring basic performance

with, 253–261
measuring cost of copying, 271
method overloading, 238–239

Displacement method (continued)

Index 307

object base class, 47–48, 158–161,
163–164

optimizing equality, 261–265,
268–269

overloading, 152, 164–165
overriding base class

implementation, 199
overriding for structs, 156–158
records and structs, 48–49
reference equality, 146, 148,

276–277
struct equality, 156–158
value-based equality for classes,

215–217
value equality, 48
value semantics vs. reference

semantics, 177
ValueType base class, 156, 256–258

EqualsOperatorComparer class, 268
EqualViaBase method, 221, 226, 228
EqualViaDerived method, 221, 226
equivalence vs. equality, 203–205
explicit conversions, 106, 243, 245
explicit interface conversion, 116–117
expressions, using with operators,

121–123
expression-bodied properties

(nonautomatic properties),
130

expression body (=>) syntax, 7, 24,
32, 92, 151

extension methods
ad hoc polymorphism, 239
of built-in types, 26
by-reference parameters and,

87–88
composing abstractions, 199
extending interfaces, 197–198
iterators, 281
passing and returning by value,

119–120
returning types implied by units, 27

external interface, 198
extensionality, 204

F
fakes (test doubles), 230
field initializers, 58, 113

fields
array elements, 41–42
by-reference, 84–87
copy semantics, 46
default initialization, 50, 53
embedded fields, 40–41
embedded references, 42
embedded values, 43
field and property layout, 43
generics, 62
identity equality vs. value equality,

47–48
initializers, 58
instance, 37, 98
parameterless constructors, 54–55
properties vs., 265–266
protected, 35
read-only, 132–134
return by reference, 131–132
static, 38, 58
value semantics, 49
value type initialization, 56–57

floating-point values equality
comparisons, 141–145

rounding and cancellation errors,
141–144

using as keys with hash codes,
154–156

fluent syntax form of LINQ (Language-
Integrated Query), 279–280

foreach loop, 36, 66, 281–284
for loop, 283–284
formal parameters See parameters
FormatConnection method, output

parameters of extension
methods and, 87

Format method, method group
overloading and, 242

FORTRAN, 182

G
garbage collection, xxiii, 37, 41, 74,

boxing, 115
managed pointers, 99
performance, 263, 275
read-only references, 131

generics, xx–xxii
arithmetic, 162

308 Index

base-class constraint, 162–163
deduced type parameters, 236–238
default values, 62–63
equality comparisons, 162–165
generic delegates for

polymorphism, 241–242
interface constraint, 116–117
null values, 61–62
parametric polymorphism, 233–238
partial deduction of generic

parameters, 237
get accessor, 32–34, 128

automatic vs. nonautomatic,
130–131

methods for, 120–121
read-only, 134–135
symmetry with set accessor, 209

GetAddress method, 99
returning by reference, 99

get_Current method, 282
GetEnumerator method, 281
GetHashCode method

collision, 152–153
defining, 154, 157
performance, 259–261
ValueType definition, 156, 259
where used, 152

get_Speed method, 120–121
GetType method, 118, 166, 216, 227
GetValueOrDefault method, 169
Gravity.Earth constant, replacing

magic numbers with, 11

H
HashCode class, 154, 259–261
hash codes, 152–156

collision, 152–153
creating suitable keys, 154
distribution, 152–153, 259
Equals and ValueType.GetHashCode

methods, 259
using floating-point numbers as

keys, 154–15
heap, xxiii–xxiv, 37, 40, 50, 73–74,

107–108
boxing, 158–161
identity, 180

hidden copies, 130, 137
boxes, 118
parameter passing, 128
return values, 124–126
value type construction, 118

I
IComparable interface, 116–117,

204–208, 228–229, 231
IComparer interface, 206–207
IEEE-754, 141
identifiers for variables, 37
identity comparison, 145, 148, 276

boxed values, 158–162
identity equality vs. value equality,

47–48, 158–159
identity conversions, 150
IEnumerable interface, 85, 241, 281–282
IEnumerator interface, 281–282
IEqualityComparer interface, 165,

