
1
Android ’ s Security Model

This chapter will first briefly introduce Android’s
architecture, inter-process communication (IPC)
mechanism, and main components. We then describe
Android’s security model and how it relates to the
underlying Linux security infrastructure and code
signing. We conclude with a brief overview of some
newer additions to Android’s security model, namely multi-user support,
mandatory access control (MAC) based on SELinux, and verified boot.
Android’s architecture and security model are built on top of the tra-
ditional Unix process, user, and file paradigm, but this paradigm is not
described from scratch here. We assume a basic familiarity with Unix-like
systems, particularly Linux.

Android’s Architecture
Let’s briefly examine Android’s architecture from the bottom up. Figure 1-1
shows a simplified representation of the Android stack.

Android Security Internals
© 2014 by Nikolay Elenkov

2 Chapter 1

System Apps
Settings/Phone/Launcher/...

User-Installed Apps

Android Framework Libraries
android.*

System Services
Activity Mgr./Package Mgr./Window Mgr./...

Java
Runtime
Libraries
java.*
javax.*

Dalvik Runtime

Init Native
Daemons

Native
Libraries HAL

Linux Kernel

Figure 1-1: The Android architecture

Linux Kernel
As you can see in Figure 1-1, Android is built on top of the Linux kernel. As
in any Unix system, the kernel provides drivers for hardware, networking, file-
system access, and process management. Thanks to the Android Mainlining
Project,1 you can now run Android with a recent vanilla kernel (with some
effort), but an Android kernel is slightly different from a “regular” Linux
kernel that you might find on a desktop machine or a non-Android embed-
ded device. The differences are due to a set of new features (sometimes
called Androidisms2) that were originally added to support Android. Some
of the main Androidisms are the low memory killer, wakelocks (integrated
as part of wakeup sources support in the mainline Linux kernel), anony-
mous shared memory (ashmem), alarms, paranoid networking, and Binder.

The most important Androidisms for our discussion are Binder and
paranoid networking. Binder implements IPC and an associated security
mechanism, which we discuss in more detail on page 5. Paranoid net-
working restricts access to network sockets to applications that hold spe-
cific permissions. We delve deeper into this topic in Chapter 2.

Native Userspace
On top of the kernel is the native userspace layer, consisting of the init
binary (the first process started, which starts all other processes), several
native daemons, and a few hundred native libraries that are used throughout
the system. While the presence of an init binary and daemons is reminiscent

1. Android Mainlining Project, http://elinux.org/Android_Mainlining_Project

2. For a more detailed discussion of Androidisms, see Karim Yaghmour’s Embedded Android,
O’Reilly, 2013, pp. 29–38.

Android Security Internals
© 2014 by Nikolay Elenkov

http://elinux.org/Android_Mainlining_Project

Android’s Security Model 3

of a traditional Linux system, note that both init and the associated startup
scripts have been developed from scratch and are quite different from their
mainline Linux counterparts.

Dalvik VM
The bulk of Android is implemented in Java and as such is executed by a
Java Virtual Machine (JVM). Android’s current Java VM implementation is
called Dalvik and it is the next layer in our stack. Dalvik was designed with
mobile devices in mind and cannot run Java bytecode (.class files) directly:
its native input format is called Dalvik Executable (DEX) and is packaged in
.dex files. In turn, .dex files are packaged either inside system Java libraries
(JAR files), or inside Android applications (APK files, discussed in Chapter 3).

Dalvik and Oracle’s JVM have different architectures—register-based
in Dalvik versus stack-based in the JVM—and different instruction sets.
Let’s look at a simple example to illustrate the differences between the two
VMs (see Listing 1-1).

public static int add(int i, int j) {
 return i + j;
}

Listing 1-1: Static Java method that adds two integers

When compiled for each VM, the add() static method, which simply
adds two integers and returns the result, would generate the bytecode
shown in Figure 1-2.

 public static int add(int, int);
 Code:
 0: iload_0�
 1: iload_1�
 2: iadd�
 3: ireturn�

.method public static add(II)I

 add-int v0, p0, p1�

 return v0�
.end method

JVM Bytecode Dalvik Bytecode

Figure 1-2: JVM and Dalvik bytecode

Here, the JVM uses two instructions to load the parameters onto the
stack (u and v), then executes the addition w, and finally returns the
result x. In contrast, Dalvik uses a single instruction to add parameters
(in registers p0 and p1) and puts the result in the v0 register y. Finally, it
returns the contents of the v0 register z. As you can see, Dalvik uses fewer
instructions to achieve the same result. Generally speaking, register-based
VMs use fewer instructions, but the resulting code is larger than the cor-
responding code in a stack-based VM. However, on most architectures,

Android Security Internals
© 2014 by Nikolay Elenkov

4 Chapter 1

loading code is less expensive than instruction dispatch, so register-based
VMs can be interpreted more efficiently.3

In most production devices, system libraries and preinstalled applica-
tions do not contain device-independent DEX code directly. As a perfor-
mance optimization, DEX code is converted to a device-dependent format
and stored in an Optimized DEX (.odex) file, which typically resides in the
same directory as its parent JAR or APK file. A similar optimization process
is performed for user-installed applications at install time.

