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Android      ’ s  Security         Model   

This chapter will first briefly introduce Android’s 
architecture, inter-process communication (IPC) 
mechanism, and main components. We then describe 
Android’s security model and how it relates to the 
underlying Linux security infrastructure and code 
signing. We conclude with a brief overview of some
newer additions to Android’s security model, namely multi-user support, 
mandatory access control (MAC) based on SELinux, and verified boot. 
Android’s architecture and security model are built on top of the tra-
ditional Unix process, user, and file paradigm, but this paradigm is not 
described from scratch here. We assume a basic familiarity with Unix-like 
systems, particularly Linux. 

Android’s Architecture
Let’s briefly examine Android’s architecture from the bottom up. Figure 1-1 
shows a simplified representation of the Android stack. 

Android Security Internals 
© 2014 by Nikolay Elenkov



2   Chapter 1

System Apps
Settings/Phone/Launcher/...

User-Installed Apps

Android Framework Libraries
android.*

System Services
Activity Mgr./Package Mgr./Window Mgr./...

Java 
Runtime 
Libraries
java.*
javax.*

Dalvik Runtime

Init Native 
Daemons

Native 
Libraries HAL

Linux Kernel

Figure 1-1: The Android architecture

Linux Kernel
As you can see in Figure 1-1, Android is built on top of the Linux kernel. As 
in any Unix system, the kernel provides drivers for hardware, networking, file-
system access, and process management. Thanks to the Android Mainlining 
Project,1 you can now run Android with a recent vanilla kernel (with some 
effort), but an Android kernel is slightly different from a “regular” Linux 
kernel that you might find on a desktop machine or a non-Android embed-
ded device. The differences are due to a set of new features (sometimes 
called Androidisms2) that were originally added to support Android. Some 
of the main Androidisms are the low memory killer, wakelocks (integrated 
as part of wakeup sources support in the mainline Linux kernel), anony-
mous shared memory (ashmem), alarms, paranoid networking, and Binder. 

The most important Androidisms for our discussion are Binder and 
paranoid networking. Binder implements IPC and an associated security 
mechanism, which we discuss in more detail on page 5. Paranoid net-
working restricts access to network sockets to applications that hold spe-
cific permissions. We delve deeper into this topic in Chapter 2.

Native Userspace
On top of the kernel is the native userspace layer, consisting of the init 
binary (the first process started, which starts all other processes), several 
native daemons, and a few hundred native libraries that are used throughout 
the system. While the presence of an init binary and daemons is reminiscent 

1. Android Mainlining Project, http://elinux.org/Android_Mainlining_Project

2. For a more detailed discussion of Androidisms, see Karim Yaghmour’s Embedded Android, 
O’Reilly, 2013, pp. 29–38. 
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of a traditional Linux system, note that both init and the associated startup 
scripts have been developed from scratch and are quite different from their 
mainline Linux counterparts. 

Dalvik VM
The bulk of Android is implemented in Java and as such is executed by a 
Java Virtual Machine (JVM). Android’s current Java VM implementation is 
called Dalvik and it is the next layer in our stack. Dalvik was designed with 
mobile devices in mind and cannot run Java bytecode (.class files) directly: 
its native input format is called Dalvik Executable (DEX) and is packaged in 
.dex files. In turn, .dex files are packaged either inside system Java libraries 
(JAR files), or inside Android applications (APK files, discussed in Chapter 3). 

Dalvik and Oracle’s JVM have different architectures—register-based 
in Dalvik versus stack-based in the JVM—and different instruction sets. 
Let’s look at a simple example to illustrate the differences between the two 
VMs (see Listing 1-1). 

public static int add(int i, int j) {
    return i + j;
}

Listing 1-1: Static Java method that adds two integers

When compiled for each VM, the add() static method, which simply 
adds two integers and returns the result, would generate the bytecode 
shown in Figure 1-2.

  public static int add(int, int);
    Code:
       0: iload_0�
       1: iload_1�
       2: iadd�
       3: ireturn�

.method public static add(II)I

    add-int v0, p0, p1�

    return v0�
.end method

JVM Bytecode Dalvik Bytecode

Figure 1-2: JVM and Dalvik bytecode

Here, the JVM uses two instructions to load the parameters onto the 
stack (u and v), then executes the addition w, and finally returns the 
result x. In contrast, Dalvik uses a single instruction to add parameters 
(in registers p0 and p1) and puts the result in the v0 register y. Finally, it 
returns the contents of the v0 register z. As you can see, Dalvik uses fewer 
instructions to achieve the same result. Generally speaking, register-based 
VMs use fewer instructions, but the resulting code is larger than the cor-
responding code in a stack-based VM. However, on most architectures, 
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loading code is less expensive than instruction dispatch, so register-based 
VMs can be interpreted more efficiently.3

In most production devices, system libraries and preinstalled applica-
tions do not contain device-independent DEX code directly. As a perfor-
mance optimization, DEX code is converted to a device-dependent format 
and stored in an Optimized DEX (.odex) file, which typically resides in the 
same directory as its parent JAR or APK file. A similar optimization process 
is performed for user-installed applications at install time. 