206–207, 267–268, 271
IEquatable interface

avoiding boxing, 164
contract for, 217
IComparable interface vs., 203–205
implementing, 164, 215–216
performance effects, 263–265

if...else statements, 81, 285
IFormattable interface, 161
if statements, 284–285
immutability. See mutation and

immutability
imperative code, 89
implementation inheritance, 213–214

avoiding, 230–232
containing instead of inheriting

types, 231–232
interface inheritance vs., 213
upholding a type’s contract, 224

implicit conversions, 47, 97, 117, 150
boxing, 117–118
by-reference variables, 95–97
coercion polymorphism, 242–247
defining, 12–13
discarded invariants, 13–14
implicit reference conversion, 150,

220–221
primitive obsession, 5

generics (continued)

Index 309

to and from null, 147
unexpected interactions, 13
user defined, 122–123

Inch Calculator (online unit
conversions), 120

inclusion polymorphism, 222–232
avoiding implementation

inheritance, 230–232
inheriting record types, 225–230
input and output types of virtual

methods, 223–224
upholding contract, 224–225

Incremented method
naming conventions, 89–90
passing by value, 119

Increment method
overloading by-reference

parameters, 83
passing by reference, 78

indexers, 82, 106, 118, 125
defined, 121
mutating values from, 126–127

infinity, 145
inheritance, 34–36. See also inclusion

polymorphism
init accessor, 59, 91, 112
init-only properties, 59, 112, 114,

274
In method, using for unit conversion,

21–22
in modifier and parameter

definition, 70–71
as optimization, 268–270
property values as arguments for,

127–133
using, 92–93

InMph extension method, 120
input parameters, 70, 93
InRadians property

automatic vs. nonautomatic
properties, 129–130

defensive copying, 132–133
unit conversions, 24–26

instrumentation profiling (tracing),
258

intentionality, 204
interface constraints, 233–235
interface keyword, 224

interfaces
abstractness, 36
boxed values, 44, 116–117, 161–162
extension methods, 27
generic constraints and protocol,

233–236
implementing and inheritance, 35
interface inheritance, 213, 222
parametric polymorphism,

233–236
types, defined, 161

internal interface, 198–199
InternetTime class, as service object,

188
intern pools, 149
InvalidCastException error, 45, 107
IParser interface, generic type

constraints and, 234–238
IsNaN static method, 145
IsReadOnlyAttribute indicator, 131–132,

134–136
iterator approach to creating sequences,

281–283
iterator blocks, 85–86
iterators, 281–282

J
JIT (just-in-time) compiler, 137, 141,

250–253, 265, 270–271, 273,
277–279, 281

Journey type indexer values, 126–127

K
keys, 152–156

creating suitable, 154
using floating-point numbers as,

154–156

L
lambdas, 66, 85, 94, 241–242, 273,

280–281
lazy enumeration (deferred execution),

85
ldnull instruction, 147
level of indirection, 70, 75, 79, 212
lexicographical ordering, 206
lifting operators, 169
local functions, 85

310 Index

local variables
associated type, 38
constructing value types, 112
defined, 37
definite assignment, 39
instance storage, 43
keeping by-reference variables

within scope, 97–100
lifetime of, 36
local read-only reference variables

(ref readonly locals), 132–134
passing and returning by value, 119

lock statements, 47, 180
LogEntry type, equality vs. equivalence

and, 203–209
logical AND (&&) operator, 216
logical OR (||) operator, 216
Login type, reference semantics and,

178–181
loop approach to creating sequences,

283–284

M
magic numbers, 4, 10–11
magnitudinal ordering, 206
Mail type, returning by reference and,

95–97, 99
managed pointers, 99
Math class, 10, 12–13, 17–19, 24–26,

143–144
memory profilers, 252
memory tearing, 114
method groups, 240, 242, 273, 280–281
method overloading (ad hoc

polymorphism), 238–242
methods. See also arguments; actual

parameters
abstract, 36
adjectives as names, 90
anonymous, 85, 242
asynchronous, 86–87
class factory, 22–25, 27, 57, 196,