Java Runtime Libraries
A Java language implementation requires a set of runtime libraries, defined
mostly in the java.* and javax.* packages. Android’s core Java libraries are
originally derived from the Apache Harmony project4 and are the next
layer on our stack. As Android has evolved, the original Harmony code
has changed significantly. In the process, some features have been replaced
entirely (such as internationalization support, the cryptographic provider,
and some related classes), while others have been extended and improved.
The core libraries are developed mostly in Java, but they have some native
code dependencies as well. Native code is linked into Android’s Java librar-
ies using the standard Java Native Interface (JNI),5 which allows Java code to
call native code and vice versa. The Java runtime libraries layer is directly
accessed both from system services and applications.

System Services
The layers introduced up until now make up the plumbing necessary to
implement the core of Android—system services. System services (79 as of
version 4.4) implement most of the fundamental Android features, includ-
ing display and touch screen support, telephony, and network connectivity.
Most system services are implemented in Java; some fundamental ones are
written in native code.

With a few exceptions, each system service defines a remote interface
that can be called from other services and applications. Coupled with the
service discovery, mediation, and IPC provided by Binder, system services
effectively implement an object-oriented OS on top of Linux.

Let’s look at how Binder enables IPC on Android in detail, as this is one
of the cornerstones of Android’s security model.

Inter-Process Communication
As mentioned previously, Binder is an inter-process communication (IPC)
mechanism. Before getting into detail about how Binder works, let’s briefly
review IPC.

3. Yunhe Shi et al., Virtual Machine Showdown: Stack Versus Registers, https://www.usenix.org/
legacy/events/vee05/full_papers/p153-yunhe.pdf

4. The Apache Software Foundation, Apache Harmony, http://harmony.apache.org/

5. Oracle, Java™ Native Interface, http://docs.oracle.com/javase/7/docs/technotes/guides/jni/

Android Security Internals
© 2014 by Nikolay Elenkov

https://www.usenix.org/legacy/events/vee05/full_papers/p153-yunhe.pdf
https://www.usenix.org/legacy/events/vee05/full_papers/p153-yunhe.pdf
http://harmony.apache.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/

Android’s Security Model 5

As in any Unix-like system, processes in Android have separate address
spaces and a process cannot directly access another process’s memory (this
is called process isolation). This is usually a good thing, both for stability
and security reasons: multiple processes modifying the same memory can
be catastrophic, and you don’t want a potentially rogue process that was
started by another user to dump your email by accessing your mail client’s
memory. However, if a process wants to offer some useful service(s) to other
processes, it needs to provide some mechanism that allows other processes
to discover and interact with those services. That mechanism is referred to
as IPC.

The need for a standard IPC mechanism is not new, so several options
predate Android. These include files, signals, sockets, pipes, semaphores,
shared memory, message queues, and so on. While Android uses some of
these (such as local sockets), it does not support others (namely System V
IPCs like semaphores, shared memory segments, and message queues).

Binder
Because the standard IPC mechanisms weren’t flexible or reliable enough,
a new IPC mechanism called Binder was developed for Android. While
Android’s Binder is a new implementation, it’s based on the architecture
and ideas of OpenBinder.6

Binder implements a distributed component architecture based on
abstract interfaces. It is similar to Windows Common Object Model (COM)
and Common Object Broker Request Architectures (CORBA) on Unix, but
unlike those frameworks, it runs on a single device and does not support
remote procedure calls (RPC) across the network (although RPC support
could be implemented on top of Binder). A full description of the Binder
framework is outside the scope of this book, but we introduce its main com-
ponents briefly in the following sections.

Binder Implementation

As mentioned earlier, on a Unix-like system, a process cannot access another
process’s memory. However, the kernel has control over all processes and
therefore can expose an interface that enables IPC. In Binder, this interface
is the /dev/binder device, which is implemented by the Binder kernel driver.
The Binder driver is the central object of the framework, and all IPC calls
go through it. Inter-process communication is implemented with a single
ioctl() call that both sends and receives data through the binder_write_read
structure, which consists of a write_buffer containing commands for the
driver, and a read_buffer containing commands that the userspace needs
to perform.

But how is data actually passed between processes? The Binder driver
manages part of the address space of each process. The Binder driver-
managed chunk of memory is read-only to the process, and all writing

6. PalmSource, Inc., OpenBinder, http://www.angryredplanet.com/~hackbod/openbinder/docs/html/

Android Security Internals
© 2014 by Nikolay Elenkov

http://www.angryredplanet.com/~hackbod/openbinder/docs/html/

6 Chapter 1

is performed by the kernel module. When a process sends a message to
another process, the kernel allocates some space in the destination pro-
cess’s memory, and copies the message data directly from the sending
process. It then queues a short message to the receiving process telling it
where the received message is. The recipient can then access that message
directly (because it is in its own memory space). When a process is finished
with the message, it notifies the Binder driver to mark the memory as free.
Figure 1-3 shows a simplified illustration of the Binder IPC architecture.

