
In this chapter you’ll build your first Dash
app. We’ll analyze the number of Twitter

likes received by 16 chosen celebrities since
2011. You can download the data with the book’s

resources at https://nostarch.com/python-dash. The type of
analysis we’ll do is common in the field of social media
analytics, typically used to better understand audience
behavior, the effectiveness of posts, and the overall
performance of an account.

This first dashboard will plot the number of likes per tweet. Once
you master this simple plotting process with Dash, you’ll be able to scale
your skills to plot bigger and more complex data in other areas: Instagram
post views, Facebook profile visits, LinkedIn post click-through rates, and
YouTube video performance.

This chapter should give you sufficient knowledge of Dash to create
your own dashboard app. You’ll learn how to incorporate data into your

4
F I R S T D A S H A P P

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

46 Chapter 4

app, manage numerous dashboard app components, build basic charts such
as line charts, and add interactive capabilities to your dashboard through
the callback decorator. First, let’s download the code and run the app to see
what it does.

Setting Up the Project
Open PyCharm, create a new project, and call it my-first-app (the project
name should be the suffix text after the last backslash in the Location field
of the New Project dialog). Set up your virtual environment using the stan-
dard Virtualenv.

N O T E 	 The code in this chapter assumes you’re using a Python IDE, such as PyCharm.
If you don’t have an IDE installed and a virtual environment set, refer back to
Chapter 2 and complete your Python setup. If you’re using a different coding environ-
ment, just adapt the instructions here to your environment. The code in this chapter
also requires Python 3.6 or higher.

Next, you need to download this chapter’s dashboard app files into
your project folder. Instead of cloning the repository as we did in Chapter 2,
we’ll download the ZIP file directly. It’s worth trying various ways to set up
a project because you’ll probably stumble upon some projects that are not
directly available as Git repositories. To use the ZIP file, go to the GitHub
repository at https://github.com/DashBookProject/Plotly-Dash, click Code, and
then click Download ZIP, as shown in Figure 4-1.

Figure 4-1: Downloading the app code from GitHub

Once you have the Plotly-Dash-master.zip file on your computer, open it
and go into the Chapter-4 folder. Copy all the files from that folder into your
recently created my-first-app project folder. The project folder should have
files in the following structure:

— my-first-app
|— —assets
		 — —mystyles.css
|— —tweets.csv
|— —twitter_app.py

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 47

The assets folder will hold the CSS script. The tweets.csv file holds the
data we’ll use, and twitter_app.py is the main app file we’ll use to run
the app.

We’ll now install the necessary libraries in our virtual environment.
Go to the Terminal tab in the bottom part of the PyCharm window, shown
in Figure 4-2.

Figure 4-2: Opening the terminal in PyCharm

Enter and execute the following lines of code to install pandas and
Dash (the Plotly package is automatically installed with Dash, so there is
no need to install Plotly, and the NumPy package is automatically installed
with pandas):

$ pip install pandas
$ pip install dash

To check that the libraries are installed correctly, enter:

$ pip list

This will create a list of all the Python packages currently in your virtual
environment. If they’re all listed, you can move on. Note that all dependen-
cies of pandas and Dash will also be listed, so you might see many more
libraries than just the two you installed.

Next, open twitter_app.py inside PyCharm and run the script. You
should see the following message:

* Serving Flask app "twitter_app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
Dash is running on http://127.0.0.1:8050/

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

48 Chapter 4

The warning just reminds us that the app is in a development server and it
is completely normal. To open your app, click the HTTP link or copy and
paste it into your browser’s address bar.

Congratulations! You should now see your first Dash app, which should
look like Figure 4-3.

Figure 4-3: The Twitter Likes Analysis app

Have fun! Play around with your dashboard app. Change the dropdown
values, click the links, click on the graph legend, and zoom in to a certain
date range by holding down the mouse’s left-click button and dragging the
mouse. See what information you can deduce.

Now let’s take a look at the code of the app. Most Dash apps have a simi-
lar code layout:

1.	 Import the necessary Python libraries.

2.	 Read in the data.

3.	 Assign a stylesheet to describe how the app should be displayed.

4.	 Build the app layout that will define how to display all the elements.

5.	 Create the callbacks to enable interactivity between the app components.

Because Dash apps mostly follow this outline, we’ll go through the code in
this order.

Importing the Libraries
Let’s first look at the libraries we’ll use, shown in Listing 4-1.

import pandas as pd
import plotly.express as px
from dash import Dash, dcc, html, Input, Output

Listing 4-1: The import section of twitter_app.py

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 49

We first import pandas to handle the data. We then import Plotly, a
popular Python visualization library. There are two main ways to create
graphs in Plotly. We’re using Plotly Express, a high-level interface for creating
graphs in single function calls, with very few lines of code. It has enough
features to allow you to build graphs seamlessly and quickly, and is the
easier of the two to use for simpler apps.

The alternative is Plotly Graph Objects, a low-level interface for creating
graphs from the bottom up. When using Graph Objects, you need to define
the data, layout, and, at times, frames, all of which make the graph-building
process more involved. That said, its full set of features allows you to cus-
tomize your graphs in ways that add much richness to them, so you might
want to use Plotly Graph Objects once you’ve mastered Dash basics and you
have more complicated graphs to build. We’ll use Plotly Express in most
cases and revert to Graph Objects in more complex situations.