Java Runtime Libraries
A Java language implementation requires a set of runtime libraries, defined 
mostly in the java.* and javax.* packages. Android’s core Java libraries are 
originally derived from the Apache Harmony project4 and are the next 
layer on our stack. As Android has evolved, the original Harmony code 
has changed significantly. In the process, some features have been replaced 
entirely (such as internationalization support, the cryptographic provider, 
and some related classes), while others have been extended and improved. 
The core libraries are developed mostly in Java, but they have some native 
code dependencies as well. Native code is linked into Android’s Java librar-
ies using the standard Java Native Interface (JNI),5 which allows Java code to 
call native code and vice versa. The Java runtime libraries layer is directly 
accessed both from system services and applications. 

System Services
The layers introduced up until now make up the plumbing necessary to 
implement the core of Android—system services. System services (79 as of 
version 4.4) implement most of the fundamental Android features, includ-
ing display and touch screen support, telephony, and network connectivity. 
Most system services are implemented in Java; some fundamental ones are 
written in native code. 

With a few exceptions, each system service defines a remote interface 
that can be called from other services and applications. Coupled with the 
service discovery, mediation, and IPC provided by Binder, system services 
effectively implement an object-oriented OS on top of Linux. 

Let’s look at how Binder enables IPC on Android in detail, as this is one 
of the cornerstones of Android’s security model. 

Inter-Process Communication
As mentioned previously, Binder is an inter-process communication (IPC) 
mechanism. Before getting into detail about how Binder works, let’s briefly 
review IPC. 

3. Yunhe Shi et al., Virtual Machine Showdown: Stack Versus Registers, https://www.usenix.org/
legacy/events/vee05/full_papers/p153-yunhe.pdf

4. The Apache Software Foundation, Apache Harmony, http://harmony.apache.org/

5. Oracle, Java™ Native Interface, http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
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As in any Unix-like system, processes in Android have separate address 
spaces and a process cannot directly access another process’s memory (this 
is called process isolation). This is usually a good thing, both for stability 
and security reasons: multiple processes modifying the same memory can 
be catastrophic, and you don’t want a potentially rogue process that was 
started by another user to dump your email by accessing your mail client’s 
memory. However, if a process wants to offer some useful service(s) to other 
processes, it needs to provide some mechanism that allows other processes 
to discover and interact with those services. That mechanism is referred to 
as IPC. 

The need for a standard IPC mechanism is not new, so several options 
predate Android. These include files, signals, sockets, pipes, semaphores, 
shared memory, message queues, and so on. While Android uses some of 
these (such as local sockets), it does not support others (namely System V 
IPCs like semaphores, shared memory segments, and message queues). 

Binder
Because the standard IPC mechanisms weren’t flexible or reliable enough, 
a new IPC mechanism called Binder was developed for Android. While 
Android’s Binder is a new implementation, it’s based on the architecture 
and ideas of OpenBinder.6 

Binder implements a distributed component architecture based on 
abstract interfaces. It is similar to Windows Common Object Model (COM) 
and Common Object Broker Request Architectures (CORBA) on Unix, but 
unlike those frameworks, it runs on a single device and does not support 
remote procedure calls (RPC) across the network (although RPC support 
could be implemented on top of Binder). A full description of the Binder 
framework is outside the scope of this book, but we introduce its main com-
ponents briefly in the following sections. 

Binder Implementation

As mentioned earlier, on a Unix-like system, a process cannot access another 
process’s memory. However, the kernel has control over all processes and 
therefore can expose an interface that enables IPC. In Binder, this interface 
is the /dev/binder device, which is implemented by the Binder kernel driver. 
The Binder driver is the central object of the framework, and all IPC calls 
go through it. Inter-process communication is implemented with a single 
ioctl() call that both sends and receives data through the binder_write_read 
structure, which consists of a write_buffer containing commands for the 
driver, and a read_buffer containing commands that the userspace needs 
to perform. 

But how is data actually passed between processes? The Binder driver 
manages part of the address space of each process. The Binder driver-
managed chunk of memory is read-only to the process, and all writing 

6. PalmSource, Inc., OpenBinder, http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
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is performed by the kernel module. When a process sends a message to 
another process, the kernel allocates some space in the destination pro-
cess’s memory, and copies the message data directly from the sending 
process. It then queues a short message to the receiving process telling it 
where the received message is. The recipient can then access that message 
directly (because it is in its own memory space). When a process is finished 
with the message, it notifies the Binder driver to mark the memory as free. 
Figure 1-3 shows a simplified illustration of the Binder IPC architecture. 