Linux Kernel
Binder Driver (/dev/binder)

Process A

Binder Client

IBinder

transact()

Process B

Binder Server

Binder : IBinder
onTransact(){

 case CMD1:
 ... case CMD2:

 ...
}

IPC

Figure 1-3: Binder IPC

Higher-level IPC abstractions in Android such as Intents (commands with
associated data that are delivered to components across processes), Messengers
(objects that enable message-based communication across processes), and
ContentProviders (components that expose a cross-process data management
interface) are built on top of Binder. Additionally, service interfaces that
need to be exposed to other processes can be defined using the Android
Interface Definition Language (AIDL), which enables clients to call remote ser-
vices as if they were local Java objects. The associated aidl tool automatically
generates stubs (client-side representations of the remote object) and proxies
that map interface methods to the lower-level transact() Binder method and
take care of converting parameters to a format that Binder can transmit (this
is called parameter marshalling/unmarshalling). Because Binder is inherently
typeless, AIDL-generated stubs and proxies also provide type safety by includ-
ing the target interface name in each Binder transaction (in the proxy) and
validating it in the stub.

Binder Security

On a higher level, each object that can be accessed through the Binder
framework implements the IBinder interface and is called a Binder object.
Calls to a Binder object are performed inside a Binder transaction, which
contains a reference to the target object, the ID of the method to execute,
and a data buffer. The Binder driver automatically adds the process ID
(PID) and effective user ID (EUID) of the calling process to the transaction

Android Security Internals
© 2014 by Nikolay Elenkov

Android’s Security Model 7

data. The called process (callee) can inspect the PID and EUID and decide
whether it should execute the requested method based on its internal logic
or system-wide metadata about the calling application.

Since the PID and EUID are filled in by the kernel, caller processes
cannot fake their identity to get more privileges than allowed by the sys-
tem (that is, Binder prevents privilege escalation). This is one of the central
pieces of Android’s security model, and all higher-level abstractions, such as
permissions, build upon it. The EUID and PID of the caller are accessible
via the getCallingPid() and getCallingUid() methods of the android.os.Binder
class, which is part of Android’s public API.

N O T E 	 The calling process’s EUID may not map to a single application if more than one
application is executing under the same UID (see Chapter 2 for details). However,
this does not affect security decisions, as processes running under the same UID are
typically granted the same set of permissions and privileges (unless process-specific
SELinux rules have been defined).

Binder Identity

One of the most important properties of Binder objects is that they main-
tain a unique identity across processes. Thus if process A creates a Binder
object and passes it to process B, which in turn passes it to process C, calls
from all three processes will be processed by the same Binder object. In
practice, process A will reference the Binder object directly by its memory
address (because it is in process A’s memory space), while process B and C
will receive only a handle to the Binder object.

The kernel maintains the mapping between “live” Binder objects
and their handles in other processes. Because a Binder object’s identity
is unique and maintained by the kernel, it is impossible for userspace
processes to create a copy of a Binder object or obtain a reference to one
unless they have been handed one through IPC. Thus a Binder object is a
unique, unforgeable, and communicable object that can act as a security
token. This enables the use of capability-based security in Android.

Capability-Based Security

In a capability-based security model, programs are granted access to a particular
resource by giving them an unforgeable capability that both references the
target object and encapsulates a set of access rights to it. Because capabili-
ties are unforgeable, the mere fact that a program possesses a capability is
sufficient to give it access to the target resource; there is no need to main-
tain access control lists (ACLs) or similar structures associated with actual
resources.

Binder Tokens

In Android, Binder objects can act as capabilities and are called Binder
tokens when used in this fashion. A Binder token can be both a capability
and a target resource. The possession of a Binder token grants the owning

Android Security Internals
© 2014 by Nikolay Elenkov

8 Chapter 1

process full access to a Binder object, enabling it to perform Binder
transactions on the target object. If the Binder object implements multiple
actions (by selecting the action to perform based on the code parameter of
the Binder transaction), the caller can perform any action when it has a
reference to that Binder object. If more granular access control is required,
the implementation of each action needs to implement the necessary permis-
sion checks, typically by utilizing the PID and EUID of the caller process.

A common pattern in Android is to allow all actions to callers running
as system (UID 1000) or root (UID 0), but perform additional permission
checks for all other processes. Thus access to important Binder objects
such as system services is controlled in two ways: by limiting who can get a
reference to that Binder object and by checking the caller identity before
performing an action on the Binder object. (This check is optional and
implemented by the Binder object itself, if required.)

Alternatively, a Binder object can be used only as a capability without
implementing any other functionality. In this usage pattern, the same
Binder object is held by two (or more) cooperating processes, and the one
acting as a server (processing some kind of client requests) uses the Binder
token to authenticate its clients, much like web servers use session cookies.