Next, we import some Dash libraries to handle components and
dependencies. Components are the building blocks that can be combined to
create rich, complex interfaces for your users, such as dropdown menus,
range sliders, and radio buttons. Dash comes bundled with two key compo-
nent libraries maintained by Plotly: dash-html-components (HTML) and
dash-core-components (DCC). The dash-html-components library contains
structural elements such as headings and dividers that style and position
elements on the page, while dash-core-components provides core functionality
for your app, such as user input fields and figures.

Data Management
In this app, we’re using a CSV spreadsheet as our data source. To use the
data, we need to read it into memory via pandas, but before that we have
to clean the data. This means preparing the data for analysis and plotting
by doing things like standardizing capitalization of strings and formats of
time, stripping whitespace, and adding nulls for missing values. When the
data is dirty, it’s often unorganized and might contain missing values. If you
try to use dirty data, the plot may not work, the analysis is likely to be inac-
curate, and you’ll find filtering difficult. Cleaning the data ensures that it is
readable, presentable, and plottable.

Listing 4-2 shows the data management section of the code.

1 df = pd.read_csv("tweets.csv")
df["name"] = pd.Series(df["name"]).str.lower()
df["date_time"] = pd.to_datetime(df["date_time"])
df = (
	 df.groupby([df["date_time"].dt.date, "name"])[
		 ["number_of_likes", "number_of_shares"]
]
	 .mean()
	 .astype(int)
)
df = df.reset_index()

Listing 4-2: The data management section of twitter_app.py

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

50 Chapter 4

At 1 we take the CSV spreadsheet and read it into a pandas DataFrame
called df. The DataFrame at the beginning of a Dash app is commonly
referred to as a global DataFrame and the data is a global variable (global
means the object is declared outside a function, meaning it’s accessible
throughout the app).

To clean the data, we change the strings of the celebrity name column
to lowercase so that we can readily compare them, we convert the date_time
column into a date recognizable by pandas, and we group the data by date​
_time and name so that each row has a unique date stamp and name. If we
did not group the data this way, we would end up with multiple rows with
the same date and name, which would create a messy line chart that’s
impossible to read.

To check the data, add the following line of code to the script, right
after df = df.reset_index():

print(df.head())

Once you run the script anew, you should see something like the follow-
ing inside the Python terminal:

	 date_time	 name	 number_of_likes	 number_of_shares
0	 2010-01-06	 selenagomez	 278	 695
1	 2010-01-07	 jtimberlake	 62	 189
2	 2010-01-07 	 selenagomez	 201	 630
3	 2010-01-08 	 jtimberlake	 27	 107
4	 2010-01-08	 selenagomez	 349	 935

As you can see, the result is a neat pandas DataFrame with rows of
data that represent the average number of likes and shares per celebrity,
per day.

It’s always a good practice to read in and prepare your data at the
beginning of the app because reading data can be a memory-expensive
task; by inserting the data at the beginning, you ensure that the app loads
the data into memory only once and does not repeat this process every time
a user interacts with the dashboard.

Layout and Styling
The next step is to manage the layout and styling of the app components,
such as the title, graph, and dropdown menus. We’ll learn more about the
components in “Dash Components” later in this chapter; here we’ll just
focus on the layout section.

In a Dash app, the layout refers to the alignment of the components
within the app. The style refers to how the elements look, such as the color,
size, spacing, and other properties (known in Dash as props). Styling the
app allows for a more customized, professional presentation. Without styl-
ing, you could end up with an app like the one shown in Figure 4-4, where
the title is not centered, the dropdown field stretches over the whole page,
and there is no space between the link and the dropdown above it.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 51

Figure 4-4: The Twitter Likes Analysis app without proper layout and styling

Alignment

Dash apps are web-based, so they use the standard language of web pages:
HTML (HyperText Markup Language). Luckily, Dash includes the Dash
HTML Components module, which converts Python to HTML, meaning we
can use Python to write our HTML.

One of the most essential components of HTML is the Div, short for
division, which is simply a container for other elements and a way to group
elements together. Every component we use in a Dash app will be contained
inside a Div, and a Div can contain multiple components. We build the Div,
then style it to tell the web browser exactly where to position it and how
much space it should take up.

Say we’re creating a dashboard app with three dropdown menus, repre-
sented by the keyword Dropdown, as in Listing 4-3.

app.layout = html.Div([
	 html.Div(dcc.Dropdown()),
	 html.Div(dcc.Dropdown()),
	 html.Div(dcc.Dropdown()),
])

Listing 4-3: Example Div code (not part of the main app)

The line app.layout creates a layout for this Dash app. Everything related
to the layout must be placed within app.layout. We then create a Div that
contains three dropdown menus.