201–202
encapsulation, 9
encoding units, 22–27
extension, 26, 197-199

ad hoc polymorphism, 239
of built-in types, 27

by-reference parameters and,
87–88

passing and returning by
value, 119–120

generics, 61–63
identifying unnecessary boxing in

method calls, 117–118
implementing from interfaces, 35
inheritance, 34–36
naming identifiers, 2–5
overloading, 16, 83–84
overriding generated, 202–203
protected, 35
read-only, 134–135
return type instance modification

and mutability, 126–127
static creation, 22–23
value equality, 48

mock objects (test doubles), 230
ModifyByCallback method, mutating

read-only reference parameter
arguments and, 93–94

Monitor class, 47, 180
MoveNext method, 282
multiple inheritance, 34, 36
MusicTrack type

customizing equality, 154, 156–157
reference type field initialization,

50–52, 55–56
Mutable Companion pattern, 246
mutation and immutability, 7–8

classes, 33, 35
declarative code, 89
defending against mutation with

defensive copies, 133–134, 136
immutable types vs. read-only

properties, 109–110
init-only properties, 59
instance methods and mutability,

126–127
mutable immutable properties, 101
mutable value types and in

parameters, 129–130
mutating values from indexers,

126–127
mutation vs. creation, 89–91
non-destructive mutation, 60
in parameter, 92

Index 311

read-only properties vs. immutable
types, 109–110

record structs, 34
return type instance modification

and mutability, 126–127
structs, 32–33
value semantics vs. reference

semantics, 181–182

N
NaN (not a number), 8, 144–145, 195,

256, 285
narrowing conversions, 244
NegativeInfinity method, 145
new keyword and expression, 14, 50–51,

56–57, 110
newobj instruction, 146
NextAppointment method, capturing

by-reference parameters and,
85

nonautomatic properties (expression-
bodied properties), 130

non-destructive mutation, 60
not a number (NaN), 8, 144–145, 195,

256, 285
not constant pattern, 216
nullable reference types, 52, 64–67,

151, 224
Nullable type, 64, 168–172
nullable value types, 60, 63–64,

168–170
null-coalescing (??) operator, 51,

151–152
null-conditional (?) operator, 52, 151
null-forgiving (!; dammit) operator,

66–67
Nullify method, by-reference

parameters for extension
methods and, 87

NullReferenceException error, 56
null references, 51–52, 56, 65–67,

146–147, 151, 206, 233–234
comparing reference types with

null, 61
comparing value types with null,

61
equality comparisons with classes,

151–152

generics and, 61–62
nullable reference types, 52,

64–67, 151, 224
nullable value types, 60, 63–64,

168–170
null-forgiving operator, 66–67
parameterless constructors, 54

O
object address, 180
object base class

Common Type System, 33, 44–46
default equality, 48, 139, 163,

215–216, 253
generic type parameters, 233

object construction and initialization,
49–60

constructors, 51–57
copying value type instances,

110–115
default initialization, 50–51
field and property initializers, 58
measuring cost of, 273–277
memory allocation, 49–50
object initializers, 7, 58–60

init-only properties, 59
non-destructive mutation, 60

object deconstruction, 102–103
object identity, 180, 185–191

and boxing, 158, 161
hash codes, 153

object-oriented programming (OOP),
183–184, 211

object relationships, 183–191
characteristics of, 185–191
design refinement to model object

roles, 191
kinds of objects, 184–185

object roots, 99
OOP. See object-oriented

programming
op_Equality method, 167, 171–172,

268
operators

arithmetic, 14–15, 121–122,
208–209

lifting, 168–170
nonstandard behavior, 209

312 Index

symbolic polymorphism with
overloaded operators,
240–241

using expressions with, 121–123
optimization, 101, 142, 250

boxing, 118
mutable by-reference parameters,

91–92
ordering, comparison for, 203–207

contract for comparisons, 205–206
equivalence vs. equality, 204–205
lexicographical ordering, 206
ordinal comparisons, 206