Linux Kernel
Binder Driver (/dev/binder)

Process A

Binder Client

IBinder

transact()

Process B

Binder Server

Binder : IBinder
onTransact(){

      case CMD1:
    ...   case CMD2:

      ...
}

IPC

Figure 1-3: Binder IPC

Higher-level IPC abstractions in Android such as Intents (commands with 
associated data that are delivered to components across processes), Messengers 
(objects that enable message-based communication across processes), and 
ContentProviders (components that expose a cross-process data management 
interface) are built on top of Binder. Additionally, service interfaces that 
need to be exposed to other processes can be defined using the Android 
Interface Definition Language (AIDL), which enables clients to call remote ser-
vices as if they were local Java objects. The associated aidl tool automatically 
generates stubs (client-side representations of the remote object) and proxies 
that map interface methods to the lower-level transact() Binder method and 
take care of converting parameters to a format that Binder can transmit (this 
is called parameter marshalling/unmarshalling). Because Binder is inherently 
typeless, AIDL-generated stubs and proxies also provide type safety by includ-
ing the target interface name in each Binder transaction (in the proxy) and 
validating it in the stub.

Binder Security

On a higher level, each object that can be accessed through the Binder 
framework implements the IBinder interface and is called a Binder object. 
Calls to a Binder object are performed inside a Binder transaction, which 
contains a reference to the target object, the ID of the method to execute, 
and a data buffer. The Binder driver automatically adds the process ID 
(PID) and effective user ID (EUID) of the calling process to the transaction 
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data. The called process (callee) can inspect the PID and EUID and decide 
whether it should execute the requested method based on its internal logic 
or system-wide metadata about the calling application. 

Since the PID and EUID are filled in by the kernel, caller processes 
cannot fake their identity to get more privileges than allowed by the sys-
tem (that is, Binder prevents privilege escalation). This is one of the central 
pieces of Android’s security model, and all higher-level abstractions, such as 
permissions, build upon it. The EUID and PID of the caller are accessible 
via the getCallingPid() and getCallingUid() methods of the android.os.Binder 
class, which is part of Android’s public API. 

N O T E 	 The calling process’s EUID may not map to a single application if more than one 
application is executing under the same UID (see Chapter 2 for details). However, 
this does not affect security decisions, as processes running under the same UID are 
typically granted the same set of permissions and privileges (unless process-specific 
SELinux rules have been defined).

Binder Identity

One of the most important properties of Binder objects is that they main-
tain a unique identity across processes. Thus if process A creates a Binder 
object and passes it to process B, which in turn passes it to process C, calls 
from all three processes will be processed by the same Binder object. In 
practice, process A will reference the Binder object directly by its memory 
address (because it is in process A’s memory space), while process B and C 
will receive only a handle to the Binder object. 

The kernel maintains the mapping between “live” Binder objects 
and their handles in other processes. Because a Binder object’s identity 
is unique and maintained by the kernel, it is impossible for userspace 
processes to create a copy of a Binder object or obtain a reference to one 
unless they have been handed one through IPC. Thus a Binder object is a 
unique, unforgeable, and communicable object that can act as a security 
token. This enables the use of capability-based security in Android. 

Capability-Based Security

In a capability-based security model, programs are granted access to a particular 
resource by giving them an unforgeable capability that both references the 
target object and encapsulates a set of access rights to it. Because capabili-
ties are unforgeable, the mere fact that a program possesses a capability is 
sufficient to give it access to the target resource; there is no need to main-
tain access control lists (ACLs) or similar structures associated with actual 
resources. 

Binder Tokens

In Android, Binder objects can act as capabilities and are called Binder 
tokens when used in this fashion. A Binder token can be both a capability 
and a target resource. The possession of a Binder token grants the owning 
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process full access to a Binder object, enabling it to perform Binder 
transactions on the target object. If the Binder object implements multiple 
actions (by selecting the action to perform based on the code parameter of 
the Binder transaction), the caller can perform any action when it has a 
reference to that Binder object. If more granular access control is required, 
the implementation of each action needs to implement the necessary permis-
sion checks, typically by utilizing the PID and EUID of the caller process. 

A common pattern in Android is to allow all actions to callers running 
as system (UID 1000) or root (UID 0), but perform additional permission 
checks for all other processes. Thus access to important Binder objects 
such as system services is controlled in two ways: by limiting who can get a 
reference to that Binder object and by checking the caller identity before 
performing an action on the Binder object. (This check is optional and 
implemented by the Binder object itself, if required.)

Alternatively, a Binder object can be used only as a capability without 
implementing any other functionality. In this usage pattern, the same 
Binder object is held by two (or more) cooperating processes, and the one 
acting as a server (processing some kind of client requests) uses the Binder 
token to authenticate its clients, much like web servers use session cookies. 

This usage pattern is used internally by the Android framework and is 
mostly invisible to applications. One notable use case of Binder tokens that 
is visible in the public API is window tokens. The top-level window of each 
activity is associated with a Binder token (called a window token), which 
Android’s window manager (the system service responsible for managing 
application windows) keeps track of. Applications can obtain their own win-
dow token but cannot get access to the window tokens of other applications. 
Typically you don’t want other applications adding or removing windows 
on top of your own; each request to do so must provide the window token 
associated with the application, thus guaranteeing that window requests are 
coming from your own application or from the system.