A Div by default will take up the full width of the parent container, mean-
ing it’s assumed to be one big cell that takes up the width of the page. As it
is, the first Dropdown will appear in the top left and fill the whole page from
left to right. The second Dropdown will appear right below the first Dropdown and
fill the whole width of the page as well, and so on with the third Dropdown. In
other words, each Div will take up the full width of the page and force neigh-
boring elements onto a new line.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

52 Chapter 4

To best control how much space a Div is allocated, we should define the
web page as a grid of rows and columns and place each Div within a specific cell
inside that grid. We can quickly define rows and columns using a premade CSS
stylesheet. CSS (Cascading Style Sheets) is another web language used to define
how a page should be displayed. We put the stylesheet in an external file or call
one from an online directory into our app. We’re using a stylesheet from https://
codepen.io. Written by Chris Parmer, the creator of Plotly Dash, the stylesheet
is comprehensive and suitable to use for a basic Dash app. In Listing 4-4, we
import the CSS. We also tell twitter_app.py to grab the CSS stylesheet from the
web and incorporate it into the app, and we instantiate our app with Dash.

stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = Dash(__name__, external_stylesheets=stylesheets)

Listing 4-4: Importing a stylesheet into twitter_app.py

Our CSS stylesheet describes the width and height of the columns and
rows on the page using CSS classes. We just need to refer to these classes
within our Dash code to place the Div content in specific cells inside the grid.

First, we must assign the rows because the columns should be wrapped
by rows. To do so, we set a string value "row" to the className. Let’s build on
the Div example in Listing 4-3, assuming this code has imported the custom
stylesheet; the new code is in bold (see Listing 4-5).

app.layout = html.Div([
	 html.Div(dcc.Dropdown()),
	 html.Div(dcc.Dropdown()),
	 html.Div(dcc.Dropdown()),
], className="row")

Listing 4-5: Example Div code with className (not part of the main app)

Here we assign one row to the html.Div that houses all three drop-
downs, so all these dropdowns will be displayed in the same row on the
page (Figure 4-5). className is a prop that can be assigned classes from a
CSS stylesheet to tell Dash how to style an element. Here we assign it the row
class, which tells the app that all the components inside this Div should be
on the same row. Every Dash component will have a className, commonly
used to style and define layouts. We use the className prop of html.Div to
describe the row and column layout of each Div.

After defining the row, we need to define the columns’ widths so that
Dash knows how many columns of space to allocate to each component
within that row. We do this for each html.Div contained in the row, as shown
in bold in Listing 4-6.

app.layout = html.Div([
	 html.Div(dcc.Dropdown(), className="four columns"),
	 html.Div(dcc.Dropdown(), className="four columns"),
	 html.Div(dcc.Dropdown(), className="four columns"),
], className="row")

Listing 4-6: Setting the column width (not part of the main app)

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 53

We set the number of columns of space each Div component should
fill with a string value set to className and formatted like "one column"
or "two columns" and so on. Most web pages will have a maximum of 12
columns (and a potentially unlimited number of rows), meaning the
sum of the components’ column widths must never surpass 12, so here
we set them to fill 4 columns each. Note that we don’t have to fill all
12 columns.

Figure 4-5 shows how this simple page would be displayed.

Figure 4-5: Demo of three dropdowns on one row

With all this in mind, let’s have a look at Listing 4-7, the html.Div section
of our twitter_app.py file, which has fewer than 12 columns.

html.Div(
	 [
	 1	html.Div(
			 dcc.Dropdown(
				 id="my-dropdown",
				 multi=True,
				 options=[
					 {"label": x, "value": x}
					 for x in sorted(df["name"].unique())
],
				 value=["taylorswift13", "cristiano", "jtimberlake"],
),
			 className="three columns",
),
	 2	html.Div(
			 html.A(
				 id="my-link",
				 children="Click here to Visit Twitter",
				 href="https://twitter.com/explore",
				 target="_blank",
),
			 className="two columns",
),
],
	 className="row",
),

Listing 4-7: The Dropdown section of twitter_app.py

We see that the row contains two Divs: a Dropdown that offers multiple
celebrities to choose from 1 and a link for the user to click 2. Those two
Divs have the sum of just five columns, meaning they’re left-aligned on the
page, as shown in Figure 4-6.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

54 Chapter 4

Figure 4-6: Components that are five columns wide

Note that some stylesheets, including the one we’re working with here,
require us to create the parent Div first and assign a row to it. Then, within
the children of the parent Div, we define the column width of each inner Div.

Styling: Embellishing Your App
The styling is what gives life to the app. We can add color, change the font
and size of the text, underline text, and much more. There are two main
ways to alter the style of the app. The first is to use the style prop inside the
Dash HTML component. This allows the user to specify CSS styling decla-
rations that will be applied directly to the component.

The second method is to refer to a CSS stylesheet, like we did to create
rows and columns. We’ll show you how to integrate the additional stylesheet
mystyles.css into the app; if you downloaded the files as described in “Setting
Up the Project” earlier in this chapter, this should be in your assets folder.
Let’s first look at how to use the style prop to alter the app.