This usage pattern is used internally by the Android framework and is
mostly invisible to applications. One notable use case of Binder tokens that
is visible in the public API is window tokens. The top-level window of each
activity is associated with a Binder token (called a window token), which
Android’s window manager (the system service responsible for managing
application windows) keeps track of. Applications can obtain their own win-
dow token but cannot get access to the window tokens of other applications.
Typically you don’t want other applications adding or removing windows
on top of your own; each request to do so must provide the window token
associated with the application, thus guaranteeing that window requests are
coming from your own application or from the system.

Accessing Binder Objects

Although Android controls access to Binder objects for security purposes,
and the only way to communicate with a Binder object is to be given a refer-
ence to it, some Binder objects (most notably system services) need to be
universally accessible. It is, however, impractical to hand out references to
all system services to each and every process, so we need some mechanism
that allows processes to discover and obtain references to system services
as needed.

In order to enable service discovery, the Binder framework has a single
context manager, which maintains references to Binder objects. Android’s
context manager implementation is the servicemanager native daemon. It
is started very early in the boot process so that system services can register
with it as they start up. Services are registered by passing a service name
and a Binder reference to the service manager. Once a service is registered,

Android Security Internals
© 2014 by Nikolay Elenkov

Android’s Security Model 9

any client can obtain its Binder reference by using its name. However, most
system services implement additional permission checks, so obtaining a
reference does not automatically guarantee access to all of its functional-
ity. Because anyone can access a Binder reference when it is registered with
the service manager, only a small set of whitelisted system processes can
register system services. For example, only a process executing as UID 1002
(AID_BLUETOOTH) can register the bluetooth system service.

You can view a list of registered services by using the service list com-
mand, which returns the name of each registered service and the imple-
mented IBinder interface. Sample output from running the command on
an Android 4.4 device is shown in Listing 1-2.

$ service list
service list
Found 79 services:
0 sip: [android.net.sip.ISipService]
1 phone: [com.android.internal.telephony.ITelephony]
2 iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
3 simphonebook: [com.android.internal.telephony.IIccPhoneBook]
4 isms: [com.android.internal.telephony.ISms]
5 nfc: [android.nfc.INfcAdapter]
6 media_router: [android.media.IMediaRouterService]
7 print: [android.print.IPrintManager]
8 assetatlas: [android.view.IAssetAtlas]
9 dreams: [android.service.dreams.IdreamManager]

--snip--

Listing 1-2: Obtaining a list of registered system services with the service list command

Other Binder Features

While not directly related to Android’s security model, two other notable
Binder features are reference counting and death notification (also known
as link to death). Reference counting guarantees that Binder objects are auto-
matically freed when no one references them and is implemented in the
kernel driver with the BC_INCREFS, BC_ACQUIRE, BC_RELEASE, and BC_DECREFS com-
mands. Reference counting is integrated at various levels of the Android
framework but is not directly visible to applications.

Death notification allows applications that use Binder objects that are
hosted by other processes to be notified when those processes are killed by
the kernel and to perform any necessary cleanup. Death notification is imple-
mented with the BC_REQUEST_DEATH_NOTIFICATION and BC_CLEAR_DEATH_NOTIFICATION
commands in the kernel driver and the linkToDeath() and unlinkToDeath()
methods of the IBinder interface7 in the framework. (Death notifications
for local binders are not sent, because local binders cannot die without the
hosting process dying as well.)

7. Google, Android APIs Reference, “IBinder,” http://developer.android.com/reference/android/os/
IBinder.html

Android Security Internals
© 2014 by Nikolay Elenkov

http://developer.android.com/reference/android/os/IBinder.html
http://developer.android.com/reference/android/os/IBinder.html

10 Chapter 1

Android Framework Libraries
Next on the stack are the Android framework libraries, sometimes called
just “the framework.” The framework includes all Java libraries that are
not part of the standard Java runtime (java.*, javax.*, and so on) and is for
the most part hosted under the android top-level package. The framework
includes the basic blocks for building Android applications, such as the
base classes for activities, services, and content providers (in the android.app.*
packages); GUI widgets (in the android.view.* and android.widget packages);
and classes for file and database access (mostly in the android.database.* and
android.content.* packages). It also includes classes that let you interact with
device hardware, as well as classes that take advantage of higher-level ser-
vices offered by the system.

Even though almost all Android OS functionality above the kernel
level is implemented as system services, it is not exposed directly in the
framework but is accessed via facade classes called managers. Typically,
each manager is backed by a corresponding system service; for example,
the BluetoothManager is a facade for the BluetoothManagerService.

Applications
On the highest level of the stack are applications (or apps), which are the
programs that users directly interact with. While all apps have the same
structure and are built on top of the Android framework, we distinguish
between system apps and user-installed apps.