Accessing Binder Objects

Although Android controls access to Binder objects for security purposes, 
and the only way to communicate with a Binder object is to be given a refer-
ence to it, some Binder objects (most notably system services) need to be 
universally accessible. It is, however, impractical to hand out references to 
all system services to each and every process, so we need some mechanism 
that allows processes to discover and obtain references to system services 
as needed. 

In order to enable service discovery, the Binder framework has a single 
context manager, which maintains references to Binder objects. Android’s 
context manager implementation is the servicemanager native daemon. It 
is started very early in the boot process so that system services can register 
with it as they start up. Services are registered by passing a service name 
and a Binder reference to the service manager. Once a service is registered, 
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any client can obtain its Binder reference by using its name. However, most 
system services implement additional permission checks, so obtaining a 
reference does not automatically guarantee access to all of its functional-
ity. Because anyone can access a Binder reference when it is registered with 
the service manager, only a small set of whitelisted system processes can 
register system services. For example, only a process executing as UID 1002 
(AID_BLUETOOTH) can register the bluetooth system service. 

You can view a list of registered services by using the service list com-
mand, which returns the name of each registered service and the imple-
mented IBinder interface. Sample output from running the command on 
an Android 4.4 device is shown in Listing 1-2.

$ service list
service list
Found 79 services:
0       sip: [android.net.sip.ISipService]
1       phone: [com.android.internal.telephony.ITelephony]
2       iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
3       simphonebook: [com.android.internal.telephony.IIccPhoneBook]
4       isms: [com.android.internal.telephony.ISms]
5       nfc: [android.nfc.INfcAdapter]
6       media_router: [android.media.IMediaRouterService]
7       print: [android.print.IPrintManager]
8       assetatlas: [android.view.IAssetAtlas]
9       dreams: [android.service.dreams.IdreamManager]

--snip--

Listing 1-2: Obtaining a list of registered system services with the service list command

Other Binder Features

While not directly related to Android’s security model, two other notable 
Binder features are reference counting and death notification (also known 
as link to death). Reference counting guarantees that Binder objects are auto-
matically freed when no one references them and is implemented in the 
kernel driver with the BC_INCREFS, BC_ACQUIRE, BC_RELEASE, and BC_DECREFS com-
mands. Reference counting is integrated at various levels of the Android 
framework but is not directly visible to applications. 

Death notification allows applications that use Binder objects that are 
hosted by other processes to be notified when those processes are killed by 
the kernel and to perform any necessary cleanup. Death notification is imple-
mented with the BC_REQUEST_DEATH_NOTIFICATION and BC_CLEAR_DEATH_NOTIFICATION 
commands in the kernel driver and the linkToDeath() and unlinkToDeath() 
methods of the IBinder interface7 in the framework. (Death notifications 
for local binders are not sent, because local binders cannot die without the 
hosting process dying as well.)

7. Google, Android APIs Reference, “IBinder,” http://developer.android.com/reference/android/os/
IBinder.html
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Android Framework Libraries
Next on the stack are the Android framework libraries, sometimes called 
just “the framework.” The framework includes all Java libraries that are 
not part of the standard Java runtime (java.*, javax.*, and so on) and is for 
the most part hosted under the android top-level package. The framework 
includes the basic blocks for building Android applications, such as the 
base classes for activities, services, and content providers (in the android.app.* 
packages); GUI widgets (in the android.view.* and android.widget packages); 
and classes for file and database access (mostly in the android.database.* and 
android.content.* packages). It also includes classes that let you interact with 
device hardware, as well as classes that take advantage of higher-level ser-
vices offered by the system. 

Even though almost all Android OS functionality above the kernel 
level is implemented as system services, it is not exposed directly in the 
framework but is accessed via facade classes called managers. Typically, 
each manager is backed by a corresponding system service; for example, 
the BluetoothManager is a facade for the BluetoothManagerService.

Applications
On the highest level of the stack are applications (or apps), which are the 
programs that users directly interact with. While all apps have the same 
structure and are built on top of the Android framework, we distinguish 
between system apps and user-installed apps. 

System Apps

System apps are included in the OS image, which is read-only on produc-
tion devices (typically mounted as /system), and cannot be uninstalled or 
changed by users. Therefore, these apps are considered secure and are 
given many more privileges than user-installed apps. System apps can be 
part of the core Android OS or can simply be preinstalled user applications, 
such as email clients or browsers. While all apps installed under /system 
were treated equally in earlier versions of Android (except by OS features 
that check the app signing certificate), Android 4.4 and higher treat apps 
installed in /system/priv-app/ as privileged applications and will only grant 
permissions with protection level signatureOrSystem to privileged apps, not 
to all apps installed under /system. Apps that are signed with the platform 
signing key can be granted system permissions with the signature protection 
level, and thus can get OS-level privileges even if they are not preinstalled 
under /system. (See Chapter 2 for details on permissions and code signing.)