Using the style Prop

The style prop expects a Python dictionary, with keys that specify what aspect
we want to alter and values that set the style. In our twitter_app.py file, we’ll
change the text color of the link to red by defining the style prop within the
html.A component used for adding URL links, as shown in Listing 4-8.

html.Div(
	 html.A(id="my-link", children="Click here to Visit Twitter",
		 href="https://twitter.com/explore", target="_blank",
	 1 style={"color": "red"}),
	 className="two columns")

Listing 4-8: Styling HTML elements of twitter_app.py

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 55

At 1 we assign a dictionary to the style prop, where the key is color and
the value is red. This tells the browser to render this link with red text.

Now we’ll add a yellow background color to the same link by adding
another key-value pair to the dictionary:

style={"color": "red", "backgroundColor": "yellow"}

Notice that the dictionary key is a camelCased string. In Dash, the keys
in the style dictionary should always be camelCased.

Lastly, we’ll change the link’s font size to 40 pixels:

style={"color": "red", "backgroundColor": "yellow", "fontSize": "40px"}

A beautiful thing about Dash is that styling is not limited to HTML
components; we can also style the Core components, such as the Dropdown.
For example, to change the text color of the dropdown options to green, we
add the style prop within dcc.Dropdown, as shown in Listing 4-9.

html.Div(
	 dcc.Dropdown(id="my-dropdown", multi=True,
				 options=[{"label": x, "value": x}
						 for x in sorted(df["name"].unique())],
				 value=["taylorswift13", "cristiano", "jtimberlake"],
				 style={"color": "green"}),
	 className="three columns"),

Listing 4-9: Styling Core components in twitter_app.py

The dropdown options shown in the bottom-left corner of Figure 4-7
will now be green instead of black.

Figure 4-7: Dropdown options that appear in green when run on your computer

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

56 Chapter 4

Using a Stylesheet

The second way to style app components is to define styles through ele-
ments or classes. Typically, we use this method when a lot of code is
needed for the styling. To reduce the amount of code present in the app
itself, we use styling code in an external CSS stylesheet. CSS stylesheets
are also reusable; you can define a particular class once and apply it to
multiple components.

The CSS stylesheet we’ll use is mystyles.css, and it should already be in
the assets folder you downloaded with the book’s resources. Open the CSS
stylesheet inside PyCharm or your preferred text editor by double-clicking
it, and you should see these lines of code:

/*
h1 { font-size: 8.6rem; line-height: 1.35; letter-spacing: -.08rem;
margin-bottom: 1.2rem; margin-top: 1.2rem;}
*/

The /* is comment syntax, so to enable the styling, delete the /* and
*/ symbols below and above the CSS code. Here h1 is the selector, which
specifies the element we want to apply the subsequent styles to; in this
case, it’s all h1 elements. Inside the curly brackets we declare proper-
ties and property values that will set various styles inside the app. In this
example, we set the element’s font size to 8.6, the line height to 1.35, the
spacing between letters to –0.08, and the top and bottom margins to 1.2.

Listing 4-10 shows how the H1 heading component in our app uses this
CSS stylesheet.

html.Div(html.H1("Twitter Likes Analysis of Famous People",
						 style={"textAlign": "center"}),
			 className="row"),

Listing 4-10: The html.H1 component in twitter_app.py

The html.H1 through html.H6 components are used to define headings,
with H1 representing the highest heading level and H6 representing the lowest
heading level. Figure 4-8 shows how this header styling should look.

Figure 4-8: App title styled with CSS

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 57

As you can see if you compare Figure 4-8 to Figure 4-6, the result is a
much larger font size for the app’s title, with more top and bottom margin
space around the title and less space between the letters. If your app’s title
did not change in size, restart your app to see the result.

If you’d like to revert back to a smaller font size for the title, simply
comment out the CSS code by reinserting the /* and */ symbols, as such:

/*
h1 { font-size: 8.6rem; line-height: 1.35; letter-spacing: -.08rem;
margin-bottom: 1.2rem; margin-top: 1.2rem;}
*/

You have learned how to manipulate the style and layout of your app
with pure Python. This is just the beginning, though. In Chapter 5, we will
dive into dash-bootstrap-components, which will make the layout design
and styling of the dashboard app even easier and more varied.

Dash Components
Here we’ll provide an overview of some common components in Dash, pro-
vided by the dash-html-components and dash-core-components libraries.
There are many other component libraries, and you can even write your own!
But dash-html-components and dash-core-components contain most of the
basic functionality we need. The HTML components are generally for com-
posing the layout of the web page and include Div, Button, H1, and Form, among
many others. The Core components—such as Dropdown, Checklist, RangeSlider,
and many more—are for creating an interactive experience. All HTML and
Core components have props that add to their functionality. For a full list of
these props and their components, visit the Dash documentation on HTML
and Core components at https://dash.plotly.com/dash-core-components.

HTML Components
Dash HTML components are written in Python and are automatically con-
verted to HTML, so there’s no need to become an expert on HTML or CSS
to use Dash apps. The following line of code in Python

<h1> Twitter Likes Analysis of Famous People </h1>

is roughly equivalent to the following line of HTML that is read by a web
browser:

html.H1("Twitter Likes Analysis of Famous People")

Writing a complete dashboard app is now possible in pure Python: Python
forever!