System Apps

System apps are included in the OS image, which is read-only on produc-
tion devices (typically mounted as /system), and cannot be uninstalled or
changed by users. Therefore, these apps are considered secure and are
given many more privileges than user-installed apps. System apps can be
part of the core Android OS or can simply be preinstalled user applications,
such as email clients or browsers. While all apps installed under /system
were treated equally in earlier versions of Android (except by OS features
that check the app signing certificate), Android 4.4 and higher treat apps
installed in /system/priv-app/ as privileged applications and will only grant
permissions with protection level signatureOrSystem to privileged apps, not
to all apps installed under /system. Apps that are signed with the platform
signing key can be granted system permissions with the signature protection
level, and thus can get OS-level privileges even if they are not preinstalled
under /system. (See Chapter 2 for details on permissions and code signing.)

While system apps cannot be uninstalled or changed, they can be updated
by users as long as the updates are signed with the same private key, and
some can be overridden by user-installed apps. For example, a user can
choose to replace the preinstalled application launcher or input method
with a third-party application.

Android Security Internals
© 2014 by Nikolay Elenkov

Android’s Security Model 11

User-Installed Apps

User-installed apps are installed on a dedicated read-write partition (typi-
cally mounted as /data) that hosts user data and can be uninstalled at will.
Each application lives in a dedicated security sandbox and typically cannot
affect other applications or access their data. Additionally, apps can only
access resources that they have explicitly been granted a permission to use.
Privilege separation and the principle of least privilege are central to
Android’s security model, and we will explore how they are implemented
in the next section.

Android App Components

Android applications are a combination of loosely coupled components and,
unlike traditional applications, can have more than one entry point. Each
component can offer multiple entry points that can be reached based on
user actions in the same or another application, or triggered by a system
event that the application has registered to be notified about.

Components and their entry points, as well as additional metadata, are
defined in the application’s manifest file, called AndroidManifest.xml. Like
most Android resource files, this file is compiled into a binary XML format
(similar to ASN.1) before bundling it in the application package (APK)
file in order to decrease size and speed up parsing. The most important
application property defined in the manifest file is the application package
name, which uniquely identifies each application in the system. The pack-
age name is in the same format as Java package names (reverse domain
name notation; for example, com.google.email).

The AndroidManifest.xml file is parsed at application install time, and
the package and components it defines are registered with the system.
Android requires each application to be signed using a key controlled
by its developer. This guarantees that an installed application cannot be
replaced by another application that claims to have the same package name
(unless it is signed with the same key, in which case the existing application is
updated). We’ll discuss code signing and application packages in Chapter 3.

The main components of Android apps are listed below.

Activities
An activity is a single screen with a user interface. Activities are the
main building blocks of Android GUI applications. An application can
have multiple activities and while they are usually designed to be dis-
played in a particular order, each activity can be started independently,
potentially by a different app (if allowed).

Services
A service is a component that runs in the background and has no user
interface. Services are typically used to perform some long-running
operation, such as downloading a file or playing music, without block-
ing the user interface. Services can also define a remote interface using

Android Security Internals
© 2014 by Nikolay Elenkov

12 Chapter 1

AIDL and provide some functionality to other apps. However, unlike
system services, which are part of the OS and are always running, appli-
cation services are started and stopped on demand.

Content providers
Content providers provide an interface to app data, which is typically
stored in a database or files. Content providers can be accessed via IPC
and are mainly used to share an app’s data with other apps. Content
providers offer fine-grained control over what parts of data are acces-
sible, allowing an application to share only a subset of its data.

Broadcast receivers
A broadcast receiver is a component that responds to systemwide events,
called broadcasts. Broadcasts can originate from the system (for example,
announcing changes in network connectivity), or from a user appli-
cation (for example, announcing that background data update has
completed).

Android’s Security Model
Like the rest of the system, Android’s security model also takes advantage
of the security features offered by the Linux kernel. Linux is a multi-
user operating system and the kernel can isolate user resources from one
another, just as it isolates processes. In a Linux system, one user cannot
access another user’s files (unless explicitly granted permission) and each
process runs with the identity (user and group ID, usually referred to as UID
and GID) of the user that started it, unless the set-user-ID or set-group-ID
(SUID and SGID) bits are set on the corresponding executable file.

Android takes advantage of this user isolation, but treats users differently
than a traditional Linux system (desktop or server) does. In a traditional
system, a UID is given either to a physical user that can log into the system
and execute commands via the shell, or to a system service (daemon) that
executes in the background (because system daemons are often accessible
over the network, running each daemon with a dedicated UID can limit
the damage if one is compromised). Android was originally designed for
smartphones, and because mobile phones are personal devices, there was
no need to register different physical users with the system. The physical
user is implicit, and UIDs are used to distinguish applications instead. This
forms the basis of Android’s application sandboxing.

Application Sandboxing
Android automatically assigns a unique UID, often called an app ID, to
each application at installation and executes that application in a dedi-
cated process running as that UID. Additionally, each application is given
a dedicated data directory which only it has permission to read and write

Android Security Internals
© 2014 by Nikolay Elenkov

Android’s Security Model 13

to. Thus, applications are isolated, or sandboxed, both at the process level
(by having each run in a dedicated process) and at the file level (by having
a private data directory). This creates a kernel-level application sandbox,
which applies to all applications, regardless of whether they are executed in
a native or virtual machine process.