While system apps cannot be uninstalled or changed, they can be updated 
by users as long as the updates are signed with the same private key, and 
some can be overridden by user-installed apps. For example, a user can 
choose to replace the preinstalled application launcher or input method 
with a third-party application. 
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User-Installed Apps

User-installed apps are installed on a dedicated read-write partition (typi-
cally mounted as /data) that hosts user data and can be uninstalled at will. 
Each application lives in a dedicated security sandbox and typically cannot 
affect other applications or access their data. Additionally, apps can only 
access resources that they have explicitly been granted a permission to use. 
Privilege separation and the principle of least privilege are central to 
Android’s security model, and we will explore how they are implemented 
in the next section. 

Android App Components

Android applications are a combination of loosely coupled components and, 
unlike traditional applications, can have more than one entry point. Each 
component can offer multiple entry points that can be reached based on 
user actions in the same or another application, or triggered by a system 
event that the application has registered to be notified about. 

Components and their entry points, as well as additional metadata, are 
defined in the application’s manifest file, called AndroidManifest.xml. Like 
most Android resource files, this file is compiled into a binary XML format 
(similar to ASN.1) before bundling it in the application package (APK) 
file in order to decrease size and speed up parsing. The most important 
application property defined in the manifest file is the application package 
name, which uniquely identifies each application in the system. The pack-
age name is in the same format as Java package names (reverse domain 
name notation; for example, com.google.email).

The AndroidManifest.xml file is parsed at application install time, and 
the package and components it defines are registered with the system. 
Android requires each application to be signed using a key controlled 
by its developer. This guarantees that an installed application cannot be 
replaced by another application that claims to have the same package name 
(unless it is signed with the same key, in which case the existing application is 
updated). We’ll discuss code signing and application packages in Chapter 3.

The main components of Android apps are listed below. 

Activities
An activity is a single screen with a user interface. Activities are the 
main building blocks of Android GUI applications. An application can 
have multiple activities and while they are usually designed to be dis-
played in a particular order, each activity can be started independently, 
potentially by a different app (if allowed). 

Services
A service is a component that runs in the background and has no user 
interface. Services are typically used to perform some long-running 
operation, such as downloading a file or playing music, without block-
ing the user interface. Services can also define a remote interface using 
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AIDL and provide some functionality to other apps. However, unlike 
system services, which are part of the OS and are always running, appli-
cation services are started and stopped on demand. 

Content providers
Content providers provide an interface to app data, which is typically 
stored in a database or files. Content providers can be accessed via IPC 
and are mainly used to share an app’s data with other apps. Content 
providers offer fine-grained control over what parts of data are acces-
sible, allowing an application to share only a subset of its data.

Broadcast receivers
A broadcast receiver is a component that responds to systemwide events, 
called broadcasts. Broadcasts can originate from the system (for example, 
announcing changes in network connectivity), or from a user appli-
cation (for example, announcing that background data update has 
completed). 

Android’s Security Model
Like the rest of the system, Android’s security model also takes advantage 
of the security features offered by the Linux kernel. Linux is a multi-
user operating system and the kernel can isolate user resources from one 
another, just as it isolates processes. In a Linux system, one user cannot 
access another user’s files (unless explicitly granted permission) and each 
process runs with the identity (user and group ID, usually referred to as UID 
and GID) of the user that started it, unless the set-user-ID or set-group-ID 
(SUID and SGID) bits are set on the corresponding executable file. 

Android takes advantage of this user isolation, but treats users differently 
than a traditional Linux system (desktop or server) does. In a traditional 
system, a UID is given either to a physical user that can log into the system 
and execute commands via the shell, or to a system service (daemon) that 
executes in the background (because system daemons are often accessible 
over the network, running each daemon with a dedicated UID can limit 
the damage if one is compromised). Android was originally designed for 
smartphones, and because mobile phones are personal devices, there was 
no need to register different physical users with the system. The physical 
user is implicit, and UIDs are used to distinguish applications instead. This 
forms the basis of Android’s application sandboxing.

Application Sandboxing
Android automatically assigns a unique UID, often called an app ID, to 
each application at installation and executes that application in a dedi-
cated process running as that UID. Additionally, each application is given 
a dedicated data directory which only it has permission to read and write 
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to. Thus, applications are isolated, or sandboxed, both at the process level 
(by having each run in a dedicated process) and at the file level (by having 
a private data directory). This creates a kernel-level application sandbox, 
which applies to all applications, regardless of whether they are executed in 
a native or virtual machine process. 