To create an HTML component, you use dot notation between the
html keyword and the component name. For example, for a Div compo-
nent you would use html.Div, as we saw earlier. We also saw two additional

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

58 Chapter 4

HTML components: html.H1, which creates a top-level heading, and
html.A, which creates a hyperlink. Let’s take a closer look at the use of
html.H1 to represent the title of the page, with the title itself written as a
string, like so:

html.H1("Twitter Likes Analysis of Famous People")

This assigns the string to the children prop, which is usually the first
positional argument of any component that accepts children. children,
in this context, is a prop that places a component or element (like a text
label) within another component. Written in full, the previous line looks
like this:

html.H1(children="Twitter Likes Analysis of Famous People")

In the first three examples of the following code, the children prop adds
text to the page. In the last example, with html.Div, the children prop adds
the html.H1 component to the page, which has text as well. The children prop
can take an integer, a string, a Dash component, or a list of any of these. All
these examples are possible:

html.H1(children=2),
html.H1(children="Twitter Likes Analysis of Famous People"),
html.H1(children=["Twitter Likes Analysis of Famous People"]),
html.Div(children=[
	 html.H1("Twitter Likes Analysis of Famous People"),
	 html.H2("Twitter Likes Analysis of Famous People")
])

The html.A component creates an <a> HTML5 element, which is used
to create hyperlinks. In this component, shown in Listing 4-11, we use four
props: id, children, href, and target.

html.A(id="my-link", children="Click here to Visit Twitter",
	 href="https://twitter.com/explore", target="_blank")

Listing 4-11: The HTML link component in twitter_app.py

The value we assign to href is the full link destination, where the user
will end up after clicking the link. The target prop indicates where the link
will open: if its assigned value is _self, the link will open in the same tab of
the browser the user is in; if its assigned value is _blank, the link will open in
a new browser tab. The children prop defines the content of the component,
which here is a string value representing the link’s text that the user sees on
the page.

The id prop is important because Dash components use id to identify
and interact with each other, which gives the dashboard app its interactive
capabilities. We’ll go over this in more detail in “Callback Decorator” later
in this chapter. For now, just note that the value assigned to id must be a
unique string so that it can be used to identify the component.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 59

Core Components
The Dash Core components are prebuilt components from the Dash library
that allow the user to interact with the app in an intuitive way. In this app
we use two Core components: Graph and Dropdown. To build or access a partic-
ular Core component, we use the dcc keyword and the dot notation before
the component name, such as dcc.Dropdown.

The Graph Component

The Graph component allows you to incorporate data visualizations into your
app in the form of plots, charts, and graphs written with Plotly. It’s one of
the most popular of the Core components, and you’ll likely see it in every
analytic dashboard app.

A Graph component has two main props: id and figure. Here’s the tem-
plate for defining a Graph component:

dcc.Graph(id="line-chart", figure={})

The id prop gives the Graph component a unique ID. The figure prop is
the placeholder for the Plotly chart. Once a Plotly chart is created, we would
assign it to the figure prop in place of the empty dictionary. For example, in
our app we create a Plotly line chart with the line shown in Listing 4-12.

import plotly.express as px

--snip--

fig = px.line(data_frame=df_filtered, x="date_time", y="number_of_likes",
	 color="name", log_y=True)

Listing 4-12: Creating a Plotly chart in twitter_app.py

We’ll go through Plotly charts in “Plotly Express Line Charts” later in
this chapter. For now, this line simply describes how the chart should look and
assigns it to the fig object, making it a Plotly figure. We can then insert fig
into dcc.Graph’s figure prop to display the line chart on the page. Listing 4-13
shows the code from the twitter_app.py file that does just that, assigned to
app.layout.

html.Div(dcc.Graph(id="line-chart", figure=fig), className="row")

Listing 4-13: Pulling the chart into the Graph component in twitter_app.py

We put the Graph component inside the Div component and assign it to
a single row on the page. Once the complete app script is activated, the line
chart should display on the page.

For a complete video tutorial on the Dash Graph component and its
usage, see the video “All About the Graph Component” at https://learnplotly​
dash.com.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

60 Chapter 4

The Dropdown Component

The Dropdown component allows users to choose options from a dropdown
menu to dynamically filter data and update graphs. We define the Dropdown
component by providing values for four props: id, multi, options, and value,
as shown in Listing 4-14. This menu is shown in Figure 4-9.

dcc.Dropdown(id="my-dropdown", multi=True,
					 options=[{"label": x, "value": x}
						 for x in sorted(df["name"].unique())],
					 value=["taylorswift13", "cristiano", "jtimberlake"])

Listing 4-14: Creating a Dropdown component in twitter_app.py

The multi prop allows us to choose whether the user can select multiple
values at once or just one value at a time. When this prop is set to True, the
app user can select multiple values. When it’s set to False, the app user can
select only one value at a time.

The options prop represents the values the user can choose from when
they click the Dropdown. We assign it a list of dictionaries of label and value
keys, where each dictionary represents one menu option. The label is the
name the user sees as the option, and the value is the actual data read by
the app.