output parameters, 79–82, 93, 102
deconstruction, 102–103
defined, 70
definite assignment, 80–81
object deconstruction, 102
reference parameters vs., 79
returning by reference, 100
selecting operations, 81–82
TryXXX idiom, 79–82

overloading, 16, 152, 238–241
by-reference parameters, 83–84
constructors, 53–55
operators, 14–15, 208–209
overriding vs., 221

override keyword, 149

P
parameterized types, 237–238
parameterless constructors, 54–59,

62–63
parameters, 69–103

aliasing, 74–75
arguments, 38, 118–120
boxed, 160–161
by-reference, 70–71, 76–92, 99,

102–103
custom types as, 6
defining interfaces, 223–224
formal vs. actual, 38
generic, 61–62, 162–163, 233–238
input, 70, 92–93, 127–128, 268–270
kinds of, 70
modifiers, 70
naming, 2–5

non-nullable, 52, 66–67
output, 70, 79–82, 93, 102
overloading constructors, 53
overloading methods, 16
passing, defined, 69–70
read-only, 92–102, 127–128,

268–270
reference, 70–71, 73–74
ref returns, 92–102
value, 70–73

parametric polymorphism, 233–238
generic constraints and protocol

interfaces, 233–236
generic method parameters and

type deduction, 236–237
parameterized types, 237–238

Parse method, TryParse vs., 80
passing arguments

defined, 69–70
by reference, 70–71, 77–79
by value, 70–71, 119–120

pattern matching and selection
conjunctive pattern, 195
disjunctive pattern, 195
is constant pattern, 61, 145,

194–195
performance of, 284-286
relational pattern, 195
switch expression, 20–21,

284–286
performance, 249–286

effect of common idioms and
practices on, 279–286

effect of types on, 270–279
measuring and optimizing,

250–253
measuring with Equals, 253–261
optimizing equality, 261–270
profilers, 252–253

pessimization, 250
Playlist class

field initializers, 58
generic type parameter

comparisons, 162
parameterless constructors, 54–55

pointers
managed, 99
reference types vs., 74

operators (continued)

Index 313

polymorphism, 211–247
ad hoc, with overloading, 238–242
coercion, using conversions,

242–247
inclusion and subtyping, 222–232
inheritance vs., 211–212
parametric, with generics, 233–238
sealed value types, 212–221

positional records and record structs,
33, 53, 55, 131, 201–203, 273

copying, 114
equality, 165–168, 277–279
inheritance, 225–227

PositiveInfinity method, 145, 285
precision, 142–144
Primitive Obsession code smell, 5
private constructors, 23, 57
procedural code

declarative code vs., 89, 284
defined, 89

Product type
copying large value types, 273–279
optimizing equality comparisons,

261–268
read-only vs. immutable, 107–110
value object role, 186–187

profilers, 252–253
Projectile type, returning by

reference, 131–133
properties

abstract, 36
accessing, 120–121, 265–266
as arguments for read-only

parameters, 127–128
automatic

initializers, 58
memory layout, 43
nonautomatic vs., 130–134
performance of fields vs.,

265–266
by-reference parameters and

property values, 82–83
circular dependency, 43
expression-bodied, 130–131
init-only, 59, 112, 114, 274
mutable immutable, 101
property forwarding, 24
property initializers, 58

read-only. See read-only properties
returned reference type instance

modification, 125–126
simplifying, 11–14
value of, 82

protocol interfaces, 231, 233–238
pseudorandom number generator, 254
public interface, encapsulation and,

196–199
composing abstractions, 199
extending interface, 197–198
reducing internal interface,