System daemons and applications run under well-defined and constant 
UIDs, and very few daemons run as the root user (UID 0). Android does 
not have the traditional /etc/password file and its system UIDs are statically 
defined in the android_filesystem_config.h header file. UIDs for system ser-
vices start from 1000, with 1000 being the system (AID_SYSTEM) user, which 
has special (but still limited) privileges. Automatically generated UIDs for 
applications start at 10000 (AID_APP), and the corresponding usernames 
are in the form app_XXX or uY_aXXX (on Android versions that support 
multiple physical users), where XXX is the offset from AID_APP and Y is the 
Android user ID (not the same as UID). For example, the 10037 UID cor-
responds to the u0_a37 username and may be assigned to the Google email 
client application (com.google.android.email package). Listing 1-3 shows that 
the email application process executes as the u0_a37 user u, while other 
application processes execute as different users. 

$ ps
--snip--
u0_a37    16973 182   941052  60800 ffffffff 400d073c S com.google.android.emailu
u0_a8     18788 182   925864  50236 ffffffff 400d073c S com.google.android.dialer
u0_a29    23128 182   875972  35120 ffffffff 400d073c S com.google.android.calendar
u0_a34    23264 182   868424  31980 ffffffff 400d073c S com.google.android.deskclock
--snip--

Listing 1-3: Each application process executes as a dedicated user on Android

The data directory of the email application is named after its package 
name and is created under /data/data/ on single-user devices. (Multi-user 
devices use a different naming scheme as discussed in Chapter 4.) All files 
inside the data directory are owned by the dedicated Linux user, u0_a37, as 
shown in Listing 1-4 (with timestamps omitted). Applications can option-
ally create files using the MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE flags 
to allow direct access to files by other applications, which effectively sets the 
S_IROTH and S_IWOTH access bits on the file, respectively. However, the direct 
sharing of files is discouraged, and those flags are deprecated in Android 
versions 4.2 and higher. 

# ls -l /data/data/com.google.android.email
drwxrwx--x u0_a37   u0_a37            app_webview
drwxrwx--x u0_a37   u0_a37            cache
drwxrwx--x u0_a37   u0_a37            databases
drwxrwx--x u0_a37   u0_a37            files
--snip--

Listing 1-4: Application directories are owned by the dedicated Linux user
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Application UIDs are managed alongside other package metadata 
in the /data/system/packages.xml file (the canonical source) and also writ-
ten to the /data/system/packages.list file. (We discuss package management 
and the packages.xml file in Chapter 3.) Listing 1-5 shows the UID assigned 
to the com.google.android.email package as it appears in packages.list.

# grep 'com.google.android.email' /data/system/packages.list
com.google.android.email 10037 0 /data/data/com.google.android.email default 3003,1028,1015

Listing 1-5: The UID corresponding to each application is stored in /data/system/packages.list

Here, the first field is the package name, the second is the UID assigned 
to the application, the third is the debuggable flag (1 if debuggable), the 
fourth is the application’s data directory path, and the fifth is the seinfo label 
(used by SELinux). The last field is a list of the supplementary GIDs that the 
app launches with. Each GID is typically associated with an Android permis-
sion (discussed next) and the GID list is generated based on the permissions 
granted to the application.

Applications can be installed using the same UID, called a shared user 
ID, in which case they can share files and even run in the same process. 
Shared user IDs are used extensively by system applications, which often 
need to use the same resources across different packages for modularity. 
For example, in Android 4.4 the system UI and keyguard (lockscreen imple-
mentation) share UID 10012 (see Listing 1-6). 

# grep ' 10012 ' /data/system/packages.list
com.android.keyguard 10012 0 /data/data/com.android.keyguard platform 1028,1015,1035,3002,3001
com.android.systemui 10012 0 /data/data/com.android.systemui platform 1028,1015,1035,3002,3001

Listing 1-6: System packages sharing the same UID

While the shared user ID facility is not recommended for non-system 
apps, it’s available to third-party applications as well. In order to share 
the same UID, applications need to be signed by the same code signing 
key. Additionally, because adding a shared user ID to a new version of an 
installed app causes it to change its UID, the system disallows this (see 
Chapter 2). Therefore, a shared user ID cannot be added retroactively, 
and apps need to be designed to work with a shared ID from the start.

Permissions
Because Android applications are sandboxed, they can access only their 
own files and any world-accessible resources on the device. Such a limited 
application wouldn’t be very interesting though, and Android can grant 
additional, fine-grained access rights to applications in order to allow for 
richer functionality. Those access rights are called permissions, and they 
can control access to hardware devices, Internet connectivity, data, or OS 
services. 

Applications can request permissions by defining them in the 
AndroidManifest.xml file. At application install time, Android inspects 
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the list of requested permissions and decides whether to grant them or 
not. Once granted, permissions cannot be revoked and they are available 
to the application without any additional confirmation. Additionally, for 
features such as private key or user account access, explicit user confirma-
tion is required for each accessed object, even if the requesting application 
has been granted the corresponding permission (see Chapters 7 and 8). 
Some permission can only be granted to applications that are part of the 
Android OS, either because they’re preinstalled or signed with the same key as 
the OS. Third-party applications can define custom permissions and define 
similar restrictions known as permission protection levels, thus restricting 
access to an app’s services and resources to apps created by the same author. 

