
U S I N G T H E N U C L E O - G 0 7 0 R B

The NUCLEO-G070RB is a newer version of the Nucelo development board
family. It is similar to the NUCLEO-F030R8; however, the board has been
updated to add two additional LEDs, and the serial I/O (UART) is more
complex.

The examples in the book will work with the NUCLEO-G070RB, but
they require some minor adjustments to do so. We have provided working
NUCLEO-G070RB examples on the website; however, you should be aware
of the differences between the examples and the book.

When creating programs for the NUCLEO-G070RB, follow the pro-
cedure in the book and select the NUCLEO-G070RB board instead of the
NUCLEO-F030R8 board when creating your project. If you are copying the
code in the book, you’ll have to tweak it as indicated below.

N O T E 	 The initial main.c that’s generated uses the following includes for the
NUCLEO-F030R8:

#include "stm32f0xx.h"
#include "stm32f0xx_nucleo.h"

For the NUCLEO-G070RB, the generated includes are:

#include "stm32g0xx.h"
#include "stm32g0xx_nucleo.h"

03.blink
The NUCLEO-F030R8 has two LEDs. The user LED (the one you can
blink) is numbered LED2 (labeled LD2 on the board). The NUCLEO-
G070RB has four LEDs. The user LED is LED4. 03.blink works if you change
all references from LED2 to LED4. For example:

GPIO_InitStruct.Pin = LED2_PIN;

must be changed to:

GPIO_InitStruct.Pin = LED4_PIN;

2 Using the Nucleo-G070RB

05.button
Again, LED2 must be changed to LED4.

07.house
Works unmodified.

08.serial
LED2 must be changed to LED4.

The HAL firmware has been changed so that it requires a change
to a configuration file to bring in the serial I/O library. Edit the file
HAL_Driver/Inc/stm32g0xx_hal_conf.h and change the line:

/* #define HAL_UART_MODULE_ENABLED */

to:

#define HAL_UART_MODULE_ENABLED

08.serial.int
LED2 must be changed to LED4.

Change the stm32g0xx_hal_conf.h file to enable the UART code. (See
08.serial.)

The UART has been updated and contains additional features. Because
of this, the names of the interrupt status bits have changed. You will have to
change the following constants in the code:

Change F030R8 to G070RB.

Change USART_ISR_TXE to USART_ISR_TXE_TXFNF.

Change USART_CR1_TXEIE to USART_CR1_TXEIE_TXFNFIE.

08.serial.buffer.bad
All changes for 08.serial.int need to be made.

08.serial.buffer.good
All changes for 08.serial.int need to be made.

08.serial.buffer.ins
All changes for 08.serial.int need to be made.

﻿ 3

10.linker
No changes are needed.

10.config
LED2 must be changed to LED4.

The NUCLEO-G070RB has renamed the FLASH memory section to ROM.
Also, the size of the RAM and flash (ROM) are different, so the LinkerScript.ld
needs some adjustment. The MEMORY section should look like this:

MEMORY
{
 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 32K
 ROM (rx) : ORIGIN = 0x8000000, LENGTH = 124K
 CONFIG (rwx) : ORIGIN = 0x8000000+128K-4K, LENGTH = 4K
}
THE_CONFIG = 0x8000000+128K-4K;

The API for dealing with flash is different as well. The minimum unit
of memory we can change is a double word (64-bit) value, so we’ve updated
the type of resetCount and made it a uint64_t:

uint64_t resetCount __attribute__((section(".config.keep"))) = 0;
// # times we've been reset

Updating the counter is now different as well because of the different API:

/**
 * Update the resetCounter.
 *
 * In C this would be ++resetCounter. Because we are dealing
 * with flash, this is a much more difficult operation.
 */
static HAL_StatusTypeDef updateCounter(void) {
 HAL_FLASH_Unlock(); // Allow flash to be modified.
 uint64_t newResetCount = resetCount + 1; // Next value for the reset count

 uint32_t pageError = 0; // Error indication from the erase operation
 // Tell the FLASH system to erase resetCounter (and the rest of the page).
 static FLASH_EraseInitTypeDef eraseInfo = { // 1
 .TypeErase = FLASH_TYPEERASE_PAGES, // Going to erase 1 page
 .Page = GetPage((uint32_t)&resetCount), // The start of the page
 .NbPages = 1 // One page to erase
 };

 // Erase the page and get the result.
 HAL_StatusTypeDef result = HAL_FLASHEx_Erase(&eraseInfo, &pageError);
 if (result != HAL_OK) {
 HAL_FLASH_Lock();
 return (result);
 }

4 Using the Nucleo-G070RB

 // Program the new reset counter into the flash. 2
 result = HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD,
 (uint32_t)&resetCount, newResetCount);
 if (result != HAL_OK) {
 HAL_FLASH_Lock();
 return (result);
 }
 return (result);
}

First, the structure used to erase the page has changed 1. We have
to give it a page number, not an address. The function GetPage turns an
address into a page number:

static inline uint32_t GetPage(const uint32_t Addr)
{
 return (Addr - FLASH_BASE) / FLASH_PAGE_SIZE;;
}

Second, the API to actually write the data to memory has changed 2.
We now use the HAL_FLASH_Program API. The FLASH_TYPEPROGRAM_DOUBLEWORD
tells the API to write a double word (4-byte) value to memory. The other
choice is FLASH_TYPEPROGRAM_FAST, which writes 32 double words (128 bytes) to
memory.

Finally, the return codes have changed. Our error handling logic in
main.c needed to be updated:

 HAL_StatusTypeDef status = updateCounter();

 switch (status) {
 case HAL_OK:
 // Nothing, this is correct.
 break;
 case HAL_ERROR:
 myPuts("HAL_ERROR");
 break;
 case HAL_BUSY:
 myPuts("HAL_BUSY");
 break;
 case HAL_TIMEOUT:
 myPuts("HAL_TIMEOUT");
 break;
 default:
 myPuts("**unknown error code**");
 break;
 }

You can find the full program in the NUCLEO-G070RB examples,
which are available for download from https://nostarch.com/bare-metal-c.

https://nostarch.com/bare-metal-c