Figure 4-9: App dropdown options

In Listing 4-14, we assigned the list of dictionaries using list com-
prehension, a Python shortcut that creates a new list based on values of
another list (or any other Python iterable). For every unique value in the
name column of our pandas DataFrame, this line creates a dictionary of
label and value keys.

If instead we only have a few values, it may be easier to write out each
dictionary instead of using list comprehension. For example, in Listing 4-15
we build a Dropdown with only two values: taylorswift13 and cristiano.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 61

dcc.Dropdown(id="my-dropdown", multi=True,
					 options=[{"label": "Taylor", "value": "taylorswift13"},
								 {"label": "Ronaldo", "value": "cristiano"}]
)

Listing 4-15: A Dropdown example not in twitter_app.py

Here we use the values as they appear in the DataFrame so that filter-
ing is easier. But we can then choose a human-friendly representation for
the label key to make it more recognizable to the user. When the user clicks
on the dropdown, they will see the two options Taylor and Ronaldo, which
are read by the app as taylorswift13 and cristiano, respectively.

The last Dropdown prop is value (not to be confused with the dictionary
value key), and it consists of the default value the Dropdown will take when the
user starts the app. Since we have a multivalue Dropdown, we use an initial
value of three strings from the name column of the DataFrame: taylorswift13,
cristiano, and jtimberlake.

These strings correspond to the values generated in the options prop in
Listing 4-14. The strings are preloaded, so these three values are automati-
cally chosen before the user even clicks the dropdown menu. Once the
user chooses a different value in the dropdown menu, these values change
accordingly.

For a complete video tutorial on the Dash Dropdown component and its
usage, see the video “Dropdown Selector” at https://learnplotlydash.com.

Dash Callbacks
A Dash callback enables user interactivity within the dashboard app; it is
the mechanism that connects the Dash components to each other so that
performing one action causes something else to happen. When the app
user selects a dropdown value, the figure is updated; when the user clicks a
button, the color of the app’s title changes or another graph is added to the
page. The possible interactions between Dash components are infinite, and
without callbacks, the app is static and the user cannot modify anything.

The Dash callback has two parts, the callback decorator that identifies
the relevant components, defined in the layout section:

@app.callback()

and the callback function that defines how those Dash components should
interact:

def function_name(y):
	 return x

This simple app only has one callback, though more complicated apps
will have many.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

62 Chapter 4

Callback Decorator
A callback decorator registers the callback function with your Dash app,
telling it when to call the function and how to use the return value of the
function to update the app. (We discussed decorators in Chapter 1.)

The callback decorator should be placed right above the callback func-
tion, and there must be no space between the decorator and the function.
The decorator takes two main arguments: Output and Input, which refer to
the component that should change (Output) in response to the user’s action
on a different component (Input). For example, the output might be the line
chart, which should change depending on the user’s input in the Dropdown
component, as shown in Listing 4-16.

@app.callback(
	 Output(component_id="line-chart", component_property="figure"),
	 [Input(component_id="my-dropdown", component_property="value")],
)

Listing 4-16: A callback decorator from twitter_app.py

Both Output and Input take two arguments: component_id, which should
correspond to the id of a particular Dash component, and component_property,
which should correspond to a particular prop of that same component. In
Listing 4-16, the component_id for Input refers to the my-dropdown Dropdown we
defined earlier. The component_property refers specifically to the value prop
of my-dropdown, which is the Twitter users’ data to show, initially set to
["taylorswift13", "cristiano", "jtimberlake"], as in Listing 4-14.

In the Output we refer to the figure prop of dcc.Graph, which we also
defined earlier in the layout, as shown in Listing 4-17.

dcc.Graph(id="line-chart", figure={})

Listing 4-17: The Graph component within the layout section in twitter_app.py

Here the figure prop is currently an empty dictionary, because the
callback function will create a line chart based on the input and assign it
to figure. Let’s dive into the callback function to fully understand how this
happens.

Callback Function
Our app’s callback function, named update_graph(), holds a series of if-else
statements that filter the DataFrame df and create a line chart depending
on the input values chosen. Listing 4-18 shows the callback function in
our app.

def update_graph(chosen_value):
	 print(f"Values chosen by user: {chosen_value}")

	 if len(chosen_value) == 0:
		 return {}
	 else:

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 63

		 df_filtered = df[df["name"].isin(chosen_value)]
		 fig = px.line(
			 data_frame=df_filtered,
			 x="date_time",
			 y="number_of_likes",
			 color="name",
			 log_y=True,
			 labels={
				 "number_of_likes": "Likes",
				 "date_time": "Date",
				 "name": "Celebrity",
			 },
)
		 return fig

Listing 4-18: The callback function in twitter_app.py

We’ll go over the logic here line by line in a moment. First, though,
let’s discuss what this function achieves. When executed, update_graph()
returns an object named fig, which in this case contains the Plotly
Express line chart. The object fig is returned to the component and prop-
erty we specified in Output in the callback decorator. As we know, the call-
back decorator refers to a Dash component in the layout. Here, then, fig
is assigned to the figure prop of the Graph component in the layout section,
so the callback is telling the app to display a line chart. Here’s what the
Graph component would look like after the callback function update_graph()
executes:

dcc.Graph(id="line-chart", figure=fig)

The figure prop is now assigned the object fig instead of the empty dic-
tionary we saw originally, in Listing 4-17.