Permission can be enforced at different levels. Requests to lower-level 
system resources, such as device files, are enforced by the Linux kernel 
by checking the UID or GID of the calling process against the resource’s 
owner and access bits. When accessing higher-level Android components, 
enforcement is performed either by the Android OS or by each component 
(or both). We discuss permissions in Chapter 2.

IPC
Android uses a combination of a kernel driver and userspace libraries 
to implement IPC. As discussed in “Binder” on page 5, the Binder ker-
nel driver guarantees that the UID and PID of callers cannot be forged, 
and many system services rely on the UID and PID provided by Binder to 
dynamically control access to sensitive APIs exposed via IPC. For example, 
the system Bluetooth manager service only allows system applications to 
enable Bluetooth silently if the caller is running with the system UID (1000) 
by using the code shown in Listing 1-7. Similar code is found in other sys-
tem services. 

public boolean enable() {
    if ((Binder.getCallingUid() != Process.SYSTEM_UID) &&
        (!checkIfCallerIsForegroundUser())) {
        Log.w(TAG,"enable(): not allowed for non-active and non-system user");
        return false;
     }
--snip--
}

Listing 1-7: Checking that the caller is running with the system UID

More coarse-grained permissions that affect all methods of a service 
exposed via IPC can be automatically enforced by the system by specify-
ing a permission in the service declaration. As with requested permissions, 
required permissions are declared in the AndroidManifest.xml file. Like the 
dynamic permission check in the example above, per-component permis-
sions are also implemented by consulting the caller UID obtained from 
Binder under the hood. The system uses the package database to deter-
mine the permission required by the callee component, and then maps the 
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caller UID to a package name and retrieves the set of permissions granted 
to the caller. If the required permission is in that set, the call succeeds. If 
not, it fails and the system throws a SecurityException. 

Code Signing and Platform Keys
All Android applications must be signed by their developer, including sys-
tem applications. Because Android APK files are an extension of the Java 
JAR package format,8 the code signing method used is also based on JAR 
signing. Android uses the APK signature to make sure updates for an app 
are coming from the same author (this is called the same origin policy) and 
to establish trust relationships between applications. Both of these secu-
rity features are implemented by comparing the signing certificate of the 
currently installed target app with the certificate of the update or related 
application. 

System applications are signed by a number of platform keys. Different 
system components can share resources and run inside the same process 
when they are signed with the same platform key. Platform keys are gener-
ated and controlled by whoever maintains the Android version installed 
on a particular device: device manufacturers, carriers, Google for Nexus 
devices, or users for self-built open source Android versions. (We’ll discuss 
code signing and the APK format in Chapter 3.)

Multi-User Support
Because Android was originally designed for handset (smartphone) devices 
that have a single physical user, it assigns a distinct Linux UID to each 
installed application and traditionally does not have a notion of a physi-
cal user. Android gained support for multiple physical users in version 4.2, 
but multi-user support is only enabled on tablets, which are more likely to 
be shared. Multi-user support on handset devices is disabled by setting the 
maximum number of users to 1.

Each user is assigned a unique user ID, starting with 0, and users are 
given their own dedicated data directory under /data/system/users/<user ID>/, 
which is called the user’s system directory. This directory hosts user-specific set-
tings such as homescreen parameters, account data, and a list of currently 
installed applications. While application binaries are shared between users, 
each user gets a copy of an application’s data directory. 

To distinguish applications installed for each user, Android assigns a 
new effective UID to each application when it is installed for a particular 
user. This effective UID is based on the target physical user’s user ID and 
the app’s UID in a single-user system (the app ID). This composite structure 
of the granted UID guarantees that even if the same application is installed 
by two different users, both application instances get their own sandbox. 
Additionally, Android guarantees dedicated shared storage (hosted on an 
SD card for older devices), which is world-readable, to each physical user. 

8. Oracle, JAR File Specification, http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
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The user to first initialize the device is called the device owner, and only they 
can manage other users or perform administrative tasks that influence 
the whole device (such as factory reset). (We discuss multi-user support in 
greater detail in Chapter 4.)

SELinux
The traditional Android security model relies heavily on the UIDs and 
GIDs granted to applications. While those are guaranteed by the kernel, 
and by default each application’s files are private, nothing prevents an appli-
cation from granting world access to its files (whether intentionally or due 
to a programming error). 