System daemons and applications run under well-defined and constant
UIDs, and very few daemons run as the root user (UID 0). Android does
not have the traditional /etc/password file and its system UIDs are statically
defined in the android_filesystem_config.h header file. UIDs for system ser-
vices start from 1000, with 1000 being the system (AID_SYSTEM) user, which
has special (but still limited) privileges. Automatically generated UIDs for
applications start at 10000 (AID_APP), and the corresponding usernames
are in the form app_XXX or uY_aXXX (on Android versions that support
multiple physical users), where XXX is the offset from AID_APP and Y is the
Android user ID (not the same as UID). For example, the 10037 UID cor-
responds to the u0_a37 username and may be assigned to the Google email
client application (com.google.android.email package). Listing 1-3 shows that
the email application process executes as the u0_a37 user u, while other
application processes execute as different users.

$ ps
--snip--
u0_a37 16973 182 941052 60800 ffffffff 400d073c S com.google.android.emailu
u0_a8 18788 182 925864 50236 ffffffff 400d073c S com.google.android.dialer
u0_a29 23128 182 875972 35120 ffffffff 400d073c S com.google.android.calendar
u0_a34 23264 182 868424 31980 ffffffff 400d073c S com.google.android.deskclock
--snip--

Listing 1-3: Each application process executes as a dedicated user on Android

The data directory of the email application is named after its package
name and is created under /data/data/ on single-user devices. (Multi-user
devices use a different naming scheme as discussed in Chapter 4.) All files
inside the data directory are owned by the dedicated Linux user, u0_a37, as
shown in Listing 1-4 (with timestamps omitted). Applications can option-
ally create files using the MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE flags
to allow direct access to files by other applications, which effectively sets the
S_IROTH and S_IWOTH access bits on the file, respectively. However, the direct
sharing of files is discouraged, and those flags are deprecated in Android
versions 4.2 and higher.

ls -l /data/data/com.google.android.email
drwxrwx--x u0_a37 u0_a37 app_webview
drwxrwx--x u0_a37 u0_a37 cache
drwxrwx--x u0_a37 u0_a37 databases
drwxrwx--x u0_a37 u0_a37 files
--snip--

Listing 1-4: Application directories are owned by the dedicated Linux user

Android Security Internals
© 2014 by Nikolay Elenkov

14 Chapter 1

Application UIDs are managed alongside other package metadata
in the /data/system/packages.xml file (the canonical source) and also writ-
ten to the /data/system/packages.list file. (We discuss package management
and the packages.xml file in Chapter 3.) Listing 1-5 shows the UID assigned
to the com.google.android.email package as it appears in packages.list.

grep 'com.google.android.email' /data/system/packages.list
com.google.android.email 10037 0 /data/data/com.google.android.email default 3003,1028,1015

Listing 1-5: The UID corresponding to each application is stored in /data/system/packages.list

Here, the first field is the package name, the second is the UID assigned
to the application, the third is the debuggable flag (1 if debuggable), the
fourth is the application’s data directory path, and the fifth is the seinfo label
(used by SELinux). The last field is a list of the supplementary GIDs that the
app launches with. Each GID is typically associated with an Android permis-
sion (discussed next) and the GID list is generated based on the permissions
granted to the application.

Applications can be installed using the same UID, called a shared user
ID, in which case they can share files and even run in the same process.
Shared user IDs are used extensively by system applications, which often
need to use the same resources across different packages for modularity.
For example, in Android 4.4 the system UI and keyguard (lockscreen imple-
mentation) share UID 10012 (see Listing 1-6).

grep ' 10012 ' /data/system/packages.list
com.android.keyguard 10012 0 /data/data/com.android.keyguard platform 1028,1015,1035,3002,3001
com.android.systemui 10012 0 /data/data/com.android.systemui platform 1028,1015,1035,3002,3001

Listing 1-6: System packages sharing the same UID

While the shared user ID facility is not recommended for non-system
apps, it’s available to third-party applications as well. In order to share
the same UID, applications need to be signed by the same code signing
key. Additionally, because adding a shared user ID to a new version of an
installed app causes it to change its UID, the system disallows this (see
Chapter 2). Therefore, a shared user ID cannot be added retroactively,
and apps need to be designed to work with a shared ID from the start.

Permissions
Because Android applications are sandboxed, they can access only their
own files and any world-accessible resources on the device. Such a limited
application wouldn’t be very interesting though, and Android can grant
additional, fine-grained access rights to applications in order to allow for
richer functionality. Those access rights are called permissions, and they
can control access to hardware devices, Internet connectivity, data, or OS
services.

Applications can request permissions by defining them in the
AndroidManifest.xml file. At application install time, Android inspects

Android Security Internals
© 2014 by Nikolay Elenkov

Android’s Security Model 15

the list of requested permissions and decides whether to grant them or
not. Once granted, permissions cannot be revoked and they are available
to the application without any additional confirmation. Additionally, for
features such as private key or user account access, explicit user confirma-
tion is required for each accessed object, even if the requesting application
has been granted the corresponding permission (see Chapters 7 and 8).
Some permission can only be granted to applications that are part of the
Android OS, either because they’re preinstalled or signed with the same key as
the OS. Third-party applications can define custom permissions and define
similar restrictions known as permission protection levels, thus restricting
access to an app’s services and resources to apps created by the same author.