We’ll summarize this because this process is extremely important!
Once the callback function is activated by user input, it returns an object
that is tied to the component_property of the Output in the callback decorator.
Given that the component property represents an actual prop of a com-
ponent inside the app layout, the result is an app that is constantly being
updated through user interaction.

For a complete video tutorial on the Dash callback decorator and its
usage, see the video “The Dash Callback—Input, Output, State, and More”
at https://learnplotlydash.com.

Activating the Callback

To activate the callback, the user must interact with the component speci-
fied in Input inside the callback decorator. In this app, the component prop-
erty represents the value of the Dropdown, so every time the app user chooses
a different dropdown value (a Twitter handle), the callback function is
triggered.

If the callback decorator had three Inputs, the user would need to
supply three arguments to trigger the callback function. In our case, the

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

64 Chapter 4

callback decorator has only one Input; therefore, the callback function will
take only one argument: chosen_value.

How the Function Works

Let’s examine Listing 4-19, which shows what is happening inside the app’s
callback function.

1 def update_graph(chosen_value):
	 print(f"Values chosen by user: {chosen_value}")

2 if len(chosen_value) == 0:
		 return {}
	 else:
		 df_filtered = df[df["name"].isin(chosen_value)]
		 fig = px.line(
			 data_frame=df_filtered,
			 x="date_time",
			 y="number_of_likes",
			 color="name",
			 log_y=True,
			 labels={
				 "number_of_likes": "Likes",
				 "date_time": "Date",
				 "name": "Celebrity",
			 },
)
		 return fig

Listing 4-19: The callback function for twitter_app.py

The chosen_value argument 1 refers to the value of the dcc.Dropdown,
which is a list of Twitter usernames. Whenever a user chooses new options,
the function is activated. The user can choose any number of available
celebrities, and the number of items inside the chosen_value list will increase
or decrease accordingly. It may be a list of 3 values, 10 values, or even no val-
ues. We therefore check the length of the chosen_value list 2. If it is equal to
zero and so is an empty list, the function returns an empty dictionary, and
the fig object returned displays an empty graph.

If the length of the chosen_value list does not equal zero, in the else
branch we use pandas to filter the DataFrame to only those rows that con-
tain the selected Twitter usernames. The filtered DataFrame is saved to
df_filtered and is then used as the data to create the line chart, which is
saved as a fig object. The fig object is returned to display the line chart on
the app page.

One important note on these functions: if the original DataFrame
is altered in any way, you should always make a copy of the original
DataFrame, as we did when we created df_filtered. The original DataFrame
defined at the beginning of the app, in Listing 4-2, is considered a global
variable. Global variables should never be altered, because doing so affects
the variables seen by other users of the app. For example, if one user

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 65

changed the global variable price_values in a financial dashboard app, all
users would see these changed prices. This could cause significant damage
and confusion.

Callback Diagram
Dash has a powerful callback diagram tool that displays the structure of the
callback and delineates how elements are tied together. You should use this
tool when defining callbacks, especially when they have multiple Inputs and
Outputs, where it is harder to grasp the callback structure. To open the call-
back diagram, click the blue button in the bottom-right corner of the app
page, shown in Figure 4-10.

Figure 4-10: Click the button in the bottom-right corner to open the menu.

Then click the gray Callbacks button, shown in Figure 4-11.

Figure 4-11: Click the Callbacks button to see the callback diagram.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

66 Chapter 4

The result should look like Figure 4-12.

Figure 4-12: The callback diagram for twitter_app.py

The element on the left is the component property of the Input. The
element in the middle describes the number of times the callback has
been triggered in this session (once, in this case) as well as the time it
took for the callback to fully execute (614 ms). The element on the right
is the component property of the Output. The diagram helps paint a clear
picture of how the Dropdown values (Input) influence the line chart’s figure
(Output).

Go ahead and trigger the callback by changing the Dropdown celebrity
names on the main app page. See how the green element in the middle
changes? Explore this diagram by clicking the left and right elements; you
should see extra information within each element.

Make sure to turn debug mode off with debug = False before you deploy
your app to the web in order to turn off the diagram. Otherwise, the end
user will have access to the diagram as well.

Plotly Express Line Charts
Here we’ll review how to create Plotly graphs. We’ll focus on line charts,
since that’s what we use in this app, and we’ll review other types of graphs
in future chapters.