198–199
Purchase type

copying large value types,
273–280, 282–283

optimizing equality comparisons,
261–269

read-only vs. immutable, 107–112
value object role, 186–187

Q
query syntax form of LINQ (Language-

Integrated Query), 280–281

R
race conditions, 96
Random class, 254
ranges (slices), 235
reachable objects, 99
readonly keyword, 32–34

ref locals, 96
structs, 135–136

read-only properties, 7
as arguments for read-only

parameters, 130
avoiding defensive copies, 135
immutability vs., 109–110
and ref returns, 104

read-only reference parameters, 88,
92–95, 129, 131–132

mutable immutable properties, 101
performance vs. simplicity, 101–102
preventing modifications to data,

95–97
read-only type, 135–136
real number, 144
record keyword, 33, 45

314 Index

records
abstract, 36
copying like value types, 114–115
defining, 33–34
equality comparisons, 165–168
inheritance, 34
inheriting record types, 225–230
protected, 35
sealed, 35
value semantics, 48

record struct keywords, 34
record structs

defining, 34
equality comparisons, 165–168
immutability, 34
inheritance, 34
value semantics, 49

refactoring, 9–10, 191
reference equality, 145–148, 178–180,

275–277
ReferenceEquals method, 148–149,

160–161, 216
reference parameters, 65, 70–71, 73–74,

79, 239
reference return values. See ref returns
reference semantics, 45–48, 176–183,

199–203
avoiding pitfalls of default

variables, 200–201
Common Type System, 45–46
copying and equality comparison

behavior, 177–181
copying variables, 46–48
implementing custom vs.

generated behavior, 201–202
mechanics vs. semantics, 182–183
mutability, 181–182
overriding generated methods,

202–203
reference types

array elements, 42
by-reference parameters vs., 70–71
classes, 33
default initialization, 52–53
identity comparison, 47
inheritance, 34, 36
instance lifetime, 37
instance storage, 40

locks and semantics, 46–47, 180
nullable, 64–66
performance, 274–275
pointers vs., 74
records, 33
return type instance modification,

123, 125–126
value of, 73–74
value-like performance, 274–277
value types vs., xx, 31, 70–71, 123–126,

176–181, 212–213, 273–277
reference variables

aliasing and, 74–75, 88, 96,
107–110, 125, 178–180

boxing and unboxing, 44
by-reference parameters vs., 76–77
defensive copies, 131–132
equality comparisons, 145–148, 177
fields of value types, 107–110
instance storage, 42
non-nullable reference variables,

64–65
passing by reference, 77–78
reference storage, 37
scope, 37
value of, 39

referential transparency, 180
reflection, 49, 156, 257–258
ref locals, 95–96, 132–134. See also

by-reference variables
ref parameter modifier, 76–78, 80,

82–88
defined, 70–71
passing by reference, 77
property value arguments for,

127–128
returning by reference, 94–97

ref readonly locals (local read-only
reference variables), 96,
132–134

ref returns (reference return values), 92
keeping by-reference variables

within scope, 97–101
performance vs. simplicity,

101–102
preventing modifications to data,

95–97
returning values by reference, 94–95

Index 315

relational operators, 195
relational pattern, 195
RelativeLuminance method, user-

defined conversions and, 246
Reminder class, by-reference fields

and, 84
RemoveRed method, returning

by-reference parameters by
reference and, 100

Reset method, variables vs. values
and, 126

return type instance modification,
123–128

instance methods and mutability,
126–127

properties as arguments for read-
only parameters, 127–128

reference type properties, 125–126
rich domain model, 184
rounding, mitigating limitations of,

142–144
run-time type, 166, 220–221
rvalue, 124

S
sealed, 34, 212–213, 224–225, 231
seam, 230–231
Select method, 241–242, 273, 280–281,

283–284
self-documenting code, 6
semantics

copying, 46–47, 75, 177
equality, 166–167, 177
reference, 46–47, 176–177

separation of concerns, 9, 117
SequenceEqual method

comparing array elements, 148
effect of IEquatable interface,

262–267
services

characteristics of, 187–188
defined, 184

set accessor, 7, 32–34
mutable value types, 78, 89,

107–110
object initialization, 58–59, 91,

100–112
value type properties, 123–124

side effects and direct effects, 88–92
declarative code and performance,

91–92
mutation vs. creation, 89–91
reference semantics and, 178–180

simple assignment, 106–110
value copy behavior, 107–109

single responsibility, 28–29
slices (ranges), 235
sorting collections of values, 203–204
SpeedExtensions type, internal vs.