Similarly, nothing prevents malicious applications from taking advan-
tage of the overly permissive access bits of system files or local sockets. In 
fact, inappropriate permissions assigned to application or system files have 
been the source of a number of Android vulnerabilities. Those vulner-
abilities are unavoidable in the default access control model employed by 
Linux, known as discretionary access control (DAC). Discretionary here means 
that once a user gets access to a particular resource, they can pass it on to 
another user at their discretion, such as by setting the access mode of one 
of their files to world-readable. In contrast, mandatory access control (MAC) 
ensures that access to resources conforms to a system-wide set of authoriza-
tion rules called a policy. The policy can only be changed by an administra-
tor, and users cannot override or bypass it in order to, for example, grant 
everyone access to their own files. 

Security Enhanced Linux (SELinux) is a MAC implementation for the 
Linux kernel and has been integrated in the mainline kernel for more than 
10 years. As of version 4.3, Android integrates a modified SELinux version 
from the Security Enhancements for Android (SEAndroid) project9 that 
has been augmented to support Android-specific features such as Binder. In 
Android, SELinux is used to isolate core system daemons and user applica-
tions in different security domains and to define different access policies for 
each domain. As of version 4.4, SELinux is deployed in enforcing mode (viola-
tions to the system policy generate runtime errors), but policy enforcement 
is only applied to core system daemons. Applications still run in permissive 
mode and violations are logged but do not cause runtime errors. (We give 
more details about Android’s SELinux implementation in Chapter 12.)

System Updates
Android devices can be updated over-the-air (OTA) or by connecting the 
device to a PC and pushing the update image using the standard Android 
debug bridge (ADB) client or some vendor-provided application with sim-
ilar functionality. Because in addition to system files, an Android update 
might need to modify the baseband (modem) firmware, bootloader, and 

9. SELinux Project, SE for Android, http://selinuxproject.org/page/SEAndroid
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other parts of the device that are not directly accessible from Android, the 
update process typically uses a special-purpose, minimal OS with exclusive 
access to all device hardware. This is called a recovery OS or simply recovery. 

OTA updates are performed by downloading an OTA package file (typi-
cally a ZIP file with an added code signature), which contains a small script 
file to be interpreted by the recovery, and rebooting the device in recovery 
mode. Alternatively, the user can enter recovery mode by using a device-
specific key combination when booting the device, and apply the update 
manually by using the menu interface of the recovery, which is usually navi-
gated using the hardware buttons (Volume up/down, Power, and so on) of the 
device. 

On production devices, the recovery accepts only updates signed by the 
device manufacturer. Update files are signed by extending the ZIP file for-
mat to include a signature over the whole file in the comment section (see 
Chapter 3), which the recovery extracts and verifies before installing the 
update. On some devices (including all Nexus devices, dedicated developer 
devices, and some vendor devices), device owners can replace the recov-
ery OS and disable system update signature verification, allowing them to 
install updates by third parties. Switching the device bootloader to a mode 
that allows replacing the recovery and system images is called bootloader 
unlocking (not to be confused with SIM-unlocking, which allows a device to 
be used on any mobile network) and typically requires wiping all user data 
(factory reset) in order to make sure that a potentially malicious third-party 
system image does not get access to existing user data. On most consumer 
devices, unlocking the bootloader has the side effect of voiding the device’s 
warranty. (We discuss system updates and recovery images in Chapter 13.)

Verified Boot
As of version 4.4, Android supports verified boot using the verity target10 of 
Linux’s Device-Mapper. Verity provides transparent integrity checking of 
block devices using a cryptographic hash tree. Each node in the tree is a 
cryptographic hash, with leaf nodes containing the hash value of a physical 
data block and intermediary nodes containing hash values of their child 
nodes. Because the hash in the root node is based on the values of all other 
nodes, only the root hash needs to be trusted in order to verify the rest of 
the tree. 

Verification is performed with an RSA public key included in the boot 
partition. Device blocks are checked at runtime by calculating the hash 
value of the block as it is read and comparing it to the recorded value in 
the hash tree. If the values do not match, the read operation results in an 
I/O error indicating that the filesystem is corrupted. Because all checks are 
performed by the kernel, the boot process needs to verify the integrity of the 
kernel in order for verified boot to work. This process is device-specific and is 
typically implemented by using an unchangeable, hardware-specific key that 

10. Linux kernel source tree, dm-verity, http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux 
.git/tree/Documentation/device-mapper/verity.txt
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is “burned” (written to write-only memory) into the device. That key is used 
to verify the integrity of each bootloader level and eventually the kernel. (We 
discuss verified boot in Chapter 10.) 

Summary
Android is a privilege-separated operating system based on the Linux 
kernel. Higher-level system functions are implemented as a set of cooper-
ating system services that communicate using an IPC mechanism called 
Binder. Android isolates applications from each other by running each with 
a distinct system identity (Linux UID). By default, applications are given 
very few privileges and have to request fine-grained permission in order 
to interact with system services, hardware devices, or other applications. 
Permissions are defined in each application’s manifest file and are granted 
at install time. The system uses the UID of each application to find out what 
permissions it has been granted and to enforce them at runtime. In recent 
versions, system processes isolation takes advantage of SELinux to further 
constrain the privileges given to each process. 
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