Plotly Express is a high-level interface for creating graphs quickly and
intuitively. It contains dozens of figures to choose from, ranging from sci-
entific, statistical, and financial graphs to 3D charts and maps. Every figure
has numerous attributes that allow you to customize figures according to
users’ needs. Here’s a complete list of the attributes available for the Plotly
Express line chart, all currently set to None:

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 67

plotly.express.line(data_frame=None, x=None, y=None, line_group=None, color=None, line
_dash=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None,
facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, error_x=None,
error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group
=None, category_orders={}, labels={}, orientation=None, color_discrete_sequence=None, color
_discrete_map={}, line_dash_sequence=None, line_dash_map={}, log_x=False, log_y=False, range_x
=None, range_y=None, line_shape=None, render_mode='auto', title=None, template=None,width
=None, height=None)

The beautiful thing about Plotly Express is that, in most cases, all you
need to know to create a graph are the first three attributes: data_frame, x,
and y, shown in bold in the example. These represent the DataFrame, the
column of data to use for the x-axis, and the column to use for the y-axis,
respectively. Here we plot a really simple line chart:

import plotly.express as px
px.line(data_frame=df, x="some_xaxis_data", y="some_yaxis_data")
fig.show()

This creates the most basic line chart, charting the relationship
between two data columns, giving us something like Figure 4-13.

Figure 4-13: The simplest line chart

The more comfortable you become with Plotly Express, the more attri-
butes you will find yourself adding to the figure. For example, to differen-
tiate groups of data with color, we add the color attribute and assign it a
column from the hypothetical DataFrame used:

px.line(data_frame=df, x="some_ xaxis _data", y="some_yaxis_data", color="some_data")

As a result, we would see something like Figure 4-14.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

68 Chapter 4

Figure 4-14: Adding a color attribute to the simple chart

To change the height of the figure, we add the height attribute and
assign it a number of pixels:

px.line(data_frame=df, x="some_xaxis_data", y='some_yaxis_data', height=300)

Here we make the height of the entire graph 300 pixels.
In our Twitter Likes Analysis app, the line chart includes the data_frame,

x, y, and color attributes, as well as the labels and log_y attributes. Listing 4-20
shows our Plotly chart code.

fig = px.line(
	 data_frame=df_filtered,
	 x="date_time",
	 y="number_of_likes",
	 color="name",
	 log_y=True,
	 labels={
		 "number_of_likes": "Likes",
		 "date_time": "Date",
		 "name": "Celebrity",
	 },
)

Listing 4-20: The Plotly line chart for twitter_app.py

The log_y attribute tells the app to use a logarithmic scale on the
y-axis data. Logarithmic scaling is recommended when the chart has
a few data points that are much larger or smaller than the bulk of the
data, as it makes for a clearer visualization. We won’t go into the details
of logarithmic scales here, but try changing the attribute from True to
False and then refresh the app to see the updated graph. Which one do
you prefer?

The labels attribute changes the axis labels seen by the app users. The
three columns used to plot the line chart are date_time (x-axis), number_of_likes
(y-axis), and name (color). These are the names of the columns in the pandas

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

First Dash App 69

DataFrame, and we must maintain their format and spelling to match to
the right column. With the labels attribute, we change what the user sees
on the app page to make it more user friendly so that number_of_likes simply
becomes Likes.

Each attribute is described in detail in the Plotly documentation at
https://plotly.com/python-api-reference. It’s worth spending time reading the
descriptions because it will help you understand all the ways you can cus-
tomize the line chart and other types of figures.

For a complete video tutorial on the Plotly Express line chart with
Dropdown, see the video “Line Plot (Dropdown)” at https://learnplotlydash.com.

TOOL T IP S

There’s one common attribute that we don’t use in the app but is common
enough that it’s worth mentioning here: hover_data, which allows you to pro-
vide extra information in tool tips that appear when the user hovers over partic-
ular elements of the graph with the mouse cursor. You place the values assigned
to hover_data inside a list or a dictionary.

When you use a list, the graph’s hover tool tip will include the values in the
list. For example, if we use the number_of_shares column as the hover_data list,
the hover tool tip will include those pieces of data when the user hovers over the
lines of our graph. To try this out, make the following change and rerun the app:

fig = px.line(data_frame=df_filtered, x="date_time", y="number_of_likes",
		 color="name", hover_data=["number_of_shares"])

The following figure shows the difference in the hover information.

Example tool tip with “number of shares” included in hover data

Make sure to delete the change when you’re done.
When you use a dictionary instead of a list, the keys are DataFrame columns

and the values are Booleans you use to display (True) or not display (False) the
data in the hover tool tip. For example, if you add the number_of_likes column

(continued)

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

70 Chapter 4

as the dictionary key and False as the dictionary value, the data representing the
number of likes per celebrity will no longer show in the hover tool tip:

hover_data={"number_of_likes": False}

We can also use the hover_data dictionary to format the hover data seen
in the tool tip. For example, by default the number_of_likes is displayed with
the letter “k” to represent 10,000 (200,000 is written as 200k). However,
if we’d prefer to show the full number with a comma as the group separator
(200,000), we would use:

hover_data={"number_of_likes": ':,'}

Summary
This chapter introduced you to the essential elements of a basic Dash app:
Python libraries needed to program the app, the data used, Dash HTML and
Core components, using the layout section to position the app components on
the page, using callbacks to connect the components to each other and create
interactivity, and the Plotly Express graphing library. In the next chapter we’ll
build on the skills learned here to develop more sophisticated Dash apps.

The Book of Dash (Sample Chapter) © 8/17/22 by Adam Schroeder, Christian Mayer, and Ann Marie Ward