external interface and, 197
Speed type

anemic type, 192
automatic vs. nonautomatic

properties, 133
encapsulation, 192–199
passing and returning by value,

119–120
replacing built-in types, 5–10,

12–24, 27–28
variable vs. value, 129–130

stack, value types and, 39
static abstract interface members, 162
static creation methods, 22–23
Stopwatch class, 251–252
StringBuilder type, 125, 246

Capacity property, mutating
property values and, 125

string class
concatenation, 209, 241
equality, 148–149, 177
interpolation, 52, 148
StringBuilder vs., 246
value of, 177

string interning, 149
structs

cyclic dependencies, 43
defining, 32–33
equality comparisons, 156–162
immutability, 32–33
inheritance, 34
tightly packed, 256
value semantics, 49

stubs (test doubles), 230
Subtract method, 223–224

derived method behavior,
223–224

316 Index

subtyping, 222–232
avoiding implementation

inheritance, 230–232
defined, 222
inheriting record types, 225–230
input and output types of virtual

methods, 223–224
substitutability, 222–223
upholding contract, 224–225

switch expressions, 21, 194–195,
284–285

switch statement vs., 285
symbolic polymorphism, 240–241
symmetry

class factory methods, 23–24, 196
contract for equality, 217
encapsulation and cohesion, 196

SynchronizationLockException error, 47
System.Diagnostics namespace, 251
System types, 45

T
target-typed default feature, 63
target-typed new feature, 14, 55
Temperature type

pattern matching, 285
positional records, 200–202

ternary condition (?:) operator, 81, 151
test doubles (stubs; fakes; mock

objects), 230
testing, 9, 15, 22, 218–221, 229,

245, 262
theta, 3
this parameter, 87–88, 120
TimeSpan type

arithmetic operations, 14–18
replacing built-in types, 6, 10, 12
unit conversions, 24, 27

Tolerance constant, setting for floating-
point comparisons, 143

ToString method
boxing, 118
default reference field values, 56
implicit conversion vs., 246

TotalSeconds property of TimeSpan type
arithmetic operations, 14–15
Seconds property vs., 10
unit conversions, 27

ToTitleCase method, nullable reference
types and, 65–66

TParser parameter, generic type
constraints and, 234–237

tracing (instrumentation profiling), 258
transitivity

equality comparisons, 155, 217
ordering comparisons, 206

TranslucentColorParser class,
overloading method groups
with, 238

TranslucentColor type
composition, 231–232
generic type constraints, 236, 238
implementation inheritance,

213–214, 216, 218–229
user-defined conversions, 241–244

triangular number, 258–259
truth operators, 122
try...catch blocks, 80
TryXXX idiom, 79–82

selecting operations, 81–82
side effects and direct effects,

88–89
tuples

equality comparisons, 170–172
named, 102
tuple assignment, 32
tuple deconstruction, 29, 102–103

two-stage initialization, 110–113
typeof method

EqualityContract property,
226–227

GetType vs., 118
types, 1–30. See also reference types;

value types
abstracting, 29, 36
adding clarity through, 4–9
benefits of understanding, xix,

xxiii
clarity, adding through, 4–9
class vs., 222–223
deduction, of generic type

parameters, 236–237
deduction, of var declarations, 106
determining need for new types,

15–18
effect on performance, 270–279

Index 317

encoding units, 18–28
generic constraint, 117, 162–163,

233–234
implied by units, returning, 27–28
inference, 106
instances and storage, 39–45
naming, 2–4
new features in C3, xxiii
null values and default values,