Permission can be enforced at different levels. Requests to lower-level
system resources, such as device files, are enforced by the Linux kernel
by checking the UID or GID of the calling process against the resource’s
owner and access bits. When accessing higher-level Android components,
enforcement is performed either by the Android OS or by each component
(or both). We discuss permissions in Chapter 2.

IPC
Android uses a combination of a kernel driver and userspace libraries
to implement IPC. As discussed in “Binder” on page 5, the Binder ker-
nel driver guarantees that the UID and PID of callers cannot be forged,
and many system services rely on the UID and PID provided by Binder to
dynamically control access to sensitive APIs exposed via IPC. For example,
the system Bluetooth manager service only allows system applications to
enable Bluetooth silently if the caller is running with the system UID (1000)
by using the code shown in Listing 1-7. Similar code is found in other sys-
tem services.

public boolean enable() {
 if ((Binder.getCallingUid() != Process.SYSTEM_UID) &&
 (!checkIfCallerIsForegroundUser())) {
 Log.w(TAG,"enable(): not allowed for non-active and non-system user");
 return false;
 }
--snip--
}

Listing 1-7: Checking that the caller is running with the system UID

More coarse-grained permissions that affect all methods of a service
exposed via IPC can be automatically enforced by the system by specify-
ing a permission in the service declaration. As with requested permissions,
required permissions are declared in the AndroidManifest.xml file. Like the
dynamic permission check in the example above, per-component permis-
sions are also implemented by consulting the caller UID obtained from
Binder under the hood. The system uses the package database to deter-
mine the permission required by the callee component, and then maps the

Android Security Internals
© 2014 by Nikolay Elenkov

16 Chapter 1

caller UID to a package name and retrieves the set of permissions granted
to the caller. If the required permission is in that set, the call succeeds. If
not, it fails and the system throws a SecurityException.

Code Signing and Platform Keys
All Android applications must be signed by their developer, including sys-
tem applications. Because Android APK files are an extension of the Java
JAR package format,8 the code signing method used is also based on JAR
signing. Android uses the APK signature to make sure updates for an app
are coming from the same author (this is called the same origin policy) and
to establish trust relationships between applications. Both of these secu-
rity features are implemented by comparing the signing certificate of the
currently installed target app with the certificate of the update or related
application.

System applications are signed by a number of platform keys. Different
system components can share resources and run inside the same process
when they are signed with the same platform key. Platform keys are gener-
ated and controlled by whoever maintains the Android version installed
on a particular device: device manufacturers, carriers, Google for Nexus
devices, or users for self-built open source Android versions. (We’ll discuss
code signing and the APK format in Chapter 3.)

Multi-User Support
Because Android was originally designed for handset (smartphone) devices
that have a single physical user, it assigns a distinct Linux UID to each
installed application and traditionally does not have a notion of a physi-
cal user. Android gained support for multiple physical users in version 4.2,
but multi-user support is only enabled on tablets, which are more likely to
be shared. Multi-user support on handset devices is disabled by setting the
maximum number of users to 1.

Each user is assigned a unique user ID, starting with 0, and users are
given their own dedicated data directory under /data/system/users/<user ID>/,
which is called the user’s system directory. This directory hosts user-specific set-
tings such as homescreen parameters, account data, and a list of currently
installed applications. While application binaries are shared between users,
each user gets a copy of an application’s data directory.

To distinguish applications installed for each user, Android assigns a
new effective UID to each application when it is installed for a particular
user. This effective UID is based on the target physical user’s user ID and
the app’s UID in a single-user system (the app ID). This composite structure
of the granted UID guarantees that even if the same application is installed
by two different users, both application instances get their own sandbox.
Additionally, Android guarantees dedicated shared storage (hosted on an
SD card for older devices), which is world-readable, to each physical user.

8. Oracle, JAR File Specification, http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

Android Security Internals
© 2014 by Nikolay Elenkov

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

Android’s Security Model 17

The user to first initialize the device is called the device owner, and only they
can manage other users or perform administrative tasks that influence
the whole device (such as factory reset). (We discuss multi-user support in
greater detail in Chapter 4.)

SELinux
The traditional Android security model relies heavily on the UIDs and
GIDs granted to applications. While those are guaranteed by the kernel,
and by default each application’s files are private, nothing prevents an appli-
cation from granting world access to its files (whether intentionally or due
to a programming error).

Similarly, nothing prevents malicious applications from taking advan-
tage of the overly permissive access bits of system files or local sockets. In
fact, inappropriate permissions assigned to application or system files have
been the source of a number of Android vulnerabilities. Those vulner-
abilities are unavoidable in the default access control model employed by
Linux, known as discretionary access control (DAC). Discretionary here means
that once a user gets access to a particular resource, they can pass it on to
another user at their discretion, such as by setting the access mode of one
of their files to world-readable. In contrast, mandatory access control (MAC)
ensures that access to resources conforms to a system-wide set of authoriza-
tion rules called a policy. The policy can only be changed by an administra-
tor, and users cannot override or bypass it in order to, for example, grant
everyone access to their own files.