60–67
object construction and

initialization, 49–60
purpose and focus of book, xx–xxi
refactoring implementation, 9–18
semantics, 45–49
user defined, 32–37

type substitution, 220–221
breach of contract, 221
effects of, 220–221

U
ubiquitous language, 191–192, 288
unboxing, 44–45, 116, 163, 263
unconstrained generic type, 61–62,

162–163
uninitialized variables, 39
units, 18–28

choosing most natural usage,
25–26

itemizing with enumeration types,
19–22

making explicit, 24–25
returning types implied by, 27–28
static creation methods, 22–23
symmetry in design, 23–24

Units enumeration type, 19–21
unit testing, 251. See also testing
user-defined types. See classes; records;

record structs; structs

V
validation, 8–9, 184, 193–194
value-based comparisons, 48, 177,

180–181, 215–216
records, 166–168
reference equality vs., 156, 158,

162–163
strings, 148–149, 177

value-like behavior and characteristics
classes and records, 35
records, 48

value object role, 184, 186–187
value parameters, 71–73

by-reference parameters vs., 76
defined, 70, 118
passing and returning by value,

119–120
passing arguments, 70
replacing with in parameters, 269

values, 175–210
abstraction and vocabulary,

191–192
boxed, 44–45, 47, 79, 115–118,

158–163
by-reference vs., 79
optimizing equality, 263–265

characteristics of, 186–187
comparison for ordering, 203–207
default, 50, 56, 59, 62–64, 200–201
defined, 184
definite assignment, 39
embedded, 40–43
encapsulation and cohesion,

192–196
encapsulation and public interface,

196–199
equality, 47–48
extensionality vs. intentionality,

204
identity comparison, 47–48
object relationships, 183–191
passing and returning by, 119–120
perils of uniformity and

consistency, 207–209
simplifying, 11–14
unit conversions and value

comparisons, 20–21
validation of, 8–9
variables vs., 38–39

value semantics
benefits of understanding, xxiv
reference semantics vs., 176–183,

199–203
value tuples

equality comparisons, 170–172
tuple deconstruction, 102–103

318 Index

ValueTuple type, 170, 172
ValueType class

Common Type System, 45–46, 211
copying and identity, 48–49, 177–8
default equality, 156–159, 163, 165,

253–260
value types

advantages of, xxiii–xxiv
arithmetic, 14–15
avoiding defensive copies, 135–136
construction, 52–53, 112–113
copying, 110–115
defensive copies, 129–130
embedded fields, 43
identity comparison, 47
inheritance, 36
initialization, 56–57
instance fields of, 98
instance lifetime, 36–37
instance storage, 39
nullable, 63–64
parameters and, 71–73
passing variables by reference,

78–79
polymorphism, 211–247
record structs, 34
reference types vs., xx, 31, 70–71,

123–126, 176–181, 212–213,
273–277

return type instance modification,
123–124

sealed, 35, 212–221
semantics, 45–48
size of instances, 91–92, 136,

270–274
structs, 33

variables, 37–39. See also array variables;
by-reference variables; local
variables; parameters;
reference variables

associated types, 38

avoiding pitfalls of default
variables, 200–201

capturing, 84–85
copy-by-value semantics, 73–74
copying, 46–48
defined, 37
definite assignment, 39
embedded, 40–43
identifiers, 37
kinds of, 37–38
lifetime of, 36–37, 131–132
read-only, 134–136
values vs., 38–39, 82, 123–127

Velocity type
abstraction, 17, 28–29, 199
by-reference parameter

limitations, 82
non-destructive mutation, 90–91
perils of mutable value types,

126–127
property methods, 120–123

virtual dispatch, 212, 228
virtual methods, 34, 36, 118
vocabulary, 191–192, 199
Volume type, implementation

inheritance and, 228–230

W
Where method, 85, 281
whole numbers, 140–141
widening conversions, 244
with keyword, 60, 90–91, 114–115
WithPercentAdded method, 197–198
WriteLine method, 118

Y
yield statement, 85–86

Z
ZeroKelvin constant, using for

validation, 285