Security Enhanced Linux (SELinux) is a MAC implementation for the
Linux kernel and has been integrated in the mainline kernel for more than
10 years. As of version 4.3, Android integrates a modified SELinux version
from the Security Enhancements for Android (SEAndroid) project9 that
has been augmented to support Android-specific features such as Binder. In
Android, SELinux is used to isolate core system daemons and user applica-
tions in different security domains and to define different access policies for
each domain. As of version 4.4, SELinux is deployed in enforcing mode (viola-
tions to the system policy generate runtime errors), but policy enforcement
is only applied to core system daemons. Applications still run in permissive
mode and violations are logged but do not cause runtime errors. (We give
more details about Android’s SELinux implementation in Chapter 12.)

System Updates
Android devices can be updated over-the-air (OTA) or by connecting the
device to a PC and pushing the update image using the standard Android
debug bridge (ADB) client or some vendor-provided application with sim-
ilar functionality. Because in addition to system files, an Android update
might need to modify the baseband (modem) firmware, bootloader, and

9. SELinux Project, SE for Android, http://selinuxproject.org/page/SEAndroid

Android Security Internals
© 2014 by Nikolay Elenkov

http://selinuxproject.org/page/SEAndroid

18 Chapter 1

other parts of the device that are not directly accessible from Android, the
update process typically uses a special-purpose, minimal OS with exclusive
access to all device hardware. This is called a recovery OS or simply recovery.

OTA updates are performed by downloading an OTA package file (typi-
cally a ZIP file with an added code signature), which contains a small script
file to be interpreted by the recovery, and rebooting the device in recovery
mode. Alternatively, the user can enter recovery mode by using a device-
specific key combination when booting the device, and apply the update
manually by using the menu interface of the recovery, which is usually navi-
gated using the hardware buttons (Volume up/down, Power, and so on) of the
device.

On production devices, the recovery accepts only updates signed by the
device manufacturer. Update files are signed by extending the ZIP file for-
mat to include a signature over the whole file in the comment section (see
Chapter 3), which the recovery extracts and verifies before installing the
update. On some devices (including all Nexus devices, dedicated developer
devices, and some vendor devices), device owners can replace the recov-
ery OS and disable system update signature verification, allowing them to
install updates by third parties. Switching the device bootloader to a mode
that allows replacing the recovery and system images is called bootloader
unlocking (not to be confused with SIM-unlocking, which allows a device to
be used on any mobile network) and typically requires wiping all user data
(factory reset) in order to make sure that a potentially malicious third-party
system image does not get access to existing user data. On most consumer
devices, unlocking the bootloader has the side effect of voiding the device’s
warranty. (We discuss system updates and recovery images in Chapter 13.)

Verified Boot
As of version 4.4, Android supports verified boot using the verity target10 of
Linux’s Device-Mapper. Verity provides transparent integrity checking of
block devices using a cryptographic hash tree. Each node in the tree is a
cryptographic hash, with leaf nodes containing the hash value of a physical
data block and intermediary nodes containing hash values of their child
nodes. Because the hash in the root node is based on the values of all other
nodes, only the root hash needs to be trusted in order to verify the rest of
the tree.

Verification is performed with an RSA public key included in the boot
partition. Device blocks are checked at runtime by calculating the hash
value of the block as it is read and comparing it to the recorded value in
the hash tree. If the values do not match, the read operation results in an
I/O error indicating that the filesystem is corrupted. Because all checks are
performed by the kernel, the boot process needs to verify the integrity of the
kernel in order for verified boot to work. This process is device-specific and is
typically implemented by using an unchangeable, hardware-specific key that

10. Linux kernel source tree, dm-verity, http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux
.git/tree/Documentation/device-mapper/verity.txt

Android Security Internals
© 2014 by Nikolay Elenkov

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/verity.txt
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/verity.txt

Android’s Security Model 19

is “burned” (written to write-only memory) into the device. That key is used
to verify the integrity of each bootloader level and eventually the kernel. (We
discuss verified boot in Chapter 10.)

Summary
Android is a privilege-separated operating system based on the Linux
kernel. Higher-level system functions are implemented as a set of cooper-
ating system services that communicate using an IPC mechanism called
Binder. Android isolates applications from each other by running each with
a distinct system identity (Linux UID). By default, applications are given
very few privileges and have to request fine-grained permission in order
to interact with system services, hardware devices, or other applications.
Permissions are defined in each application’s manifest file and are granted
at install time. The system uses the UID of each application to find out what
permissions it has been granted and to enforce them at runtime. In recent
versions, system processes isolation takes advantage of SELinux to further
constrain the privileges given to each process.

Android Security Internals
© 2014 by Nikolay Elenkov

